Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 316
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 698: 149553, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38271833

RESUMO

Ever since the proposal of ferroptosis, it has been studied as a nonapoptotic cell death caused by iron ion-dependent phospholipid (PL) peroxidation. We previously showed that treatment of human hepatoma cell line HepG2 with prepared PL hydroperoxide (PLOOH) resulted in ferroptosis. However, in human sebum, the major hydroperoxide is not PLOOH but squalene hydroperoxide (SQOOH), and to our knowledge, it is not established yet whether SQOOH induces ferroptosis in the skin. In this study, we synthesized SQOOH and treated human keratinocyte HaCaT cells with SQOOH. The results showed that SQOOH induces ferroptosis in HaCaT cells in the same way that PLOOH causes ferroptosis in HepG2 cells. Some natural antioxidants (botanical extracts) could inhibit the ferroptosis in both the cell types. Consequently, future research focus would revolve around the involvement of SQOOH-induced ferroptosis in skin pathologies as well as the prevention and treatment of skin diseases through inhibition of ferroptosis by botanical extracts.


Assuntos
Ferroptose , Esqualeno , Humanos , Esqualeno/farmacologia , Esqualeno/metabolismo , Peróxido de Hidrogênio/metabolismo , Células HaCaT , Peroxidação de Lipídeos , Queratinócitos/metabolismo
2.
Arch Biochem Biophys ; 753: 109905, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38281543

RESUMO

Collagen I is a major component of extracellular matrix in human skin, and is also widely used in a variety of skin-care products. In this study, we investigated the modulatory roles of collagen I on human immortalized keratinocytes HaCaT, especially when cells were irradiated with UVB. Interestingly, the cells grown on plates coated by molecular collagen I, but not fibrillar collagen I, acquired certain resistance against UVB damages, as shown by increased survival and reduced apoptosis. The accumulation of dysfunctional mitochondria in UVB-treated cells was attenuated by molecular collagen I-coating. Interestingly, molecular collagen I rescued the loss of mitochondrial biogenesis in cells treated with UVB. Loss of PINK1/parkin-mediated mitophagy was dominant for the accumulation of dysfunctional mitochondria after UVB irradiation. Of note, cells cultured on molecular collagen I-precoated plates exhibited reserved mitophagy after UVB irradiation, as reflected by the enhanced protein level of PINK1/parkin, increased mitochondrial ubiquitin and the co-localization of lysosomes and mitochondria. Moreover, in UVB-treated cells, inhibiting mitophagy by Cyclosporin A, or by silencing PINK1 or parkin, disturbed the resolution of mitochondrial stress and reduced the protective effect of molecular collagen I, indicating that mitophagy is pivotal for the protection of collagen I against UVB damage in keratinocytes HaCaT. Collectively, this study reveals an unexpected protective role of collagen I, which facilitates mitophagy to rescue cells under UVB irradiation, providing a new direction for clinical application of collagen products.


Assuntos
Apoptose , Mitofagia , Humanos , Queratinócitos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases/metabolismo
3.
Cell Biol Int ; 48(6): 821-834, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38436129

RESUMO

Keratinocytes, located in the outermost layer of human skin, are pivotal cells to resist environmental damage. Cellular autophagy plays a critical role in eliminating damaged organelles and maintaining skin cell homeostasis. Low-dose 5-Aminolevulinic acid photodynamic therapy (ALA-PDT) has been demonstrated to enhance skin's antistress ability; however, the regulatory mechanisms of autophagy in keratinocytes remain unclear. In this study, we treated immortalized human keratinocytes (HaCaT cells) with low-dose ALA-PDT (0.5 mmol/L, 3 J/cm2). Through RNA-sequencing analysis, we identified that low-dose ALA-PDT modulated autophagy-related pathways in keratinocytes and pinpointed Unc-51-like kinase 1 (ULK1) as a key gene involved. Western blot results revealed that low-dose ALA-PDT treatment upregulated the expression of autophagy-related proteins Beclin-1 and LC3-II/LC3-I ratio. Notably, low-dose ALA-PDT regulated autophagy by inducing an appropriate level of reactive oxygen species (ROS), transiently reducing mitochondrial membrane potential, and decreasing adenosine triphosphate production; all these processes functioned on the AMP-activated protein kinase (AMPK)/ULK1 pathway to activate autophagy. Finally, we simulated external environmental damage using ultraviolet B (UVB) at a dose of 60 mJ/cm2 and observed that low-dose ALA-PDT mitigated UVB-induced cell apoptosis; however, this protective effect was reversed when using the autophagy inhibitor 3-methyladenine. Overall, these findings highlight how low-dose ALA-PDT enhances antistress ability in HaCaT cells through controlling ROS generation and activating the AMPK/ULK1 pathway to arouse cellular autophagy.


Assuntos
Proteínas Quinases Ativadas por AMP , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Autofagia , Queratinócitos , Transdução de Sinais , Humanos , Ácido Aminolevulínico/farmacologia , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/efeitos dos fármacos , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/efeitos dos fármacos , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Células HaCaT , Queratinócitos/metabolismo , Queratinócitos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fotoquimioterapia
4.
Photochem Photobiol Sci ; 23(9): 1757-1769, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39242437

RESUMO

Porphyrazines (Pzs) are porphyrin derivatives that show potential application as photosensitizers for photodynamic therapy (PDT), but are still far less explored in the literature. In this work, we evaluate how the photophysics and phototoxicity of the octakis(trifluoromethylphenyl)porphyrazine (H2Pz) against tumor cells can be modulated by coordination with Mg(II), Zn(II), Cu(II) and Co(II) ions. Fluorescence and singlet oxygen quantum yields for the Pzs were measured in organic solvents and in soy phosphatidylcholine (PC) liposomes suspended in water. While H2Pz and the respective complexes with Cu(II) and Co(II) showed very low efficiency to fluoresce and to produce 1O2, the Mg(II) and Zn(II) complexes showed significantly higher quantum yields in organic solvents. The fluorescence of these two Pzs in the liposomes was sensitive to the fluidity of the membrane, showing potential use as viscosity markers. The cytotoxicity of the compounds was tested in HaCaT (normal) and A431 (tumor) cells using soy PC liposomes as drug carriers. Despite the low 1O2 quantum yields in water, the Mg(II) and Zn(II) complexes showed IC50 values against A431 cells in the nanomolar range when activated with low doses of red LED light. Their phototoxicity was ca. three times higher for the tumor cells compared to the normal ones, showing promising application as photosensitizers for PDT protocols. Considering that H2Pz and the respective Co(II) and Cu(II) complexes were practically non-phototoxic to the cells, we demonstrate the importance of the central metal ion in the modulation of the photodynamic activity of porphyrazines.


Assuntos
Lipossomos , Fármacos Fotossensibilizantes , Porfirinas , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Porfirinas/química , Porfirinas/farmacologia , Lipossomos/química , Fotoquimioterapia , Oxigênio Singlete/metabolismo , Oxigênio Singlete/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Zinco/química , Zinco/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Íons/química
5.
J Appl Toxicol ; 44(5): 720-732, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38152000

RESUMO

Skin oxidative stress results in structural damage, leading to premature senescence, and pathological conditions such as inflammation and cancer. The plant-derived prenylated pyrone-phloroglucinol heterodimer arzanol, isolated from Helichrysum italicum ssp. microphyllum (Willd.) Nyman aerial parts, exhibits anti-inflammatory, anticancer, antimicrobial, and antioxidant activities. This study explored the arzanol protection against hydrogen peroxide (H2O2) induced oxidative damage in HaCaT human keratinocytes in terms of its ability to counteract cytotoxicity, reactive oxygen species (ROS) generation, apoptosis, and mitochondrial membrane depolarization. Arzanol safety on HaCaT cells was preliminarily examined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and microscopic observation. The arzanol pre-incubation (5-100 µM, for 24 h) did not induce cytotoxicity and morphological alterations. The phloroglucinol, at 50 µM, significantly protected keratinocytes against cytotoxicity induced by 2 h-incubation with 2.5 and 5 mM H2O2, decreased cell ROS production induced by 1 h-exposure to all tested H2O2 concentrations (0.5-5 mM), as determined by the 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) assay, and lipid peroxidation (thiobarbituric acid reactive substances [TBARS] method). The 2-h incubation of keratinocytes with H2O2 determined a significant increase of apoptotic cells versus control cells, evaluated by NucView® 488 assay, from the dose of 2.5 mM. Moreover, an evident mitochondrial membrane potential depolarization, monitored by fluorescent mitochondrial dye MitoView™ 633, was assessed at 5 mM H2O2. Arzanol pre-treatment (50 µM) exerted a strong significant protective effect against apoptosis, preserving the mitochondrial membrane potential of HaCaT cells at the highest H2O2 concentrations. Our results validate arzanol as an antioxidant agent for the prevention/treatment of skin oxidative-related disorders, qualifying its potential use for cosmeceutical and pharmaceutical applications.


Assuntos
Antioxidantes , Peróxido de Hidrogênio , Floroglucinol/análogos & derivados , Humanos , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio/toxicidade , Pironas/química , Pironas/farmacologia , Estresse Oxidativo , Queratinócitos , Floroglucinol/farmacologia , Floroglucinol/química , Apoptose
6.
Chem Biodivers ; 21(8): e202400349, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38818651

RESUMO

BACKGROUND: Atopic dermatitis (AD) has various detrimental effects on individuals with limited drug cure rates which necessitate the development of new treatment methods. PL-ReliefTMplus (PLR) is composed of SupraOlive, Crocus Sativus extracts and Citrus reticulata extracts. The effect of PLR on AD remains to be explored. METHODS: 2,4-dinitrofluorobenzene-induced AD model mice were involved and the histopathology of the skin lesions was observed along with the levels of inflammatory chemokines levels were measured. To further validate the molecular mechanism of PLR, RNA-seq was performed in HaCaT cells. Western blotting and immunofluorescence were performed to investigate NF-κB signaling pathways response in AD. RESULTS: Due to PLR treatment, the thickening of the epidermis and dermis was inhibited and the number of eosinophils, mast cells, and CD4+ T cells in the skin lesion was decreased. In addition, the levels of inflammatory cytokines were decreased in dorsal skin tissues and LPS-stimulated HaCat cells. Furthermore, KEGG pathway analysis suggested that most identified downstream biological functions were associated with inflammatory response. PLR inhibited NF-κB signaling in AD mice and HaCaT cells. CONCLUSIONS: These results indicate that PLR is a potent therapeutic agent for attenuating symptoms of AD.


Assuntos
Dermatite Atópica , NF-kappa B , Transdução de Sinais , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/patologia , Dermatite Atópica/metabolismo , NF-kappa B/metabolismo , NF-kappa B/antagonistas & inibidores , Animais , Transdução de Sinais/efeitos dos fármacos , Camundongos , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Dinitrofluorbenzeno , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Inflamação/induzido quimicamente , Modelos Animais de Doenças , Citrus/química , Células HaCaT , Camundongos Endogâmicos BALB C , Citocinas/metabolismo
7.
Environ Toxicol ; 39(1): 277-288, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37705238

RESUMO

Deoxynivalenol (DON) is a mycotoxin frequently occurring in human and animal food worldwide, which raises increasing public health concerns. In the present study, we used human keratinocytes (HaCaT cells) as an in vitro model to explore the cytotoxic effect of DON. The results showed that the cells exhibited varying degrees of damage, including decreased cell number and viability, cell shrinkage and floating, when treated with 0.125, 0.25, and 0.5 µg/mL DON for 6, 12, and 24 h, respectively. Furthermore, exposure to DON for 24 h significantly increased the lactate dehydrogenase (LDH) release and intracellular reactive oxygen species (ROS), and prominently decreased the superoxide dismutase (SOD) and catalase (CAT) activity. Additionally, DON exposure induced mitochondrial damage and cell apoptosis through reducing mitochondrial membrane potential. Then, we performed RNA-sequencing to investigate the molecular changes in HaCaT cells after DON exposure. The RNA-sequencing results revealed that DON exposure altered the gene expression involved in apoptosis, MAPK signaling pathway, and PI3K/Akt signaling pathway. Moreover, DON exposure significantly decreased the mRNA and protein expression of Bcl-2, and increased the mRNA and protein expression of Bax, Caspase 3 and COX-2, the protein expression of PI3K, and the phosphorylation levels of Akt, ERK, p38, and JNK. Taken together, these findings suggest that DON exposure could induce cell damage, oxidative stress, and apoptosis in HaCaT cells through the activation of PI3K/Akt and MAPK pathways.


Assuntos
Estresse Oxidativo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Humanos , Antioxidantes/metabolismo , Apoptose , Queratinócitos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , RNA Mensageiro/metabolismo , Tricotecenos/efeitos adversos
8.
Molecules ; 29(17)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39274908

RESUMO

Extended exposure to UVB (280-315 nm) radiation results in oxidative damage and inflammation of the skin. Previous research has demonstrated that pilose antler extracts have strong anti-inflammatory properties and possess antioxidant effects. This study aimed to elucidate the mechanism of pilose antler protein in repairing photodamage caused by UVB radiation in HaCaT cells and ICR mice. Pilose antler protein (PAP) was found to increase the expression of type I collagen and hyaluronic acid in HaCaT cells under UVB irradiation while also inhibiting reactive oxygen species (ROS) production and oxidative stress in vitro. In vivo, the topical application of pilose antler protein effectively attenuated UVB-induced skin damage in ICR mice by reducing interleukin-1ß (IL-ß), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) and inhibiting skin inflammation while alleviating UVB-induced oxidative stress. It was shown that pilose antler protein repaired UVB-induced photodamage through the MAPK and TGF-ß/Smad pathways.


Assuntos
Chifres de Veado , Células HaCaT , Camundongos Endogâmicos ICR , Estresse Oxidativo , Espécies Reativas de Oxigênio , Pele , Raios Ultravioleta , Raios Ultravioleta/efeitos adversos , Animais , Humanos , Chifres de Veado/química , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Pele/patologia , Pele/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Colágeno Tipo I/metabolismo , Cervos , Ácido Hialurônico/farmacologia , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo
9.
Microb Pathog ; 182: 106243, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37422175

RESUMO

Leptospira enters humans and animals through injured skin or mucous membranes by direct or indirect contact with urine excreted from infected reservoirs. Individuals with cut or scratched skin are at high risk of infection and are recommended to be protected from contact with Leptospira, but the risk of infection via skin without apparent wounds is unknown. We hypothesized that the stratum corneum of the epidermis might prevent percutaneous invasion of leptospires. We established a stratum corneum deficient model of hamsters using the tape stripping method. The mortality rate of hamsters lacking stratum corneum that were exposed to Leptospira was higher than that of controls with shaved skin, and was not significantly different from an epidermal wound group. These results indicated that the stratum corneum plays a critical role in protecting the host against leptospiral entry. We also examined the migration of leptospires through the monolayer of HaCaT cells (human keratinocyte cell line) using Transwell. The number of pathogenic leptospires penetrating the HaCaT cell monolayers was higher than that of non-pathogenic leptospires. Furthermore, scanning and transmission electron microscopic observations revealed that the bacteria penetrated the cell monolayers through both intracellular and intercellular routes. This suggested that pathogenic Leptospira can migrate easily through keratinocyte layers and is associated with virulence. Our study further highlights the importance of the stratum corneum as a critical barrier against the invasion of Leptospira found in contaminated soil and water. Hence, preventative measures against contact infection should be taken, even without visible skin wounds.


Assuntos
Leptospira interrogans , Leptospira , Leptospirose , Cricetinae , Animais , Humanos , Leptospirose/microbiologia , Epiderme/patologia , Pele/patologia
10.
J Microsc ; 292(3): 148-157, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37855555

RESUMO

People's choice of cosmetics is no longer just 'Follow the trend', but pays more attention to the ingredients of cosmetics, whether the ingredients of cosmetics are beneficial to people's skin health; therefore, more and more skin-healthy ingredients have been discovered and used in cosmetics. In this work, atomic force microscope (AFM) is used to provide physical information about biomolecules and living cells; it brings us a new method of high-precision physical measurement. Centella asiatica (L.) extract has the ability to promote skin wound healing, but its healing effect on damaged HaCaT cells needs to be investigated, which plays a key role in judging the effectiveness of skincare ingredients. The objective of this study was to explore the impact of Centella asiatica (L.) extract on ethanol-damaged human immortalised epidermal HaCaT cells based on AFM. We established a model of cellular damage and evaluated cell viability using the MTT assay. The physical changes of cell height, roughness, adhesion and Young's modulus were measured by AFM. The findings indicated that the Centella asiatica (L.) extract had a good repair effect on injured HaCaT cells, and the optimal concentration was 75 µg/mL.


Assuntos
Centella , Células HaCaT , Humanos , Microscopia de Força Atômica , Pele
11.
J Toxicol Environ Health A ; 86(10): 326-345, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37016508

RESUMO

The cellular effects of 5 types of spherical amorphous silica particles whose particle size were 4.2-12.8 µm for cosmetic use and two types of crystalline silica whose particle size were 2.4 and 7.1 µm particles for industrial use were examined. These silica particles were applied to HaCaT human keratinocytes for 24 hr. Crystalline silica enhanced IL-8 and IL-6 expression and caused cell membrane damage. Crystalline silica also enhanced HO-1 gene expression; however, the level of intracellular ROS did not change. Compared with crystalline silica, the cellular effects of the spherical silica employed in this study were minor. Cellular uptake of particles was observed for all of silica particle types. Cellular uptake of crystalline silica was observed 1 hr after exposure, and internalized silica particles were present in the cytoplasm. When HaCaT cells were exposed to crystalline silica for 1 hr and incubated for 23 hr in culture medium without silica particles, IL-8 expression was still detected. In addition, silica particles exerted negligible effects using a 3D skin tissue model. Thus, the following conclusions may be drawn. (1) cellular effects exerted by spherical silica are less compared to crystalline silica. (2) phagocytosis of particles is an important first step in the cellular effects of silica particles. (3) spherical silica particles might exert little, if any, effect on healthy skin attributed to no apparent cellular uptake.


Assuntos
Interleucina-8 , Dióxido de Silício , Humanos , Dióxido de Silício/toxicidade , Fagocitose , Células Cultivadas , Queratinócitos/metabolismo , Tamanho da Partícula
12.
Skin Res Technol ; 29(4): e13329, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37113086

RESUMO

BACKGROUND: As a common skin disease, psoriasis is related to inflammation and immune response. Due to the frequent recurrence of psoriasis, the treatment of psoriasis remains a clinical challenge. As an effective tumor necrosis factor-alpha (TNF-α) inhibitor, etanercept has been used for the treatment of psoriasis. However, some patients with psoriasis have no response to etanercept or discontinue treatment. To improve the therapeutic effect of etanercept, searching the potential biomarkers and investigating the related mechanisms of etanercept in the treatment of psoriasis are vital. MATERIALS AND METHODS: We stimulated HaCaT cells with lipopolysaccharide (LPS) to generate cellular psoriatic changes and established an imiquimod (IMQ)-induced psoriasis-like mouse model, and then used an etanercept to treat cell and mouse model. RESULTS: Etanercept alleviated IMQ-induced pathological changes and inflammation, and it also decreased the protein expression of high mobility group box 1 (HMGB1), receptor for advanced glycation end-products, and toll-like receptor 4. Moreover, the results of in vitro experiments showed that etanercept inhibited proliferation and inflammation, and promoted cell cycle arrest and apoptosis in LPS-treated HaCaT cells. Knockdown of HMGB1 further enhanced the inhibitory effects of etanercept on LPS-treated HaCaT cell viability and inflammation, while overexpression of HMGB1 notably reversed the inhibitory effects of etanercept on LPS-induced HaCaT cell viability and inflammation. CONCLUSION: Etanercept inhibited proliferation and inflammation and promoted cell cycle arrest and apoptosis in LPS-induced HaCaT cells, and etanercept ameliorated inflammation in a psoriasis-like mouse model.


Assuntos
Proteína HMGB1 , Psoríase , Animais , Camundongos , Modelos Animais de Doenças , Etanercepte , Proteína HMGB1/metabolismo , Proteína HMGB1/farmacologia , Proteína HMGB1/uso terapêutico , Imiquimode , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/patologia , Queratinócitos/metabolismo , Lipopolissacarídeos/metabolismo , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptor para Produtos Finais de Glicação Avançada/uso terapêutico
13.
Mar Drugs ; 21(8)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37623711

RESUMO

The high molecular weight and poor solubility of seaweed polysaccharides have limited their function and application. In this study, ultraviolet/hydrogen peroxide (UV/H2O2) treatment was used to prepare low-molecular-weight seaweed polysaccharides from Sargassum fusiforme. The effects of UV/H2O2 treatment on the physicochemical properties and anti-photoaging activity of S. fusiforme polysaccharides were studied. UV/H2O2 treatment effectively degraded polysaccharides from S. fusiforme (DSFPs), reducing their molecular weight from 271 kDa to 26 kDa after 2 h treatment. The treatment did not affect the functional groups in DSFPs but changed their molar percentage of monosaccharide composition and morphology. The effects of the treatment on the anti-photoaging function of S. fusiforme polysaccharides were investigated using human epidermal HaCaT cells in vitro. DFSPs significantly improved the cell viability and hydroxyproline secretion of UVB-irradiated HaCaT cells. In particular, DSFP-45 obtained from UV/H2O2 treatment for 45 min showed the best anti-photoaging effect. Moreover, DSFP-45 significantly increased the content and expression of collagen I and decreased those of pro-inflammatory cytokines, including interleukin-1ß, interleukin-6, and tumor necrosis factor-α. Thus, UV/H2O2 treatment could effectively improve the anti-photoaging activity of S. fusiforme polysaccharides. These results provide some insights for developing novel and efficient anti-photoaging drugs or functional foods from seaweed polysaccharides.


Assuntos
Peróxido de Hidrogênio , Neoplasias Cutâneas , Humanos , Peróxido de Hidrogênio/farmacologia , Sobrevivência Celular , Colágeno Tipo I , Citocinas
14.
J Wound Care ; 32(6): 392-398, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37300855

RESUMO

OBJECTIVE: Kigelia africana (Lam.) Benth. (Bignoniaceae) syn. Kigelia pinnata (Jacq. DC) is a tropical plant that is native to tropical Africa. The aim of this study was to determine if a methanolic extract prepared from Kigelia africana (KAE) can promote wound healing in treated human normal epidermal keratinocyte (HaCaT) cells and human normal foreskin fibroblast cell line (BJ) cells compared with untreated cells. METHOD: Experimental steps included: the methanolic extraction of the leaf and fruit of the Kigelia africana plant; the preparation of HaCaT and BJ cell lines; cell culture with a stable tetrazolium salt-based proliferation assay; and the evaluation of the wound healing effect of KAE (2µg/ml) in BJ and HaCaT cells. The phytochemical contents of KAE were determined using liquid chromatography quadrupole time-of-flight mass spectrometry. RESULTS: The following molecules were identified as being present in the KAE, among others: cholesterol sulfate; lignoceric acid; embelin; isostearic acid; linoleic acid; dioctyl phthalate; arg-pro-thr; 15-methyl-15(S)-PGE1; sucrose; benzododecinium (Ajatin); and 9-Octadecenamide (oleamide). KAE effected faster wound healing in treated cells compared with untreated cells for both cell lines. HaCaT cells that had been mechanically injured and treated with KAE healed completely in 48 hours compared with 72 hours for untreated HaCaT cells. Treated BJ cells healed completely in 72 hours compared with 96 hours for untreated BJ cells. Concentrations of KAE up to 300µg/ml had a very low cytotoxic effect on treated BJ and HaCaT cells. CONCLUSION: The experimental data in this study support the potential of KAE-based wound healing treatment to accelerate wound healing.


Assuntos
Bignoniaceae , Metanol , Humanos , Metanol/farmacologia , Extratos Vegetais/farmacologia , Linhagem Celular , Bignoniaceae/química , Cicatrização
15.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834001

RESUMO

The extensive use of agricultural pesticides to improve crop quality and yield significantly increased the risk to the public of exposure to small but repeated doses of pesticides over time through various routes, including skin, by increasing the risk of disease outbreaks. Although much work was conducted to reduce the use of pesticides in agriculture, little attention was paid to prevention, which could reduce the toxicity of pesticide exposure by reducing its impact on human health. Extra virgin olive oil (EVOO), a major component of the Mediterranean diet, exerts numerous health-promoting properties, many of which are attributed to oleuropein aglycone (OleA), the deglycosylated form of oleuropein, which is the main polyphenolic component of EVOO. In this work, three pesticides with different physicochemical and biological properties, namely oxadiazon (OXA), imidacloprid (IMID), and glyphosate (GLYPHO), were compared in terms of metabolic activity, mitochondrial function and epigenetic modulation in an in vitro cellular model of human HaCaT keratinocytes to mimic the pathway of dermal exposure. The potential protective effect of OleA against pesticide-induced cellular toxicity was then evaluated in a cell pre-treatment condition. This study showed that sub-lethal doses of OXA and IMID reduced the metabolic activity and mitochondrial functionality of HaCaT cells by inducing oxidative stress and altering intracellular calcium flux and caused epigenetic modification by reducing histone acetylation H3 and H4. GLYPHO, on the other hand, showed no evidence of cellular toxicity at the doses tested. Pretreatment of cells with OleA was able to protect cells from the damaging effects of the pesticides OXA and IMID by maintaining metabolic activity and mitochondrial function at a controlled level and preventing acetylation reduction, particularly of histone H3. In conclusion, the bioactive properties of OleA reported here could be of great pharmaceutical and health interest, as they could be further studied to design new formulations for the prevention of toxicity from exposure to pesticide use.


Assuntos
Olea , Praguicidas , Humanos , Piranos/farmacologia , Monoterpenos Ciclopentânicos , Azeite de Oliva , Queratinócitos , Praguicidas/toxicidade , Olea/química
16.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958804

RESUMO

Atopic dermatitis (AD) is a relapsing skin disease with persistent inflammation as a causal factor for symptoms and disease progression. Current therapies provide only temporary relief and require long-term usage accompanied by side effects due to persistent relapses. A short peptide, TPS240, has been tested for its potential to subside AD. In this study, we confirmed the anti-atopic effect of TPS240 in vivo and in vitro using a DNCB-induced AD mouse model and TNF-α/IFN-γ-stimulated HaCaT cells. In the AD mouse model, topical treatment with TPS240 diminished AD-like skin lesions and symptoms such as epidermal thickening and mast cell infiltration induced by DNCB, similar to the existing treatment, dexamethasone (Dex). Furthermore, skin atrophy, weight loss, and abnormal organ weight changes observed in the Dex-treated group were not detected in the TPS240-treated group. In TNF-α/IFN-γ-stimulated HaCaT cells, TPS240 reduced the expression of the inflammatory chemokines CCL17 and CCL22 and the pruritic cytokines TSLP and IL-31 by inhibiting NF-κB and STAT3 activation. These results suggest that TPS240 has an anti-atopic effect through immunomodulation of AD-specific cytokines and chemokines and can be used as a candidate drug for the prevention and treatment of AD that can solve the safety problems of existing treatments.


Assuntos
Dermatite Atópica , NF-kappa B , Animais , Camundongos , NF-kappa B/metabolismo , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/patologia , Queratinócitos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Dinitroclorobenzeno/farmacologia , Linhagem Celular , Citocinas/metabolismo , Quimiocinas/metabolismo , Pele/metabolismo , Camundongos Endogâmicos BALB C
17.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37445992

RESUMO

The survival fraction of epithelial HaCaT cells was analysed to assess the biological damage caused by intraoperative radiotherapy electron beams with varying energy spectra and intensities. These conditions were achieved by irradiating the cells at different depths in water using nominal 6 MeV electron beams while consistently delivering a dose of 5 Gy to the cell layer. Furthermore, a Monte Carlo simulation of the entire irradiation procedure was performed to evaluate the molecular damage in terms of molecular dissociations induced by the radiation. A significant agreement was found between the molecular damage predicted by the simulation and the damage derived from the analysis of the survival fraction. In both cases, a linear relationship was evident, indicating a clear tendency for increased damage as the averaged incident electron energy and intensity decreased for a constant absorbed dose, lowering the dose rate. This trend suggests that the radiation may have a more pronounced impact on surrounding healthy tissues than initially anticipated. However, it is crucial to conduct additional experiments with different target geometries to confirm this tendency and quantify the extent of this effect.


Assuntos
Células Epiteliais , Radioterapia de Alta Energia , Células HaCaT , Sobrevivência Celular , Elétrons , Humanos , Método de Monte Carlo , Radioterapia de Alta Energia/efeitos adversos , Células Epiteliais/efeitos da radiação , Relação Dose-Resposta à Radiação
18.
Prep Biochem Biotechnol ; : 1-10, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37747818

RESUMO

Coffee pulp (CP), a by-product of coffee production, is an underutilized resource with significant potential value. CP contains monosaccharides that can serve as an ideal carbon source for bacterial cultivation, enabling the production of value-added components such as medical-grade cellulose. Herein, we extracted the sugar fraction from Arabica CP and used it as a supplement in a growing media of a bacteria cellulose (BC), Komagataeibacter nataicola. The BC was then characterized and tested for cytotoxicity. The CP sugar fraction yielded approximately 7% (w/w) and contained glucose at 4.52 mg/g extract and fructose at 7.34 mg/g extract. Supplementing the sugar fraction at different concentrations (0.1, 0.3, 0.5, 0.7, and 1 g/10 mL) in sterilized glucose yeast extract broth, the highest yield of cellulose (0.0020 g) occurred at 0.3 g/10 mL. It possessed similar physicochemical attributes to the BC using glucose, with some notable improvements in fine structure and arrangement of the functional groups. In cytotoxicity assessments on HaCaT keratinocyte cells, bacterial cellulose concentrations of 2-1000 µg/mL exhibited viability of ≥ 80%. However, higher concentrations were toxic. This research innovatively uses coffee pulp for bacterial cellulose, aligning with the principles of a bio-circular economy that focuses on sustainable biomass utilization.


The sugar fraction of Arabica CP (6.64 g/100 g sample) contained glucose and fructose of 4.52 and 7.34 mg/g extract respectively.Different sugar fraction concentrations (0.1, 0.3, 0.5, 0.7, and 1 g/10 mL) were tested in sterilized glucose yeast extract broth. Optimal BC yield (0.0020 g) was achieved at 0.3 g/10 mL.The BC exhibited comparable physicochemical characteristics to cellulose obtained from glucose.The cytotoxicity indicate that HaCaT cells exposed to 2­1000 µg/mL of BC had a percentage cell viability of ≥80%, but it was toxic at higher concentrations.CP represents a cheap and readily-available source for BC production, contributing to the bio-circular economic goal.

19.
Molecules ; 28(19)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37836747

RESUMO

The accumulated dental biofilm can be a source of oral bacteria that are aspirated into the lower respiratory tract causing ventilator-associated pneumonia in hospitalized patients. The aim of this study was to evaluate the synergistic antibiofilm action of the produced and phytochemically characterized extracts of Cinnamomum verum and Brazilian green propolis (BGP) hydroethanolic extracts against multidrug-resistant clinical strains of Acinetobacter baumannii and Pseudomonas aeruginosa, in addition to their biocompatibility on human keratinocyte cell lines (HaCaT). For this, High-performance liquid chromatography analysis of the plant extracts was performed; then the minimum inhibitory and minimum bactericidal concentrations of the extracts were determined; and antibiofilm activity was evaluated with MTT assay to prevent biofilm formation and to reduce the mature biofilms. The cytotoxicity of the extracts was verified using the MTT colorimetric test, evaluating the cellular enzymatic activity. The data were analyzed with one-way ANOVA and Tukey's tests as well as Kruskal-Wallis and Dunn's tests, considering a significance level of 5%. It was possible to identify the cinnamic aldehyde in C. verum and p-coumaric, caffeic, and caffeoylquinic acids as well as flavonoids such as kaempferol and kaempferide and Artepillin-C in BGP. The combined extracts were effective in preventing biofilm formation and reducing the mature biofilms of A. baumannii and P. aeruginosa. Moreover, both extracts were biocompatible in different concentrations. Therefore, C. verum and BGP hydroethanolic extracts have bactericidal and antibiofilm action against multidrug resistant strains of A. baumannii and P. aeruginosa. In addition, the combined extracts were capable of expressively inhibiting the formation of A. baumannii and P. aeruginosa biofilms (prophylactic effect) acting similarly to 0.12% chlorhexidine gluconate.


Assuntos
Acinetobacter baumannii , Própole , Humanos , Pseudomonas aeruginosa , Própole/farmacologia , Cinnamomum zeylanicum , Brasil , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Queratinócitos
20.
Molecules ; 28(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38067535

RESUMO

Galium species are used worldwide for their antioxidant, antibacterial, antifungal, and antiparasitic properties. Although this plant has demonstrated its antitumor properties on various types of cancer, its biological activity on cutaneous melanoma has not been established so far. Therefore, the present study was designed to investigate the phytochemical profile of two extracts of G. verum L. herba (ethanolic and ethyl acetate) as well as the biological profile (antioxidant, antimicrobial, and antitumor effects) on human skin cancer. The extracts showed similar FT-IR phenolic profiles (high chlorogenic acid, isoquercitrin, quercitrin, and rutin), with high antioxidant capacity (EC50 of ethyl acetate phase (0.074 ± 0.01 mg/mL) > ethanol phase (0.136 ± 0.03 mg/mL)). Both extracts showed antimicrobial activity, especially against Gram-positive Streptococcus pyogenes and Staphylococcus aureus bacilli strains, the ethyl acetate phase being more active. Regarding the in vitro antitumor test, the results revealed a dose-dependent cytotoxic effect against A375 melanoma cell lines, more pronounced in the case of the ethyl acetate phase. In addition, the ethyl acetate phase stimulated the proliferation of human keratinocytes (HaCaT), while this effect was not evident in the case of the ethanolic phase at 24 h post-stimulation. Consequently, G. verum l. could be considered a promising phytocompound for the antitumor approach of cutaneous melanoma.


Assuntos
Anti-Infecciosos , Galium , Melanoma , Rubiaceae , Neoplasias Cutâneas , Humanos , Etanol , Antioxidantes/farmacologia , Antioxidantes/química , Galium/química , Romênia , Espectroscopia de Infravermelho com Transformada de Fourier , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Suplementos Nutricionais , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA