Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 705
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Genes Dev ; 36(9-10): 566-581, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35618313

RESUMO

Accumulation of fat above the waist is an important risk factor in developing obesity-related comorbidities independently of BMI or total fat mass. Deciphering the gene regulatory programs of the adipose tissue precursor cells within upper body or abdominal (ABD) and lower body or gluteofemoral (GF) depots is important to understand their differential capacity for lipid accumulation, maturation, and disease risk. Previous studies identified the HOX transcript antisense intergenic RNA (HOTAIR) as a GF-specific lncRNA; however, its role in adipose tissue biology is still unclear. Using three different approaches (silencing of HOTAIR in GF human adipose-derived stem cells [GF hASCs], overexpression of HOTAIR in ABD hASCs, and ChIRP-seq) to localize HOTAIR binding in GF hASC chromatin, we found that HOTAIR binds and modulates expression, both positively and negatively, of genes involved in adipose tissue-specific pathways, including adipogenesis. We further demonstrate a direct interaction between HOTAIR and genes with high RNAPII binding in their gene bodies, especially at their 3' ends or transcription end sites. Computational analysis suggests HOTAIR binds preferentially to the 3' ends of genes containing predicted strong RNA-RNA interactions with HOTAIR. Together, these results reveal a unique function for HOTAIR in hASC depot-specific regulation of gene expression.


Assuntos
RNA Longo não Codificante , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Expressão Gênica , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células-Tronco/metabolismo
2.
Biol Reprod ; 111(1): 135-147, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38401166

RESUMO

OBJECTIVE: This study aimed to explore the specific pathways by which HOX transcript antisense intergenic RNA contributes to the pathogenesis of unexplained recurrent spontaneous abortion. METHODS: Real-time quantitative PCR was employed to assess the differential expression levels of HOX transcript antisense intergenic RNA in chorionic villi tissues from unexplained recurrent spontaneous abortion patients and women with voluntarily terminated pregnancies. HTR-8/SVneo served as a cellular model. Knockdown and overexpression of HOX transcript antisense intergenic RNA in the cells were achieved through siRNA transfection and pcDNA3.1 transfection, respectively. Cell viability, migration, and invasion were evaluated using cell counting kit-8, scratch, and Transwell assays, respectively. The interaction among the HOX transcript antisense intergenic RNA /miR-1277-5p/fibrillin 2 axis was predicted through bioinformatics analysis and confirmed through in vitro experiments. Furthermore, the regulatory effects of the HOX transcript antisense intergenic RNA /miR-1277-5p/fibrillin 2 signaling axis on cellular behaviors were validated in HTR-8/SVneo cells. RESULTS: We found that HOX transcript antisense intergenic RNA was downregulated in chorionic villi tissues from unexplained recurrent spontaneous abortion patients. Overexpression of HOX transcript antisense intergenic RNA significantly enhanced the viability, migration, and invasion of HTR-8/SVneo cells, while knockdown of HOX transcript antisense intergenic RNA had the opposite effects. We further confirmed the regulatory effect of the HOX transcript antisense intergenic RNA /miR-1277-5p/fibrillin 2 signaling axis in unexplained recurrent spontaneous abortion. Specifically, HOX transcript antisense intergenic RNA and fibrillin 2 were found to reduce the risk of unexplained recurrent spontaneous abortion by enhancing cell viability, migration, and invasion, whereas miR-1277-5p exerted the opposite effects. CONCLUSION: HOX transcript antisense intergenic RNA promotes unexplained recurrent spontaneous abortion development by targeting inhibition of miR-1277-5p/fibrillin 2 axis.


Assuntos
Aborto Habitual , Movimento Celular , MicroRNAs , RNA Longo não Codificante , Transdução de Sinais , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Feminino , Aborto Habitual/genética , Aborto Habitual/metabolismo , Aborto Habitual/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Gravidez , Fibrilina-2/genética , Fibrilina-2/metabolismo , Adulto , Proliferação de Células , Linhagem Celular , Trofoblastos/metabolismo , Trofoblastos/fisiologia , Vilosidades Coriônicas/metabolismo
3.
Mol Biol Rep ; 51(1): 495, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587571

RESUMO

BACKGROUND: Breast cancer (BC) is one of the most prevalent cancers that contribute to mortality among women worldwide. Despite contradictory findings, considerable evidence suggests that single nucleotide polymorphisms (SNPs) in the FSCN1 and HOTAIR genes may have a causative impact on the development of BC. This case-control study was conducted to evaluate the association of genotype frequency in FSCN1 rs852479, rs1640233, and HOTAIR rs920778 with susceptibility and prognosis of BC, as well as the impact of clinical stages and hormonal features. METHODS AND RESULTS: FSCN1 (rs852479, rs1640233) and HOTAIR (rs920778) were genotyped using TaqMan real-time PCR assay in 200 BC patients and 200 cancer-free controls, all representing Egyptian women. Genotypic analyses in association with clinicopathological factors and disease risk were assessed. As a result, a significant association with BC risk was observed for CC genotype frequency of FSCN1 rs852479 A > C (OR = 0.395, 95% CI 0.204-0.76, p-value = 0.005). However, no significant correlation was detected between the FSCN1 rs1640233 C > T and HOTAIR rs920778 C > T polymorphic variants and susceptibility to BC. Interestingly, CC genotype of FSCN1 rs1640233 was more likely to progress tumor size and lymph node invasion in BC cases (p-value = 0.04 and 0.02, respectively). Moreover, it was revealed that there was a non-significant correlation between the haplotype distributions of FSCN1 rs852479 and rs1640233 and the probability of BC. CONCLUSIONS: Based on the sample size and genetic characteristics of the subjects involved in the present study, our findings indicated that FSCN1 rs852479 may contribute to BC susceptibility in a sample of the Egyptian population.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/genética , Proteínas de Transporte , Estudos de Casos e Controles , Egito , Genótipo , Proteínas dos Microfilamentos , Polimorfismo de Nucleotídeo Único/genética
4.
Mol Biol Rep ; 51(1): 293, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334898

RESUMO

INTRODUCTION: Heroin use disorder (HUD) is a seriously increasing health issue, accounting for most deaths among drug abusers. Studying non-coding ribonucleic acid gene expression among drug abusers is a promising approach, as it may be used in diagnosis and therapeutics. PARTICIPANTS AND METHODS: A total of 49 male heroin-dependent patients and 49 male control participants were recruited from Kasr Al Ainy Psychiatry and Addiction outpatient clinics, Faculty of Medicine, Cairo University. Sera were gathered. qRT-PCR was utilized for the detection of gene expression of non-coding RNAs such as "HOX transcript antisense RNA" (HOTAIR), micro-RNA (miRNA-206), phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), mechanistic target of rapamycin (mTOR), and Activity Regulated Cytoskeleton Associated Protein (Arc). Sera Brain-Derived Neurotrophic Factor (BDNF) levels were assessed using ELISA. Using a western blot made it possible to determine the protein expression of PI3K, AKT, and mTOR. RESULTS: The study demonstrated that gene expressions of HOTAIR, AKT, PI3K, and Arc were considerably lowered between cases and controls, while gene expressions of miR-206 and mTOR1 were significantly raised. PI3K and AKT protein expressions were downregulated, while mTOR expressions were upregulated. BDNF levels were significantly decreased in some cases. CONCLUSION: The results of this study suggest that decreased HOTAIR in HUD relieves miR-206 inhibition, which thus increases and affects downstream PI3K/AKT/mTOR, ARC, and BDNF expression. This may be shared in addictive and relapsing behaviors.


Assuntos
Dependência de Heroína , MicroRNAs , Plasticidade Neuronal , RNA Longo não Codificante , Humanos , Masculino , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Dependência de Heroína/genética
5.
Mol Biol Rep ; 51(1): 249, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300349

RESUMO

BACKGROUND: The incidence of single-nucleotide-polymorphisms with malignant potential in esophageal cancer tissues has only been sparsely investigated in the west. Hence, we explored the contribution of four long non-coding RNAs' polymorphisms HOTAIR rs920778, LINC00951 rs11752942, POLR2E rs3787016 and HULC rs7763881 in esophageal cancer susceptibility. METHODS AND RESULTS: Formalin-fixed paraffin-embedded tissue specimens from 95 consecutive patients operated for esophageal/esophagogastric junction carcinoma during 25/03/2014-25/09/2018 were processed. Demographic data, histopathological parameters, surgical and oncological outcomes were collected. DNA findings of the abovementioned population were compared with 121 healthy community controls. Both populations were of European/Greek ancestry. Sixty-seven patients underwent Ivor Lewis/McKeown esophagectomy for either squamous cell esophageal carcinoma (N = 6) or esophageal/esophagogastric junction Siewert I or II adenocarcinoma (N = 61). Twenty-eight patients were subjected to extended total gastrectomy for esophagogastric junction Siewert III adenocarcinoma. Neither LINC00951 rs11752942 nor HULC rs7763881 polymorphisms were detected more frequently in esophageal cancer patients compared with healthy community subjects. A significantly higher presence of HOTAIR rs920778 TT genotype in esophagogastric junction Siewert I/II adenocarcinoma was identified. POLR2E rs3787016 C allele and CC genotypes were overrepresented in the control group, and when found in esophageal cancer carriers were associated with earlier disease stages, as well as with minor lymph node involvement and lesser metastatic potential. CONCLUSIONS: HOTAIR rs920778 may serve as a potential therapeutic suppression target, while POLR2E rs3787016 may represent a valuable biomarker to evaluate esophageal cancer predisposition and predict treatment response and prognosis. Clinical implications of these findings need to be verified with further prospective studies with larger sample-size.


Assuntos
Adenocarcinoma , Neoplasias Esofágicas , Humanos , Estudos de Casos e Controles , Esofagectomia , Estudos Prospectivos , Junção Esofagogástrica , Neoplasias Esofágicas/genética , Polimorfismo de Nucleotídeo Único/genética , RNA Polimerases Dirigidas por DNA
6.
Exp Cell Res ; 433(2): 113806, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37844792

RESUMO

Heart failure (HF) is a complex clinical syndrome associated with significant morbidity and mortality. Dysregulation of long non-coding RNA (lncRNA) has been implicated in the pathogenesis of HF. The present study aims to investigate the role of lncRNA HOX transcript antisense RNA (HOTAIR) in cardiomyocyte pyroptosis in a murine HF model. A murine HF model was established through transverse aortic contraction surgery, and an in vitro HF cell model was developed by treating HL-1 cells with H2O2. HOTAIR was overexpressed in TAC mice and HL-1 cells via pcDNA3.1-HOTAIR transfection. Cardiac function was assessed in TAC mice, and myocardial changes were evaluated using HE staining. The expression of NLRP3 was examined by immunohistochemistry. Myocardial injury markers and pyroptosis-related inflammatory cytokines were quantified using ELISA. Protein levels of NLRP3, cleaved-caspase-1, and GSDMD-N were analyzed by Western blot. Dual-luciferase assays and RNA immunoprecipitation were employed to confirm the binding interactions between HOTAIR and miR-17-5p, miR-17-5p and RORA. Functional rescue experiments were conducted by overexpressing miR-17-5p or silencing RORA in HL-1 cells. HOTAIR exhibited reduced expression in TAC mice and H2O2-induced cardiomyocytes. Overexpression of HOTAIR ameliorated cardiac dysfunction, reduced myocardial pathological injury, enhanced cardiomyocyte viability, and decreased myocardial injury and pyroptosis. HOTAIR interacted with miR-17-5p to repress RORA transcription. Overexpression of miR-17-5p or silencing of RORA abolished the inhibitory effect of HOTAIR overexpression on cardiomyocyte pyroptosis. In conclusion, HOTAIR competitively bound to miR-17-5p, relieving its inhibition of RORA transcription and leading to increased RORA expression and suppressed cardiomyocyte pyroptosis in HF models.


Assuntos
Insuficiência Cardíaca , MicroRNAs , RNA Longo não Codificante , Animais , Camundongos , Insuficiência Cardíaca/genética , Peróxido de Hidrogênio , MicroRNAs/genética , Miócitos Cardíacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Piroptose/genética , RNA Longo não Codificante/genética , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo
7.
J Endocrinol Invest ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748197

RESUMO

BACKGROUND: Papillary thyroid carcinoma (PTC) is one of the most common subtypes of thyroid carcinoma. Exosomal miR-181a plays an important role in the development of PTC. This study examined the regulatory mechanism of miR-181a under conditions of hypoxia and its impact on angiogenesis. METHODS: A ribonucleoprotein immunoprecipitation (RIP) experiment was conducted to verify the interaction between HOTAIR and RELA. The relationship between RELA and the miR-181a promoter was detected by ChIP-qPCR. Short hairpin (sh) RNA was designed to knock down HOTAIR in TPC cells. The underlying mechanism of miR-181a was verified by use of dual-luciferase assays and rescue experiments. The regulatory effect of GATA6 on angiogenesis was studied using CCK8, EdU, Transwell, and western blot assays. RESULTS: A RIP assay showed that HOTAIR could bind to RELA under hypoxic conditions. ChIP-qPCR and dual luciferase assays showed RELA could interact with the miR181a promoter and upregulate miR-181a. Knockdown of HOTAIR downregulated miR-181a in TPC-1 cells, and the downregulation could be rescued by RELA overexpression. MiR-181a downregulated GATA6 in HUVEC cells. Overexpression of GATA6 inhibited HUVEC proliferation, migration, tube formation, and EGFR expression. Exosomal miR-181a promoted angiogenesis by downregulating GATA6 expression. CONCLUSION: HOTAIR activated RELA to upregulate miR-181a during hypoxia. Exosomal miR-181a promotes tumor angiogenesis by downregulating GATA6.

8.
J Endocrinol Invest ; 47(4): 1037-1043, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37805962

RESUMO

INTRODUCTION: Adolescent polycystic ovary syndrome (PCOS) is characterized by androgen excess and oligo-amenorrhea, and often results from ectopic lipid storage due to a mismatch between early adipogenesis and later lipogenesis. Endogenous HOX transcript antisense RNA (HOTAIR) and exogenous pioglitazone are enhancers of subcutaneous adipogenesis, particularly in the gluteofemoral region. The A allele of HOTAIR rs1443512 is an equivalent of a natural knock-down and is, thus, a candidate to influence the distribution of fat mass, and also the redistribution of fat mass by pioglitazone in adolescent PCOS-without-obesity. SUBJECTS AND METHODS: We performed two post hoc analyses by HOTAIR rs1443512 genotype. In the first, we analyzed the pooled pre-treatment data (auxology; endocrinology; body composition by dual X-ray absorptiometry; abdominal fat distribution by magnetic resonance imaging) of 65 adolescent girls with PCOS-without-obesity in three reported studies (ISRCTN45546616; ISRCTN29234515; ISRCTN11062950). In the second, we analyzed the results of 24 adolescent girls with PCOS-without-obesity, who received pioglitazone (7.5 mg/d for 1 year) as part of a randomized combination treatment (with spironolactone and metformin) in two reported studies (ISRCTN29234515; ISRCTN11062950). All data had been obtained in a blinded-to-genotype way. RESULTS: The pre-treatment data disclosed that the girls-with-A-allele of HOTAIR rs1443512 had developed PCOS with a lower BMI (22.3 ± 2.3 kg/m2; N = 17) than the other girls (24.1 ± 2.7 kg/m2; N = 48), this difference being essentially attributable to a lower fat mass (mean difference 4.6 kg; P < 0.01). On low-dose pioglitazone, girls-with-A-allele (N = 12) raised their fat mass while the other girls (N = 12) did not (total fat mass + 2.2 ± 1.8 kg vs - 0.9 ± 2.2 kg; P < 0.001), particularly in the gynoid area (gluteofemoral fat + 0.6 ± 0.4 kg vs - 0.1 ± 0.5 kg; hip circumference + 2.3 ± 1.9 cm vs - 1.7 ± 3.1 cm; both P < 0.001). CONCLUSION: The present findings suggest that the HOTAIR rs1443512 genotype influences not only the distribution of fat mass in adolescent girls with PCOS-without-obesity but also the redistribution of fat mass during prolonged treatment with low-dose pioglitazone. TRIAL REGISTRATION: ISRCTN45546616 ( https://doi.org/10.1186/ISRCTN45546616 ). ISRCTN29234515 ( https://doi.org/10.1186/ISRCTN29234515 ). ISRCTN11062950 ( https://doi.org/10.1186/ISRCTN11062950 ).


Assuntos
Metformina , Síndrome do Ovário Policístico , Feminino , Adolescente , Humanos , Síndrome do Ovário Policístico/tratamento farmacológico , Pioglitazona/uso terapêutico , Metformina/uso terapêutico , Obesidade/tratamento farmacológico , Genótipo
9.
J Clin Lab Anal ; 38(11-12): e25086, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38958113

RESUMO

BACKGROUND: The importance of long noncoding RNAs (lncRNAs) in various biological processes has been increasingly recognized in recent years. This study investigated how gene polymorphism in HOX transcript antisense RNA (HOTAIR) lncRNA affects the predisposition to chronic kidney disease (CKD). METHODS: This study comprised 150 patients with CKD and 150 healthy controls. A PCR-RFLP and ARMS-PCR techniques were used for genotyping the five target polymorphisms. RESULTS: According to our findings, rs4759314 confers strong protection against CKD in allelic, dominant, and codominant heterozygote genetic patterns. Furthermore, rs3816153 decreased CKD risk by 78% when TT versus GG, 55% when GG+GT versus TT, and 74% when GT versus TT+GG. In contrast, the CC+CT genotype [odds ratio (OR) = 1.66, 95% confidence intervals (CIs) = 1.05-2.63] and the T allele (OR = 1.50, 95% CI = 1.06-2.11) of rs12826786, as well as the TT genotype (OR = 2.52, 95% CI = 1.06-5.98) of rs3816153 markedly increased the risk of CKD in the Iranian population. Although no linkage disequilibrium was found between the studied variants, the Crs12826786Trs920778Grs1899663Grs4759314Grs3816153 haplotype was associated with a decreased risk of CKD by 86% (OR = 0.14, 95% CI = 0.03-0.66). CONCLUSION: The rs920778 was not correlated with CKD risk, whereas the HOTAIR rs4759314, rs12826786, rs1899663, and rs3816153 polymorphisms affected the risk of CKD in our population. It seems essential to conduct repeated studies across various ethnic groups to explore the link between HOTAIR variants and their impact on the disease outcome.


Assuntos
Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , RNA Longo não Codificante , Insuficiência Renal Crônica , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos de Casos e Controles , Insuficiência Renal Crônica/genética , RNA Longo não Codificante/genética
10.
Biochem Genet ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103713

RESUMO

Liver cancer or hepatocellular carcinoma (HCC) remains the most common cancer in global epidemiology. Both the frequency and fatality of this malignancy have shown an upward trend over recent decades. Liver cancer is a significant concern due to its propensity for both intrahepatic and extrahepatic metastasis. Liver cancer metastasis is a multifaceted process characterized by cell detachment from the bulk tumor, modulation of cellular motility and invasiveness, enhanced proliferation, avoidance of the immune system, and spread either via lymphatic or blood vessels. MicroRNAs (miRNAs) are small non-coding ribonucleic acids (RNAs) playing a crucial function in the intricate mechanisms of tumor metastasis. A number of miRNAs can either increase or reduce metastasis via several mechanisms, such as control of motility, proliferation, attack by the immune system, cancer stem cell properties, altering the microenvironment, and the epithelial-mesenchymal transition (EMT). Besides, two other types of non-coding RNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) can competitively bind to endogenous miRNAs. This competition results in the impaired ability of the miRNAs to inhibit the expression of the specific messenger RNAs (mRNAs) that are targeted. Increasing evidence has shown that the regulatory axis comprising circRNA/lncRNA-miRNA-mRNA is correlated with the regulation of HCC metastasis. This review seeks to present a thorough summary of recent research on miRNAs in HCC, and their roles in the cellular processes of EMT, invasion and migration, as well as the metastasis of malignant cells. Finally, we discuss the function of the lncRNA/circRNA-miRNA-mRNA network as a crucial modulator of carcinogenesis and the regulation of signaling pathways or genes that are relevant to the metastasis of HCC. These findings have the potential to offer valuable insight into the discovery of novel therapeutic approaches for management of liver cancer metastasis.

11.
Bratisl Lek Listy ; 125(2): 107-112, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38219064

RESUMO

BACKGROUND: Vitamin D is a neuroactive steroid that carries out its biological functions through the vitamin D receptor (VDR). The VDR gene interacts with certain long noncoding RNAs (lncRNAs). The present study is aimed at evaluating the expression levels of the VDR gene as well as those of HOTAIR, H19, MALAT1, and P21 lncRNAs in patients with relapsing-remitting multiple sclerosis (RRMS). METHODS: This research was conducted on 38 RRMS patients and 38 healthy individuals. The expression levels of VDR and selected lncRNAs in peripheral blood as well as those of vitamin D in the plasma were measured. RESULTS: The results revealed a significant increase in the expression of lncRNA H19 in the RRMS group compared to the control group. The analysis of the receiver operating characteristic (ROC) curve for H19 gene expression demonstrated a diagnostic value of 0.699 (95% CI: 0.575-0.823). Positive correlations were detected between VDR and lncRNA HOTAIR (r = 0.446, p = 0.008), H19 (r = 0.351, p = 0.042), MALAT1 (r = 0.464, p = 0.006), and P21 (r = 0.512, p = 0.002) in MS patients. CONCLUSION: The findings of this study suggest that lncRNA H19 could serve as a potential biomarker for MS diagnosis (Tab. 4, Fig. 1, Ref. 34).


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , RNA Longo não Codificante , Humanos , Esclerose Múltipla Recidivante-Remitente/genética , Receptores de Calcitriol/genética , RNA Longo não Codificante/genética , Vitamina D , Vitaminas
12.
J Cell Mol Med ; 27(22): 3591-3600, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37621132

RESUMO

Long non-coding RNAs (lncRNA) have an extensive role in the progression and chemoresistance of gastric cancer (GC). Deeply study the regulatory role of lncRNAs could provide potential therapeutic targets. The aim of this study is to explore the regulatory role of HOTAIR in the progression and oxaliplatin resistance of GC. The expression of HOTAIR in GC and cell lines were detected by using qRT-PCR. Cell proliferation and apoptosis were analysed by CCK-8, EdU incorporation and flow cytometry. Luciferase reporter assay was used to identify the interaction between HOTAIR and ABCG2 (ATP-binding cassette (ABC) superfamily G member 2, ABCG2) via miR-195-5p. The regulatory functions were verified by using molecular biology experiments. HOTAIR was significantly overexpressed in GC and associated with poor prognosis. Knock-down of HOTAIR inhibited the GC cells proliferation and oxaliplatin resistance, while overexpression of HOTAIR showed opposite functions. Further studies found that HOTAIR acted as a competing endogenous RNA (ceRNA) to absorb miR-195-5p and elevated the expression of ABCG2, which leads to resistance of GC cells to oxaliplatin. Taken together, our findings demonstrated that HOTAIR regulates ABCG2 induced resistance of GC to oxaliplatin through miR-195-5p signalling and illustrate the great potential of developing new therapeutic targets for GC patients.


Assuntos
MicroRNAs , RNA Longo não Codificante , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Oxaliplatina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação Neoplásica da Expressão Gênica , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
13.
Mol Cancer ; 22(1): 65, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997931

RESUMO

HOX transcript antisense intergenic RNA (HOTAIR) is an oncogenic non-coding RNA whose expression is strongly correlated with the tumor grade and prognosis of a variety of carcinomas including breast cancer (BC). HOTAIR regulates various target genes via sponging and epigenetic mechanisms and controls various oncogenic cellular and signaling mechanisms including metastasis and drug resistance. In BC cells, HOTAIR expression is regulated by a variety of transcriptional and epigenetic mechanisms. In this review, we describe the regulatory mechanisms that govern HOTAIR expression during cancer development and explore how HOTAIR drives BC development, metastasis, and drug resistance. In the final section of this review, we focus on the role of HOTAIR in BC management, therapeutic treatment, and prognosis, highlighting its potential therapeutic applications.


Assuntos
Neoplasias da Mama , RNA Longo não Codificante , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica , Prognóstico , RNA Longo não Codificante/genética
14.
Funct Integr Genomics ; 23(2): 161, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37184696

RESUMO

Preeclampsia is a serious threat to the health of pregnant women. Injury of trophoblasts could contribute to the progression of preeclampsia, and H2O2 was able to induce apoptosis in trophoblasts. LncRNAs have been reported to be involved in the progression of preeclampsia. Additionally, lncRNA HOTAIR is upregulated in patients with preeclampsia. However, the function of HOTAIR in H2O2-treated trophoblasts remains unclear. To explore the function of HOTAIR in preeclampsia, HTR-8/SVneo cells were stimulated with H2O2. RT-qPCR was performed to measure HOTAIR expression in HTR-8/SVneo cells. The apoptosis of HTR-8/SVneo cells was measured using TUNEL staining. The mitochondrial membrane potential was measured using JC-1 staining. Western blotting was performed to detect the expression of ACSL4, GPX4, and FTH1 in HTR-8/SVneo cells. The level of HOTAIR in HTR-8/SVneo cells was upregulated by H2O2. In addition, H2O2 notably inhibited the proliferation of HTR-8/SVneo cells, whereas knockdown of HOTAIR reversed this phenomenon. The mitochondrial membrane potential in HTR-8/SVneo cells was significantly inhibited by H2O2 and partially abolished by HOTAIR silencing. Moreover, HOTAIR could bind to miR-106b-5p; ACSL4 was identified as the downstream target of miR-106b-5p. Furthermore, HOTAIR knockdown reversed H2O2-induced ferroptosis in HTR-8/SVneo cells by regulating miR-106b-5p/ACSL4. Collectively, the knockdown of HOTAIR reversed H2O2-induced ferroptosis in HTR-8/SVneo cells by mediating miR-106b-5p/ACSL4. Thus, HOTAIR may serve as a new therapeutic target against preeclampsia.


Assuntos
MicroRNAs , Pré-Eclâmpsia , Feminino , Humanos , Gravidez , Apoptose/genética , Proliferação de Células/genética , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Trofoblastos/metabolismo
15.
Biochem Biophys Res Commun ; 644: 112-121, 2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36640665

RESUMO

Regulatory B cells (Bregs) contribute to tumor immunosuppression. However, how B cells acquire their regulatory features in tumors remain unclear. Exosomes are important messengers that transmit tumor information to remodel tumor immunity. Here we revealed that tumor-derived exosomes drive Bregs to suppress anti-tumor immunity by delivering long non-coding RNAs (lncRNAs). HOTAIR was screened by lncRNA profiling in both colorectal cancer (CRC)-derived exosomes and infiltrating B cells. Tumor-derived HOTAIR polarized B cells toward a regulatory feature marked by programmed cell death-ligand 1 (PDL1) in CRC, and induced PDL1+ B cells to suppress CD8+ T cell activity. Exosomal HOTAIR bound to and protected pyruvate kinase M2 (PKM2) against ubiquitination degradation, resulting in STAT3 activation and PDL1 expression. Results from CRC patients showed a positive correlation between exosomal HOTAIR and tumor-infiltrating PDL1+ B cells. These findings reveal how B cells acquire PDL1-dominant regulatory feature in CRC, implying the clinical significance of exosomal therapy targeting HOTAIR.


Assuntos
Neoplasias Colorretais , Exossomos , RNA Longo não Codificante , Humanos , Neoplasias Colorretais/patologia , Exossomos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linfoma de Células B/imunologia
16.
Breast Cancer Res Treat ; 200(3): 375-390, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37294527

RESUMO

PURPOSE: Breast cancer (BC) is one of the biggest threats to women's health. LncRNA HOTAIR is related to the recurrence and metastasis of BC. Whether HOTAIR can serve as an effective biomarker to distinguish BC patients with different prognosis need to be further studied. METHODS: The miRNA and mRNA expression profile data of BC patients were downloaded from TCGA database. Univariate Cox regression was used to screen differential expression genes (DEGs). The miRcode database and miRWalk database were used to predict miRNA binding to HOTAIR and binding sites of miRNAs, respectively. Kaplan-Meier (KM) analysis was used to estimate the overall survival rate of BC patients. Finally, qRT-PCR and western blot were applied to evaluate the expression level of HOTAIR and mRNAs between BC cells and normal mammary cells. RESULTS: The patients with high HOTAIR expression had poor prognosis in BC. Totally 10 genes correlated with BC prognosis were identified from 170 DEGs, among which PAX7, IYD, ZIC2, MS4A1, TPRXL, CD24, LHX1 were positively correlated with HOTAIR, while CHAD, NPY1R, TPRG1 were opposite. The levels of IYD, ZIC2, CD24 mRNA and protein were increased in BC tissues and BC cells. In BC cells, the levels of IYD, ZIC2 and CD24 mRNA and protein were significantly increased in HOTAIR overexpressed group. HOTAIR had the strongest interaction with hsa-miR-129-5p, followed by hsa-miR-107. CONCLUSION: HOTAIR regulated the expression of downstream genes by interacting with 8 miRNAs and ultimately affected the prognosis of BC patients.


Assuntos
Neoplasias da Mama , MicroRNAs , RNA Longo não Codificante , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , RNA Longo não Codificante/genética , MicroRNAs/genética , Prognóstico , RNA Mensageiro/genética , Redes Reguladoras de Genes , Regulação Neoplásica da Expressão Gênica
17.
J Transl Med ; 21(1): 752, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880710

RESUMO

BACKGROUND: Long non-coding RNA (lncRNA) HOTAIR acts importantly in liver cancer development, but its effect on radioresistance remains poorly understood. Here, our study probed into the possible impact of HOTAIR in radioresistance in liver cancer stem cells (LCSCs) and to elucidate its molecular basis. METHODS: Following sorting of stem and non-stem liver cancer cells, LCSCs were identified and subjected to RNA-seq analysis for selecting differentially expressed genes. Expression of HOTAIR was determined in liver cancer tissues and CSCs. The stemness, proliferation, apoptosis and radioresistance of LCSCs were then detected in response to altered expression of HOTAIR-LSD1-JMJD6-BRD4. RESULTS: Ectopic HOTAIR expression was found to promote radioresistance of LCSCs by maintaining its stemness. Mechanistic investigations indicated that HOTAIR recruited LSD1 to the MAPK1 promoter region and reduced the level of H3K9me2 in the promoter region, thus elevating ERK2 (MAPK1) expression. JMJD6-BRD4 complex promoted HOTAIR transcription by forming a complex and positively regulated ERK2 (MAPK1) expression, maintaining the stemness of LCSCs, and ultimately promoting their radioresistance in vitro and in vivo. CONCLUSION: Collectively, our work highlights the promoting effect of the JMJD6-BRD4 complex on the radioresistance of LCSCs through a HOTAIR-dependent mechanism.


Assuntos
Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/metabolismo
18.
Cell Tissue Res ; 394(3): 471-485, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37851113

RESUMO

The aggravating role of long noncoding RNA (lncRNA) HOTAIR has been indicated in liver injury caused by hepatic ischemia/reperfusion. However, under the condition of alcoholic hepatitis (AH), its effects remain unclear. The present study aimed to examine the effect of lncRNA HOTAIR on hepatic stellate cell viability and apoptosis during liver injury caused by AH. In the liver tissues of AH rats, HOTAIR and S1PR1 were overexpressed, and microRNA (miR)-148a-3p was poorly expressed. Loss-of-function assays revealed that silencing of HOTAIR alleviated liver injury in AH by inhibiting the activated phenotype of hepatic stellate cells, inflammation, and fibrosis. Using the bioinformatics databases, dual-luciferase, RIP, and FISH assays, we observed that HOTAIR was mainly localized in the cytoplasm of hepatic stellate cells, and HOTAIR could bind specifically to miR-148a-3p. In addition, miR-148a-3p could target S1PR1 expression. Rescue experiments showed that silencing of miR-148a-3p or overexpression of S1PR1 reversed the alleviating effects of HOTAIR silencing on liver injury. Taken together, our findings revealed that HOTAIR regulates hepatic stellate cell proliferation via the miR-148a-3p/S1PR1 axis in liver injury, which may serve as the basis for developing novel therapeutic strategies to treat AH.


Assuntos
Hepatite Alcoólica , MicroRNAs , RNA Longo não Codificante , Ratos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Hepatite Alcoólica/genética , Receptores de Esfingosina-1-Fosfato , Proliferação de Células/genética
19.
Cytotherapy ; 25(5): 502-509, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36513574

RESUMO

BACKGROUND AIMS: As evidenced by ongoing clinical trials and increased activity in the commercial sector, extracellular vesicle (EV)-based therapies have begun the transition from bench to bedside. As this progression continues, one critical aspect of EV clinical translation is understanding the effects of storage and transport conditions. Several studies have assessed the impact of storage on EV characteristics such as morphology, uptake and component content, but effects of storage duration and temperature on EV functional bioactivity and, especially, loaded cargo are rarely reported. METHODS: The authors assessed EV outcomes following storage at different temperatures (room temperature, 4°C, -20°C, -80°C) for various durations as well as after lyophilization. RESULTS: Mesenchymal stromal cell (MSC) EVs were observed to retain key aspects of their bioactivity (pro-vascularization, anti-inflammation) for up to 4-6 weeks at -20°C and -80°C and after lyophilization. Furthermore, via in vitro assays and an in vivo wound healing model, these same storage conditions were also demonstrated to enable preservation of the functionality of loaded microRNA and long non-coding RNA cargo in MSC EVs. CONCLUSIONS: These findings extend the current understanding of how EV therapeutic potential is impacted by storage conditions and may inform best practices for handling and storing MSC EVs for both basic research and translational purposes.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Cicatrização
20.
EMBO Rep ; 22(7): e50193, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33960111

RESUMO

Epithelial-to-mesenchymal transition (EMT) describes the loss of epithelial traits and gain of mesenchymal traits by normal cells during development and by neoplastic cells during cancer metastasis. The long noncoding RNA HOTAIR triggers EMT, in part by serving as a scaffold for PRC2 and thus promoting repressive histone H3K27 methylation. In addition to PRC2, HOTAIR interacts with the LSD1 lysine demethylase, an epigenetic regulator of cell fate during development and differentiation, but little is known about the role of LSD1 in HOTAIR function during EMT. Here, we show that HOTAIR requires its LSD1-interacting domain, but not its PRC2-interacting domain, to promote the migration of epithelial cells. This activity is suppressed by LSD1 overexpression. LSD1-HOTAIR interactions induce partial reprogramming of the epithelial transcriptome altering LSD1 distribution at promoter and enhancer regions. Thus, we uncover an unexpected role of HOTAIR in EMT as an LSD1 decommissioning factor, counteracting its activity in the control of epithelial identity.


Assuntos
RNA Longo não Codificante , Linhagem Celular Tumoral , Cromatina/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , RNA Longo não Codificante/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA