Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 74(1): 101-117.e10, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30827740

RESUMO

During X-inactivation, Xist RNA spreads along an entire chromosome to establish silencing. However, the mechanism and functional RNA elements involved in spreading remain undefined. By performing a comprehensive endogenous Xist deletion screen, we identify Repeat B as crucial for spreading Xist and maintaining Polycomb repressive complexes 1 and 2 (PRC1/PRC2) along the inactive X (Xi). Unexpectedly, spreading of these three factors is inextricably linked. Deleting Repeat B or its direct binding partner, HNRNPK, compromises recruitment of PRC1 and PRC2. In turn, ablating PRC1 or PRC2 impairs Xist spreading. Therefore, Xist and Polycomb complexes require each other to propagate along the Xi, suggesting a positive feedback mechanism between RNA initiator and protein effectors. Perturbing Xist/Polycomb spreading causes failure of de novo Xi silencing, with partial compensatory downregulation of the active X, and also disrupts topological Xi reconfiguration. Thus, Repeat B is a multifunctional element that integrates interdependent Xist/Polycomb spreading, silencing, and changes in chromosome architecture.


Assuntos
Fibroblastos/metabolismo , Deleção de Genes , Inativação Gênica , Células-Tronco Embrionárias Murinas/metabolismo , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 2/genética , RNA Longo não Codificante/genética , Inativação do Cromossomo X , Cromossomo X/genética , Animais , Linhagem Celular Transformada , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Ribonucleoproteínas Nucleares Heterogêneas Grupo K , Masculino , Camundongos , Motivos de Nucleotídeos , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Ligação Proteica , RNA Longo não Codificante/metabolismo , Sequências Repetitivas de Ácido Nucleico , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Cromossomo X/metabolismo
2.
EMBO J ; 41(23): e112338, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36254605

RESUMO

A defining characteristic of mammalian prions is their capacity for self-sustained propagation. Theoretical considerations and experimental evidence suggest that prion propagation is modulated by cell-autonomous and non-autonomous modifiers. Using a novel quantitative phospholipase protection assay (QUIPPER) for high-throughput prion measurements, we performed an arrayed genome-wide RNA interference (RNAi) screen aimed at detecting cellular host-factors that can modify prion propagation. We exposed prion-infected cells in high-density microplates to 35,364 ternary pools of 52,746 siRNAs targeting 17,582 genes representing the majority of the mouse protein-coding transcriptome. We identified 1,191 modulators of prion propagation. While 1,151 modified the expression of both the pathological prion protein, PrPSc , and its cellular counterpart, PrPC , 40 genes selectively affected PrPSc . Of the latter 40 genes, 20 augmented prion production when suppressed. A prominent limiter of prion propagation was the heterogeneous nuclear ribonucleoprotein Hnrnpk. Psammaplysene A (PSA), which binds Hnrnpk, reduced prion levels in cultured cells and protected them from cytotoxicity. PSA also reduced prion levels in infected cerebellar organotypic slices and alleviated locomotor deficits in prion-infected Drosophila melanogaster expressing ovine PrPC . Hence, genome-wide QUIPPER-based perturbations can discover actionable cellular pathways involved in prion propagation. Further, the unexpected identification of a prion-controlling ribonucleoprotein suggests a role for RNA in the generation of infectious prions.


Assuntos
Doenças Priônicas , Príons , Camundongos , Animais , Ovinos/genética , Príons/genética , Príons/metabolismo , Drosophila melanogaster/genética , Ribonucleoproteínas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Doenças Priônicas/genética , Doenças Priônicas/patologia , Mamíferos/genética
3.
EMBO J ; 40(12): e106357, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33938020

RESUMO

The functions of long RNAs, including mRNAs and long noncoding RNAs (lncRNAs), critically depend on their subcellular localization. The identity of the sequences that dictate subcellular localization and their high-resolution anatomy remain largely unknown. We used a suite of massively parallel RNA assays and libraries containing thousands of sequence variants to pinpoint the functional features within the SIRLOIN element, which dictates nuclear enrichment through hnRNPK recruitment. In addition, we profiled the endogenous SIRLOIN RNA-nucleoprotein complex and identified the nuclear RNA-binding proteins SLTM and SNRNP70 as novel SIRLOIN binders. Taken together, using massively parallel assays, we identified the features that dictate binding of hnRNPK, SLTM, and SNRNP70 to SIRLOIN and found that these factors are jointly required for SIRLOIN activity. Our study thus provides a roadmap for high-throughput dissection of functional sequence elements in long RNAs.


Assuntos
RNA Nuclear/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sítios de Ligação , Humanos , Células MCF-7 , Ligação Proteica , RNA-Seq
4.
Am J Hum Genet ; 109(10): 1867-1884, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36130591

RESUMO

Au-Kline syndrome (AKS) is a neurodevelopmental disorder associated with multiple malformations and a characteristic facial gestalt. The first individuals ascertained carried de novo loss-of-function (LoF) variants in HNRNPK. Here, we report 32 individuals with AKS (26 previously unpublished), including 13 with de novo missense variants. We propose new clinical diagnostic criteria for AKS that differentiate it from the clinically overlapping Kabuki syndrome and describe a significant phenotypic expansion to include individuals with missense variants who present with subtle facial features and few or no malformations. Many gene-specific DNA methylation (DNAm) signatures have been identified for neurodevelopmental syndromes. Because HNRNPK has roles in chromatin and epigenetic regulation, we hypothesized that pathogenic variants in HNRNPK may be associated with a specific DNAm signature. Here, we report a unique DNAm signature for AKS due to LoF HNRNPK variants, distinct from controls and Kabuki syndrome. This DNAm signature is also identified in some individuals with de novo HNRNPK missense variants, confirming their pathogenicity and the phenotypic expansion of AKS to include more subtle phenotypes. Furthermore, we report that some individuals with missense variants have an "intermediate" DNAm signature that parallels their milder clinical presentation, suggesting the presence of an epi-genotype phenotype correlation. In summary, the AKS DNAm signature may help elucidate the underlying pathophysiology of AKS. This DNAm signature also effectively supported clinical syndrome delineation and is a valuable aid for variant interpretation in individuals where a clinical diagnosis of AKS is unclear, particularly for mild presentations.


Assuntos
Metilação de DNA , Deficiência Intelectual , Anormalidades Múltiplas , Cromatina , Metilação de DNA/genética , Epigênese Genética , Face/anormalidades , Doenças Hematológicas , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Humanos , Deficiência Intelectual/genética , Fenótipo , Doenças Vestibulares
5.
Mol Ther ; 32(5): 1461-1478, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38414246

RESUMO

Osteoarthritis (OA) is an age-related or post-traumatic degenerative whole joint disease characterized by the rupture of articular cartilage homeostasis, the regulatory mechanisms of which remain elusive. This study identifies the essential role of heterogeneous nuclear ribonucleoprotein K (hnRNPK) in maintaining articular cartilage homeostasis. Hnrnpk expression is markedly downregulated in human and mice OA cartilage. The deletion of Hnrnpk effectively accelerates the development of post-traumatic and age-dependent OA in mice. Mechanistically, the KH1 and KH2 domain of Hnrnpk bind and degrade the mRNA of WWC1. Hnrnpk deletion increases WWC1 expression, which in turn leads to the activation of Hippo signaling and ultimately aggravates OA. In particular, intra-articular injection of LPA and adeno-associated virus serotype 5 expressing WWC1 RNA interference ameliorates cartilage degeneration induced by Hnrnpk deletion, and intra-articular injection of adeno-associated virus serotype 5 expressing Hnrnpk protects against OA. Collectively, this study reveals the critical roles of Hnrnpk in inhibiting OA development through WWC1-dependent downregulation of Hippo signaling in chondrocytes and defines a potential target for the prevention and treatment of OA.


Assuntos
Cartilagem Articular , Condrócitos , Ribonucleoproteínas Nucleares Heterogêneas Grupo K , Via de Sinalização Hippo , Osteoartrite , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Condrócitos/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Osteoartrite/metabolismo , Osteoartrite/genética , Osteoartrite/etiologia , Osteoartrite/patologia , Osteoartrite/terapia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Genomics ; 116(1): 110761, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38092323

RESUMO

AIM: To unravel whether ferroptosis involves with the actions by circPDE3B-mediated facilitation of esophageal squamous cell carcinoma (ESCC) progression. METHODS: Human ESCC tissues and cell lines were prepared for the evaluation of ferroptosis. Cellular iron, ROS, GSH, and MDA levels were measured to assess ferroptosis. Flow cytometry was employed to analyze apoptosis and cell cycle. Subcellular fractionation and fluorescence in situ hybridization (FISH) were conducted to validate the localization of circPDE3B. RNA pull-down, RNA immunoprecipitation (RIP), and luciferase assay were subjected to identify the molecular mechanisms. Nude mouse xenograft model was carried out to evaluate the function of circPDE3B/SLC7A11/CBS in vivo. RESULTS: Increased circPDE3B in human ESCC specimens was positively correlated with ferroptosis-related molecules, SLC7A11 and CBS. Functionally, circPDE3B knockdown triggered ferroptosis, apoptosis, and cell cycle arrest in ESCC cells. Whereas, these effects were obviously blocked by miR-516b-5p inhibitor. Mechanistically, not only circPDE3B sponged miR-516b-5p to upregulate CBS, but also directly bound with HNRNPK to stabilize SLC7A11. In mice, depletion of circPDE3B restrained ESCC growth, while this was abolished by overexpression of CBS or SLC7A11. CONCLUSION: In summary, circPDE3B promotes ESCC progression by suppressing ferroptosis through recruiting HNRNPK/SLC7A11 and miR-516b-5p/CBS axes.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Ferroptose , MicroRNAs , Humanos , Animais , Camundongos , Carcinoma de Células Escamosas do Esôfago/patologia , Neoplasias Esofágicas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Ferroptose/genética , Hibridização in Situ Fluorescente , Proliferação de Células/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
7.
J Neurosci ; 42(47): 8881-8896, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36261283

RESUMO

Fused in sarcoma (FUS) is a pathogenic RNA-binding protein in amyotrophic lateral sclerosis (ALS). We previously reported that FUS stabilizes Synaptic Ras-GTPase activating protein 1 (Syngap1) mRNA at its 3' untranslated region (UTR) and maintains spine maturation. To elucidate the pathologic roles of this mechanism in ALS patients, we identified the SYNGAP1 3'UTR variant rs149438267 in seven (four males and three females) out of 807 ALS patients at the FUS binding site from a multicenter cohort in Japan. Human-induced pluripotent stem cell (hiPSC)-derived motor neurons with the SYNGAP1 variant showed aberrant splicing, increased isoform α1 levels, and decreased isoform γ levels, which caused dendritic spine loss. Moreover, the SYNGAP1 variant excessively recruited FUS and heterogeneous nuclear ribonucleoprotein K (HNRNPK), and antisense oligonucleotides (ASOs) blocking HNRNPK altered aberrant splicing and ameliorated dendritic spine loss. These data suggest that excessive recruitment of RNA-binding proteins, especially HNRNPK, as well as changes in SYNGAP1 isoforms, are crucial for spine formation in motor neurons.SIGNIFICANCE STATEMENT It is not yet known which RNAs cause the pathogenesis of amyotrophic lateral sclerosis (ALS). We previously reported that Fused in sarcoma (FUS), a pathogenic RNA-binding protein in ALS, stabilizes synaptic Ras-GTPase activating protein 1 (Syngap1) mRNA at its 3' untranslated region (UTR) and maintains dendritic spine maturation. To elucidate whether this mechanism is crucial for ALS, we identified the SYNGAP1 3'UTR variant rs149438267 at the FUS binding site. Human-induced pluripotent stem cell (hiPSC)-derived motor neurons with the SYNGAP1 variant showed aberrant splicing, which caused dendritic spine loss along with excessive recruitment of FUS and heterogeneous nuclear ribonucleoprotein K (HNRNPK). Our findings that dendritic spine loss is because of excess recruitment of RNA-binding proteins provide a basis for the future exploration of ALS-related RNA-binding proteins.


Assuntos
Esclerose Lateral Amiotrófica , Sarcoma , Masculino , Feminino , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Regiões 3' não Traduzidas/genética , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Espinhas Dendríticas/metabolismo , Mutação , Proteínas de Ligação a RNA/genética , RNA Mensageiro/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Sarcoma/genética , Proteínas Ativadoras de ras GTPase/genética
8.
BMC Genomics ; 24(1): 146, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964488

RESUMO

BACKGROUND: Protein‒protein interactions (PPIs) are the foundation of the life activities of cells. TurboID is a biotin ligase with higher catalytic efficiency than BioID or APEX that reduces the required labeling time from 18 h to 10 min. Since many proteins participate in binding and catalytic events that are very short-lived, it is theoretically possible to find relatively novel binding proteins using the TurboID technique. Cell proliferation, apoptosis, autophagy, oxidative stress and metabolic disorders underlie many diseases, and forkhead box transcription factor 1 (FOXO1) plays a key role in these physiological and pathological processes. RESULTS: The FOXO1-TurboID fusion gene was transfected into U251 astrocytes, and a cell line stably expressing FOXO1 was constructed. While constructing the FOXO1 overexpression plasmid, we also added the gene sequence of TurboID to perform biotin labeling experiments in the successfully fabricated cell line to look for FOXO1 reciprocal proteins. Label-free mass spectrometry analysis was performed, and 325 interacting proteins were found. A total of 176 proteins were identified in the FOXO1 overexpression group, and 227 proteins were identified in the Lipopolysaccharide -treated group (Lipopolysaccharide, LPS). Wild-type U251 cells were used to exclude interference from nonspecific binding. The FOXO1-interacting proteins hnRNPK and RBM14 were selected for immunoprecipitation and immunofluorescence verification. CONCLUSION: The TurboID technique was used to select the FOXO1-interacting proteins, and after removing the proteins identified in the blank group, a large number of interacting proteins were found in both positive groups. This study lays a foundation for further study of the function of FOXO1 and the regulatory network in which it is involved.


Assuntos
Biotina , Lipopolissacarídeos , Proteína Forkhead Box O1/genética , Fatores de Transcrição Forkhead , Linhagem Celular
9.
Biol Reprod ; 108(3): 408-422, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36617174

RESUMO

Recurrent pregnancy loss (RPL) is a common pathological problem during pregnancy, and its clinical etiology is complex and unclear. Dysfunction of trophoblasts may cause a series of pregnancy complications, including preeclampsia, fetal growth restriction, and RPL. Recently, lncRNAs have been found to be closely related to the occurrence and regulation of pregnancy-related diseases, but few studies have focused on their role in RPL. In this study, we identified a novel lncRNA BBOX1-AS1 that was significantly upregulated in villous tissues and serum of RPL patients. Functionally, BBOX1-AS1 inhibited proliferation, migration, invasion, tube formation and promoted apoptosis of trophoblast cells. Mechanistically, overexpression of BBOX1-AS1 activated the p38 and JNK MAPK signaling pathways by upregulating GADD45A expression. Further studies indicated that BBOX1-AS1 could increase the stability of GADD45A mRNA by binding hnRNPK and ultimately cause abnormal trophoblast function. Collectively, our study highlights that the BBOX1-AS1/hnRNPK/GADD45A axis plays an important role in trophoblast-induced RPL and that BBOX1-AS1 may serve as a potential target for the diagnosis of RPL.


Assuntos
MicroRNAs , Pré-Eclâmpsia , RNA Longo não Codificante , Feminino , Gravidez , Humanos , Trofoblastos/metabolismo , Proliferação de Células/genética , Sistema de Sinalização das MAP Quinases , Pré-Eclâmpsia/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Movimento Celular/genética , MicroRNAs/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
10.
J Cell Physiol ; 237(7): 2943-2960, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35491694

RESUMO

Growing evidence indicates that long intergenic noncoding RNAs play an important role in cancer progression by affecting gene regulation at the transcriptional and posttranscriptional levels. Recent studies have shown that long intergenic noncoding RNA functions as a competitive endogenous RNA, which can interact with and mitigate the function of microRNA. In this study, we investigated the molecular mechanism by which LINC00162 regulates cell proliferation and apoptotic cell death. By analyzing RNA sequencing data, LINC00162 was identified to be a target of heterogeneous nuclear ribonucleoprotein K (hnRNPK). HnRNPK positively regulated LINC00162 expression through p38 mitogen-activated protein kinase. Lowering the level of either hnRNPK or LINC00162 decreased proliferation and colony formation while it increased apoptotic cell death. Small RNA sequencing followed by the antisense oligonucleotide pulldown, revealed that LINC00162 interacts directly with miR-485-5p which exhibited tumor-suppressing effects by suppressing cell proliferation and colony formation, and increasing apoptotic cell death. Through the bioinformatic approaches, progestin and adipoQ receptor 4 (PAQR4) was selected as a common target of LINC00162 and miR-485-5p. miR-485-5p decreased the expression of PAQR4 by directly binding to the 3'-untranslated region of PAQR4 messenger RNA. Knockdown of hnRNPK and LINC00162 increased the level of functional miR-485-5p, indicating that LINC00162 may compete for miR-485-5p, thereby derepressing PAQR4 expression. Overexpression of either hnRNPK or LINC00162, or inhibition of miR-485-5p, protected cells against etoposide-induced apoptotic death. Our findings demonstrate that a regulatory paradigm implicating hnRNPK, LINC00162, miR-485-5p, and PAQR4 plays an important role in cell proliferation and apoptosis, and is a promising target for cancer therapeutics.


Assuntos
Proliferação de Células , MicroRNAs , Neoplasias , RNA Longo não Codificante , Regiões 3' não Traduzidas/genética , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Receptores de Progesterona/metabolismo
11.
Acta Neuropathol ; 144(3): 465-488, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35895140

RESUMO

A 'GGGGCC' repeat expansion in the first intron of the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The exact mechanism resulting in these neurodegenerative diseases remains elusive, but C9 repeat RNA toxicity has been implicated as a gain-of-function mechanism. Our aim was to use a zebrafish model for C9orf72 RNA toxicity to identify modifiers of the ALS-linked phenotype. We discovered that the RNA-binding protein heterogeneous nuclear ribonucleoprotein K (HNRNPK) reverses the toxicity of both sense and antisense repeat RNA, which is dependent on its subcellular localization and RNA recognition, and not on C9orf72 repeat RNA binding. We observed HNRNPK cytoplasmic mislocalization in C9orf72 ALS patient fibroblasts, induced pluripotent stem cell (iPSC)-derived motor neurons and post-mortem motor cortex and spinal cord, in line with a disrupted HNRNPK function in C9orf72 ALS. In C9orf72 ALS/FTD patient tissue, we discovered an increased nuclear translocation, but reduced expression of ribonucleotide reductase regulatory subunit M2 (RRM2), a downstream target of HNRNPK involved in the DNA damage response. Last but not least, we showed that increasing the expression of HNRNPK or RRM2 was sufficient to mitigate DNA damage in our C9orf72 RNA toxicity zebrafish model. Overall, our study strengthens the relevance of RNA toxicity as a pathogenic mechanism in C9orf72 ALS and demonstrates its link with an aberrant DNA damage response, opening novel therapeutic avenues for C9orf72 ALS/FTD.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Doença de Pick , Esclerose Lateral Amiotrófica/patologia , Animais , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Dano ao DNA , Expansão das Repetições de DNA/genética , Demência Frontotemporal/patologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Doença de Pick/genética , RNA/metabolismo , RNA Antissenso , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
12.
Exp Cell Res ; 409(2): 112909, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34742742

RESUMO

LncRNA contribution to self-renewal of bladder cancer stem-like cells (CSLCs) remains largely unknown. We investigated the expression profile and biological function of lncRNAs in urothelial CSLCs by microarray analysis. Among these, lncRNA-AK023096 was identified as potentially playing a role in maintaining self-renewal of CSLCs. Knockdown of this transcript inhibited spheroid formation and tumor formation. We found that AK023096 mediates recruitment of hnRNP-K to SOX2 promoter and increases H3K4 trimethylation status on SOX2 promoter, leading to a robust change in SOX2 mRNA and protein levels. Moreover, AK023096 expression in primary tumors was found to be a powerful predictor of recurrence following transurethral resection in patients with nonmuscle-invasive bladder cancer, highlighting the critical role of lncRNA in the bladder cancer regulatory network.


Assuntos
Biomarcadores Tumorais/metabolismo , Autorrenovação Celular , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Células-Tronco Neoplásicas/patologia , RNA Longo não Codificante/genética , Fatores de Transcrição SOXB1/metabolismo , Neoplasias da Bexiga Urinária/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Prognóstico , Regiões Promotoras Genéticas , Fatores de Transcrição SOXB1/genética , Taxa de Sobrevida , Células Tumorais Cultivadas , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Cancer Sci ; 112(11): 4553-4569, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34418240

RESUMO

Numerous studies have reported that a variety of long noncoding RNAs (lncRNAs) can promote the proliferation, invasion, and migration of different tumor cells. However, different lncRNAs regulate cell functions in various forms, and the exact mechanisms are not clear. Here, we investigated the effect of the lncRNA ELF3-AS1 on gastric cancer (GC) cell function and explored the exact mechanism. Quantitative real-time polymerase chain reaction was used to detect the expression of ELF3-AS1 in GC tissues and adjacent nontumor tissues. Knockdown and overexpression of ELF3-AS1 was used to detect the effect of ELF3-AS1 on cell function. Potential downstream target genes were identified using RNA transcriptome sequencing, while RNA immunoprecipitation, chromatin immunoprecipitation, and Western blotting were performed to explore the tumor promotion mechanisms of ELF3-AS1. We observed that ELF3-AS1 was highly expressed in GC tissues, and high ELF3-AS1 expression predicted poor prognosis. The knockdown of ELF3-AS1 significantly inhibited cell proliferation, migration, and epithelial-mesenchymal transition and promoted apoptosis. Mechanistic investigations revealed that ELF3-AS1 may regulate the downstream target gene, C-C motif chemokine 20, by binding with the RNA-binding protein hnRNPK. Additionally, we found that high ELF3-AS1 expression was associated with thrombocytosis. Interleukin-6 and thrombopoietin may be involved in ELF3-AS1-induced paraneoplastic thrombocytosis. Together, our results demonstrate that aberrantly expressed ELF3-AS1 in GC may play important roles in oncogenesis and progression and is expected to become a new target for the diagnosis and treatment of GC.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Progressão da Doença , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Proteínas Proto-Oncogênicas c-ets/metabolismo , Neoplasias Gástricas/metabolismo , Trombocitose/etiologia , Fatores de Transcrição/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Quimiocina CCL20/metabolismo , Proteínas de Ligação a DNA/genética , Transição Epitelial-Mesenquimal , Feminino , Inativação Gênica , Humanos , Interleucina-6/metabolismo , Masculino , Camundongos Nus , Pessoa de Meia-Idade , Prognóstico , Proteínas Proto-Oncogênicas c-ets/genética , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia , Trombopoetina/metabolismo , Fatores de Transcrição/genética , Sequenciamento do Exoma
14.
Cancer Cell Int ; 21(1): 641, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857003

RESUMO

BACKGROUND: Heterogeneous nuclear ribonucleoprotein K (HnRNPK) is a nucleic acid-binding protein that regulates diverse biological events. Pathologically, HnRNPK proteins are frequently overexpressed and clinically correlated with poor prognosis in various types of human cancers and are therefore pursued as attractive therapeutic targets for select patients. However, both the transcriptional regulation and degradation of HnRNPK in prostate cancer remain poorly understood. METHODS: qRT-PCR was used to detect the expression of HnRNPK mRNA and miRNA; Immunoblots and immunohistochemical assays were used to determine the levels of HnRNPK and other proteins. Flow cytometry was used to investigate cell cycle stage. MTS and clonogenic assays were used to investigate cell proliferation. Immunoprecipitation was used to analyse the interaction between SPOP and HnRNPK. A prostate carcinoma xenograft mouse model was used to detect the in vivo effects of HnRNPK and miRNA. RESULTS: In the present study, we noted that HnRNPK emerged as an important player in the carcinogenesis process of prostate cancer. miR-206 and miR-613 suppressed HnRNPK expression by targeting its 3'-UTR in PrCa cell lines in which HnRNPK is overexpressed. To explore the potential biological function, proliferation and colony formation of PrCa cells in vitro and tumor growth in vivo were also dramatically suppressed upon reintroduction of miR-206/miR-613. We have further provided evidence that Cullin 3 SPOP is a novel upstream E3 ubiquitin ligase complex that governs HnRNPK protein stability and oncogenic functions by promoting the degradation of HnRNPK in polyubiquitination-dependent proteolysis in the prostate cancer setting. Moreover, prostate cancer-associated SPOP mutants fail to interact with and promote the destruction of HnRNPK proteins. CONCLUSION: Our findings reveal new posttranscriptional and posttranslational modification mechanisms of HnRNPK regulation via miR-206/miR-613 and SPOP, respectively. More importantly, given the critical oncogenic role of HnRNPK and the high frequency of SPOP mutations in prostate cancer, our results provide a molecular rationale for the clinical investigation of novel strategies to combat prostate cancer based on SPOP genetic status.

15.
RNA Biol ; 18(12): 2073-2086, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33682620

RESUMO

The subcellular localization of RNAs correlates with their function and how they are regulated. Most protein-coding mRNAs are exported into the cytoplasm for protein synthesis, while some mRNA species, long noncoding RNAs, and some regulatory element-associated unstable transcripts tend to be retained in the nucleus, where they function as a regulatory unit and/or are regulated by nuclear surveillance pathways. While the mechanisms regulating mRNA export and localization have been well summarized, the mechanisms governing nuclear retention of RNAs, especially of noncoding RNAs, are seldomly reviewed. In this review, we summarize recent advances in the mechanistic study of RNA nuclear retention, especially for noncoding RNAs, from the angle of cis-acting elements embedded in RNA transcripts and their interaction with trans-acting factors. We also try to illustrate the general principles of RNA nuclear retention and we discuss potential areas for future investigation.


Assuntos
Núcleo Celular/genética , RNA Mensageiro/genética , RNA não Traduzido/genética , Animais , Cromatina/genética , Cromatina/metabolismo , Regulação da Expressão Gênica , Humanos , Estabilidade de RNA , Transporte de RNA , RNA Mensageiro/metabolismo , RNA não Traduzido/metabolismo
16.
Int J Mol Sci ; 22(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806648

RESUMO

Heterogeneous nuclear ribonucleoprotein K (hnRNPK) transcripts are abundant in estrogen receptor (ER)- or progesterone receptor (PR)-positive breast cancer. However, the biological functions of hnRNPK in the ER-mediated signaling pathway have remained largely unknown. Therefore, this study analyzes the functions of hnRNPK expression in the ER-mediated signaling pathway in breast cancer. We initially evaluated hnRNPK expression upon treatment with estradiol (E2) and ICI 182,780 in the ERα-positive breast carcinoma cell line MCF-7. The results revealed that E2 increased hnRNPK; however, hnRNPK expression was decreased with ICI 182,780 treatment, indicating estrogen dependency. We further evaluated the effects of hnRNPK knockdown in the ER-mediated signaling pathway in MCF-7 cells using small interfering RNAs. The results revealed that hnRNPK knockdown decreased ERα expression and ERα target gene pS2 by E2 treatment. As hnRNPK interacts with several other proteins, we explored the interaction between hnRNPK and ERα, which was demonstrated using immunoprecipitation and proximity ligation assay. Subsequently, we immunolocalized hnRNPK in patients with breast cancer, which revealed that hnRNPK immunoreactivity was significantly higher in ERα-positive carcinoma cells and significantly lower in Ki67-positive or proliferative carcinoma cells. These results indicated that hnRNPK directly interacted with ERα and was involved in the ER-mediated signaling pathway in breast carcinoma. Furthermore, hnRNPK expression could be an additional target of endocrine therapy in patients with ERα-positive breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Estrogênios/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Transdução de Sinais/fisiologia , Carcinoma/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Células MCF-7 , RNA Interferente Pequeno/metabolismo , Receptores de Estrogênio/metabolismo
17.
Int J Mol Sci ; 22(18)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34575922

RESUMO

Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is an RNA/DNA binding protein involved in diverse cell processes; it is also a p53 coregulator that initiates apoptosis under DNA damage conditions. However, the upregulation of hnRNPK is correlated with cancer transformation, progression, and migration, whereas the regulatory role of hnRNPK in cancer malignancy remains unclear. We previously showed that arginine methylation of hnRNPK attenuated the apoptosis of U2OS osteosarcoma cells under DNA damage conditions, whereas the replacement of endogenous hnRNPK with a methylation-defective mutant inversely enhanced apoptosis. The present study further revealed that an RNA helicase, DDX3, whose C-terminus preferentially binds to the unmethylated hnRNPK and could promote such apoptotic enhancement. Moreover, C-terminus-truncated DDX3 induced significantly less apoptosis than full-length DDX3. Notably, we also identified a small molecule that docks at the ATP-binding site of DDX3, promotes the DDX3-hnRNPK interaction, and induces further apoptosis. Overall, we have shown that the arginine methylation of hnRNPK suppresses the apoptosis of U2OS cells via interfering with DDX3-hnRNPK interaction. On the other hand, DDX3-hnRNPK interaction with a proapoptotic role may serve as a target for promoting apoptosis in osteosarcoma cells.


Assuntos
Apoptose , Arginina/metabolismo , RNA Helicases DEAD-box/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Motivos de Aminoácidos , Apoptose/genética , Linhagem Celular Tumoral , RNA Helicases DEAD-box/química , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Humanos , Metilação , Modelos Moleculares , Mutação , Osteossarcoma/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas
18.
J Cell Physiol ; 235(3): 1995-2008, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31538344

RESUMO

Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is an DNA/RNA-binding protein and regulates a wide range of biological processes and disease pathogenesis. It contains 3 K-homologous (KH) domains, which are conserved in other RNA-binding proteins, mediate nucleic acid binding activity, and function as an enhancer or repressor of gene transcription. Phosphorylation of the protein alters its regulatory function, which also enables the protein to serve as a docking platform for the signal transduction proteins. In terms of the function of hnRNPK, it is central to many cellular events, including long noncoding RNA (lncRNA) regulation, cancer development and bone homoeostasis. Many studies have identified hnRNPK as an oncogene, where it is overexpressed in cancer tissues compared with the nonneoplastic tissues and its expression level is related to the prognosis of different types of host malignancies. However, hnRNPK has also been identified as a tumour suppressor, as it is important for the activation of the p53/p21 pathway. Recently, the protein is also found to be exclusively related to the regulation of paraspeckles and lncRNAs such as Neat1, Lncenc1 and Xist. Interestingly, hnRNPK has been found to associate with the Kabuki-like syndrome and Au-Kline syndrome with prominent skeletal abnormalities. In vitro study revealed that the hnRNPK protein is essential for the formation of osteoclast, in line with its importance in the skeletal system.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Sequência de Aminoácidos , Animais , Doenças Ósseas/metabolismo , Humanos , RNA Longo não Codificante/metabolismo , Transdução de Sinais/fisiologia
19.
J Cell Biochem ; 121(7): 3516-3525, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32065448

RESUMO

It is growingly recognized that messenger RNAs (mRNAs) are important regulators of various cancers. However, there are few reporters about the function of E2F3 in retinoblastoma (RB), which needs more exploration. In addition, the circRNA circ-0075804 was derived from the E2F3 host gene. The purpose of the study is to figure out the role and molecular regulation mechanism of E2F3 and circ-0075804 in RB. The role of E2F3 in RB was determined through E2F3 silencing and loss of expression was evaluated by real-time quantitative polymerase chain reaction (RT-qPCR), Western blot, CCK-8, colony formation, and 5-ethynyl-2'-deoxyuridine assays. The interactions between E2F3 and circ-0075804 were validated through loss and gain function of circ-0075804. Besides, the role of circ-0075804 in RB was determined by several functional assays. And the binding ability between heterogeneous nuclear ribonucleoprotein K and circ-0075804 was verified by RNA pull-down, Western blot, and RT-qPCR assays. The expression of E2F3 was upregulated in RB cell lines. Furthermore, knockdown of E2F3 inhibited cell proliferation and induced cell apoptosis in RB. And circ-0075804 positively regulated the expression of E2F3. Moreover, circ-0075804 facilitated cell proliferation and suppressed cell apoptosis. Besides, HNRNPK could bind with circ-0075804 in RB. Finally, knockdown of E2F3 partly rescued the promoting role of circ-0075804 overexpression in RB. Overall, circ-0075804 promotes the proliferation of RB via combining HNRNPK to improve the stability of E2F3, which brings new light for treating RB.


Assuntos
Fator de Transcrição E2F3/metabolismo , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , RNA Circular , Retinoblastoma/metabolismo , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Inativação Gênica , Humanos , Metástase Neoplásica , Biossíntese de Proteínas , Retina/metabolismo , Neoplasias da Retina/genética , Neoplasias da Retina/metabolismo , Retinoblastoma/genética , Frações Subcelulares , Transfecção , Regulação para Cima
20.
Stem Cells ; 37(8): 1018-1029, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31021473

RESUMO

The transcription factor Oct4 plays a key regulatory role in the induction and maintenance of cellular pluripotency. In this article, we show that ubiquitous and multifunctional poly(C) DNA/RNA-binding protein hnRNP-K occupies Oct4 (Pou5f1) enhancers in embryonic stem cells (ESCs) but is dispensable for the initiation, maintenance, and downregulation of Oct4 gene expression. Nevertheless, hnRNP-K has an essential cell-autonomous function in ESCs to maintain their proliferation and viability. To better understand mechanisms of hnRNP-K action in ESCs, we have performed ChIP-seq analysis of genome-wide binding of hnRNP-K and identified several thousands of hnRNP-K target sites that are frequently co-occupied by pluripotency-related and common factors (Oct4, TATA-box binding protein, Sox2, Nanog, Otx2, etc.), as well as active histone marks. Furthermore, hnRNP-K localizes exclusively within open chromatin, implying its role in the onset and/or maintenance of this chromatin state. Stem Cells 2019;37:1018-1029.


Assuntos
Proliferação de Células , Cromatina/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular , Cromatina/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Camundongos , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA