Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 90: 631-658, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33823651

RESUMO

Collagen is the most abundant protein in mammals. A unique feature of collagen is its triple-helical structure formed by the Gly-Xaa-Yaa repeats. Three single chains of procollagen make a trimer, and the triple-helical structure is then folded in the endoplasmic reticulum (ER). This unique structure is essential for collagen's functions in vivo, including imparting bone strength, allowing signal transduction, and forming basement membranes. The triple-helical structure of procollagen is stabilized by posttranslational modifications and intermolecular interactions, but collagen is labile even at normal body temperature. Heat shock protein 47 (Hsp47) is a collagen-specific molecular chaperone residing in the ER that plays a pivotal role in collagen biosynthesis and quality control of procollagen in the ER. Mutations that affect the triple-helical structure or result in loss of Hsp47 activity cause the destabilization of procollagen, which is then degraded by autophagy. In this review, we present the current state of the field regarding quality control of procollagen.


Assuntos
Colágeno/química , Fibrose/metabolismo , Proteínas de Choque Térmico HSP47/metabolismo , Pró-Colágeno/química , Pró-Colágeno/metabolismo , Animais , Colágeno/metabolismo , Retículo Endoplasmático/metabolismo , Fibrose/genética , Proteínas de Choque Térmico HSP47/química , Proteínas de Choque Térmico HSP47/genética , Humanos , Hidroxilação , Chaperonas Moleculares/metabolismo , Prolina/química , Prolina/metabolismo , Conformação Proteica , Dobramento de Proteína , Processamento de Proteína Pós-Traducional
2.
Mol Cell ; 69(2): 238-252.e7, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29351844

RESUMO

Maintenance of endoplasmic reticulum (ER) proteostasis is controlled by a dynamic signaling network known as the unfolded protein response (UPR). IRE1α is a major UPR transducer, determining cell fate under ER stress. We used an interactome screening to unveil several regulators of the UPR, highlighting the ER chaperone Hsp47 as the major hit. Cellular and biochemical analysis indicated that Hsp47 instigates IRE1α signaling through a physical interaction. Hsp47 directly binds to the ER luminal domain of IRE1α with high affinity, displacing the negative regulator BiP from the complex to facilitate IRE1α oligomerization. The regulation of IRE1α signaling by Hsp47 is evolutionarily conserved as validated using fly and mouse models of ER stress. Hsp47 deficiency sensitized cells and animals to experimental ER stress, revealing the significance of Hsp47 to global proteostasis maintenance. We conclude that Hsp47 adjusts IRE1α signaling by fine-tuning the threshold to engage an adaptive UPR.


Assuntos
Endorribonucleases/metabolismo , Proteínas de Choque Térmico HSP47/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Células COS , Chlorocebus aethiops , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Proteínas de Choque Térmico HSP47/fisiologia , Humanos , Camundongos , Chaperonas Moleculares/metabolismo , Transdução de Sinais , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas
3.
Curr Issues Mol Biol ; 46(2): 1398-1412, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38392208

RESUMO

Some charged multivesicular body protein 2B (CHMP2B) mutations are associated with autosomal-dominant neurodegenerative frontotemporal dementia and/or amyotrophic lateral sclerosis type 7 (FTDALS7). The main aim of this study is to clarify the relationship between the expression of mutated CHMP2B protein displaying FTD symptoms and defective neuronal differentiation. First, we illustrate that the expression of CHMP2B with the Asp148Tyr (D148Y) mutation, which preferentially displays FTD phenotypes, blunts neurite process elongation in rat primary cortical neurons. Similar results were observed in the N1E-115 cell line, a model that undergoes neurite elongation. Second, these effects were also accompanied by changes in neuronal differentiation marker protein expression. Third, wild-type CHMP2B protein was indeed localized in the endosomal sorting complexes required to transport (ESCRT)-like structures throughout the cytoplasm. In contrast, CHMP2B with the D148Y mutation exhibited aggregation-like structures and accumulated in the Golgi body. Fourth, among currently known Golgi stress regulators, the expression levels of Hsp47, which has protective effects on the Golgi body, were decreased in cells expressing CHMP2B with the D148Y mutation. Fifth, Arf4, another Golgi stress-signaling molecule, was increased in mutant-expressing cells. Finally, when transfecting Hsp47 or knocking down Arf4 with small interfering (si)RNA, cellular phenotypes in mutant-expressing cells were recovered. These results suggest that CHMP2B with the D148Y mutation, acting through Golgi stress signaling, is negatively involved in the regulation of neuronal cell morphological differentiation, providing evidence that a molecule controlling Golgi stress may be one of the potential FTD therapeutic targets at the molecular and cellular levels.

4.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612409

RESUMO

Limonoids are extremely diversified in plants, with many categories of products bearing an intact, rearranged or fragmented oxygenated scaffold. A specific subgroup of fragmented or degraded limonoids derives from the tetranortriterpenoid prieurianin, initially isolated from the tree Trichilia prieuriana but also found in other plants of the Meliaceae family, including the more abundant species Aphanamixis polystachya. Prieurianin-type limonoids include about seventy compounds, among which are dregeanin and rohitukin. Prieurianin and analogs exhibit insecticidal, antimicrobial, antiadipogenic and/or antiparasitic properties but their mechanism of action remains ill-defined at present. Previous studies have shown that prieurianin, initially known as endosidin 1, stabilizes the actin cytoskeleton in plant and mammalian cells via the modulation of the architecture and dynamic of the actin network, most likely via interference with actin-binding proteins. A new mechanistic hypothesis is advanced here based on the recent discovery of the targeting of the chaperone protein Hsp47 by the fragmented limonoid fraxinellone. Molecular modeling suggested that prieurianin and, to a lesser extent dregeanin, can form very stable complexes with Hsp47 at the protein-collagen interface. Hsp-binding may account for the insecticidal action of the product. The present review draws up a new mechanistic portrait of prieurianin and provides an overview of the pharmacological properties of this atypical limonoid and its chemical family.


Assuntos
Inseticidas , Limoninas , Meliaceae , Animais , Limoninas/farmacologia , Citoesqueleto de Actina , Actinas , Antiparasitários , Inseticidas/farmacologia , Mamíferos
5.
Am J Hum Genet ; 107(5): 989-999, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33053334

RESUMO

Osteogenesis imperfecta (OI) is characterized primarily by susceptibility to fractures with or without bone deformation. OI is genetically heterogeneous: over 20 genetic causes are recognized. We identified bi-allelic pathogenic KDELR2 variants as a cause of OI in four families. KDELR2 encodes KDEL endoplasmic reticulum protein retention receptor 2, which recycles ER-resident proteins with a KDEL-like peptide from the cis-Golgi to the ER through COPI retrograde transport. Analysis of patient primary fibroblasts showed intracellular decrease of HSP47 and FKBP65 along with reduced procollagen type I in culture media. Electron microscopy identified an abnormal quality of secreted collagen fibrils with increased amount of HSP47 bound to monomeric and multimeric collagen molecules. Mapping the identified KDELR2 variants onto the crystal structure of G. gallus KDELR2 indicated that these lead to an inactive receptor resulting in impaired KDELR2-mediated Golgi-ER transport. Therefore, in KDELR2-deficient individuals, OI most likely occurs because of the inability of HSP47 to bind KDELR2 and dissociate from collagen type I. Instead, HSP47 remains bound to collagen molecules extracellularly, disrupting fiber formation. This highlights the importance of intracellular recycling of ER-resident molecular chaperones for collagen type I and bone metabolism and a crucial role of HSP47 in the KDELR2-associated pathogenic mechanism leading to OI.


Assuntos
Osso e Ossos/metabolismo , Colágeno Tipo I/metabolismo , Proteínas de Choque Térmico HSP47/metabolismo , Osteogênese Imperfeita/genética , Proteínas de Transporte Vesicular/metabolismo , Adulto , Alelos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Osso e Ossos/patologia , Galinhas , Pré-Escolar , Colágeno Tipo I/química , Colágeno Tipo I/genética , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Expressão Gênica , Complexo de Golgi/metabolismo , Complexo de Golgi/patologia , Proteínas de Choque Térmico HSP47/química , Proteínas de Choque Térmico HSP47/genética , Humanos , Lactente , Masculino , Osteogênese Imperfeita/diagnóstico , Osteogênese Imperfeita/metabolismo , Osteogênese Imperfeita/patologia , Linhagem , Cultura Primária de Células , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Transporte Proteico , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
6.
Acta Pharmacol Sin ; 44(12): 2469-2478, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37580493

RESUMO

Intestinal fibrosis is a common complication of inflammatory bowel disease. There is still a lack of effective drugs for the prevention or treatment of intestinal fibrosis. Heat shock protein 47 (HSP47) plays a key role in the development of intestinal fibrosis. In this study we investigated the therapeutic potential and underlying mechanisms of fraxinellone, a degraded limonoid isolated from the root bark of Dictamnus dasycarpus, in the treatment of intestinal fibrosis. Intestinal fibrosis was induced in mice by dextran sodium sulfate (DSS) treatment. DDS-treated mice were administered fraxinellone (7.5, 15, 30 mg·kg-1·d-1, i.g.) for 45 days. We showed that fraxinellone administration dose-dependently alleviated DSS-induced intestinal impairments, and reduced the production of intestinal fibrosis biomarkers such as α-smooth muscle actin (SMA), collagen I, hydroxyproline, fibronectin and laminin, and cytokines such as TGF-ß, TNF-α and IL-ß. We then established in vitro intestinal fibrosis cell models in SW480 and HT-29 cells, and demonstrated that treatment with fraxinellone (3, 10, 30 µM) significantly relieved TGF-ß-induced fibrosis responses by inhibiting the TGF-ß/Smad2/3 signaling pathway. Molecular docking suggested that the fraxinellone might disrupt the interaction between HSP47 and collagen, which was confirmed by coimmunoprecipitation experiments. SPR analysis showed that fraxinellone had a high affinity for HSP47 with a Kd value of 3.542 × 10-5 M. This study provides a new example of HSP47-collagen intervention by a natural compound and has important implications for the clinical treatment of inflammation-induced issue fibrosis.


Assuntos
Colágeno , Proteínas de Choque Térmico HSP47 , Camundongos , Animais , Proteínas de Choque Térmico HSP47/metabolismo , Simulação de Acoplamento Molecular , Colágeno/metabolismo , Fibrose , Epitélio/metabolismo , Fator de Crescimento Transformador beta
7.
Postepy Dermatol Alergol ; 40(1): 102-106, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36909907

RESUMO

Introduction: Hypermobile (hEDS) Ehlers-Danlos syndrome (EDS) is a non-inflammatory, autosomal dominant connective tissue disorder. hEDS, unlike other types of EDS, has no known genetic aetiology, so diagnosis is conducted based on a person's medical history, a physical examination, and exclusion of other types of EDS after genetic tests. Aim: The present study was a sequencing analysis of the SERPINH1 gene and the evaluation of the potential impact of variants of this gene on their role in the aetiology of the hypermobile type of EDS. Material and methods: The study group included 100 hEDS patients of Polish origin. The SERPINH1 gene analysis was performed on genomic DNA (gDNA). In all patients, other types of EDS or other connective tissue disorders were excluded by testing them with NGS technology. Results: Among 100 tested patients, 4 different types of missense variants (heterozygote) were detected. All SERPINH1 alterations were classified as benign according to ACMG guidelines. Conclusions: Mutations in the SERPINH1 gene have been described in a rare type of OI but have never been analysed in hypermobile Ehlers-Danlos syndrome. In our investigation among 100 hEDS patients, we did not identify pathogenic or likely pathogenic variants. Though only benign variants were detected, which play no role in the pathogenesis of hEDS, we should take into account mechanisms other than gene structure alterations, which may have an impact on collagen and other ECM protein transport.

8.
Am J Respir Cell Mol Biol ; 66(4): 363-381, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34861139

RESUMO

Organ fibrosis is characterized by epithelial injury and aberrant tissue repair, where activated effector cells, mostly fibroblasts and myofibroblasts, excessively deposit collagen into the extracellular matrix. Fibrosis frequently results in organ failure and has been estimated to contribute to at least one-third of all global deaths. Also, lung fibrosis, in particular idiopathic pulmonary fibrosis (IPF), is a fatal disease with rising incidence worldwide. As current treatment options targeting fibrogenesis are insufficient, there is an urgent need for novel therapeutic strategies. During the last decade, several studies have proposed to target intra- and extracellular components of the collagen biosynthesis, maturation, and degradation machinery. This includes intra- and extracellular targets directly acting on collagen gene products, but also such that anabolize essential building blocks of collagen, in particular glycine (Gly) and proline (Pro) biosynthetic enzymes. Collagen, however, is a ubiquitous molecule in the body and fulfills essential functions as a macromolecular scaffold, growth factor reservoir, and receptor binding site in virtually every tissue. This review summarizes recent advances and future directions in this field. Evidence for the proposed therapeutic targets and where they currently stand in terms of clinical drug development for treatment of fibrotic disease is provided. The drug targets are furthermore discussed in light of 1) specificity for collagen biosynthesis, maturation, and degradation, and 2) specificity for disease-associated collagen. As therapeutic success and safety of these drugs may largely depend on targeted delivery, different strategies for specific delivery to the main effector cells and the extracellular matrix are discussed.


Assuntos
Fibrose Pulmonar Idiopática , Pulmão , Colágeno/metabolismo , Fibroblastos/metabolismo , Fibrose , Humanos , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Miofibroblastos/metabolismo
9.
J Transl Med ; 20(1): 544, 2022 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-36435779

RESUMO

Liver fibrosis is a liver disease in which there is an excessive buildup of extracellular matrix proteins, including collagen. By regulating cytokine production and the inflammatory response, heat shock proteins (HSPs) contribute significantly to a wider spectrum of fibrotic illnesses, such as lung, liver, and idiopathic pulmonary fibrosis by aiding in the folding and assembly of freshly synthesized proteins, HSPs serve as chaperones. HSP70 is one of the key HSPs in avoiding protein aggregation which induces its action by sending unfolded and/or misfolded proteins to the ubiquitin-proteasome degradation pathway and antagonizing influence on epithelial-mesenchymal transition. HSP47, on the other hand, is crucial for boosting collagen synthesis, and deposition, and fostering the emergence of fibrotic disorders. The current review aims to provide light on how HSP70 and HSP47 affect hepatic fibrogenesis. Additionally, our review looks into new therapeutic approaches that target HSP70 and HSP47 and could potentially be used as drug candidates to treat liver fibrosis, especially in cases of comorbidities.


Assuntos
Proteínas de Choque Térmico HSP47 , Proteínas de Choque Térmico , Humanos , Proteínas de Choque Térmico HSP47/metabolismo , Proteínas de Choque Térmico/metabolismo , Fibrose , Cirrose Hepática/tratamento farmacológico , Colágeno/metabolismo
10.
J Wound Care ; 31(8): 701-708, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-36001707

RESUMO

OBJECTIVE: To assess the response of cellular infiltration in wounds treated with Exendin-4. METHOD: In this study, 16 mice were used. On each mouse, two wounds were produced, one above the other, in order to study the effects of the various treatments carried out. The wounds then received an intradermal injection of either saline (20µl; Group 1) or Exendin-4 (Exe4, 62ng; Group 2) in the upper and lower wounds, respectively. The mice were euthanised in order to collect the wounds at time of abrasion (T0), at 48 hours (T1), 96 hours (T2) and 144 hours (T3). The expression of the glucagon-like peptide-1 receptor (GLP-1R) was evaluated by Western blot in wound lysates. Histological and histochemistry methods were applied in cryosections. RESULTS: In T2 and T3 treated wounds, the mast cells degranulation index increased while GLP-1R expression, tumour necrosis factor (TNF)-α, or heat shock protein (HSP)47 antigens were detected in their cytoplasm. These cells interacted with dendritic cells, vessels or granulocytes. The density of dendritic cells increased progressively, and intercellular connections were found between these cells and vessels. Among the dendritic cells at T2, only M2 macrophages increased. However, M1 cells expressed transforming growth factor (TGF)-ß and both interacted with either fibroblasts or with vessels. The number of plasmacytoid dendritic cells increased and established close contacts with regulatory T cells. CONCLUSION: We propose that after treatment with Exe4, early activation of mast cells is critical in wound healing acceleration. This is crucial in understanding the potential effect of this drug for viable clinical therapies. DECLARATION OF INTEREST: No potential conflict of interest was reported by the authors.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1 , Mastócitos , Animais , Exenatida/farmacologia , Exenatida/uso terapêutico , Fibroblastos , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Mastócitos/metabolismo , Camundongos , Cicatrização
11.
Cancer Sci ; 112(7): 2803-2820, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34109710

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most chemoresistant cancers. An understanding of the molecular mechanism by which PDAC cells have a high chemoresistant potential is important for improvement of the poor prognosis of patients with PDAC. Here we show for the first time that disruption of heat shock protein 47 (HSP47) enhances the efficacy of the therapeutic agent gemcitabine for PDAC cells and that the efficacy is suppressed by reconstituting HSP47 expression. HSP47 interacts with calreticulin (CALR) and the unfolded protein response transducer IRE1α in PDAC cells. Ablation of HSP47 promotes both the interaction of CALR with sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase 2 and interaction of IRE1α with inositol 1,4,5-triphosphate receptor, which generates a condition in which an increase in intracellular Ca2+ level is prone to be induced by oxidative stimuli. Disruption of HSP47 enhances NADPH oxidase-induced generation of intracellular reactive oxygen species (ROS) and subsequent increase in intracellular Ca2+ level in PDAC cells after treatment with gemcitabine, resulting in the death of PDAC cells by activation of the Ca2+ /caspases axis. Ablation of HSP47 promotes gemcitabine-induced suppression of tumor growth in PDAC cell-bearing mice. Overall, these results indicated that HSP47 confers chemoresistance on PDAC cells and suggested that disruption of HSP47 may improve the efficacy of chemotherapy for patients with PDAC.


Assuntos
Calreticulina/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Resistencia a Medicamentos Antineoplásicos , Endorribonucleases/metabolismo , Proteínas de Choque Térmico HSP47/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Antimetabólitos Antineoplásicos/uso terapêutico , Cálcio/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Caspases/metabolismo , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapêutico , Técnicas de Inativação de Genes , Inativação Gênica , Proteínas de Choque Térmico HSP47/genética , Xenoenxertos , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Camundongos , NADPH Oxidases/metabolismo , Transplante de Neoplasias , Neoplasias Pancreáticas/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Resposta a Proteínas não Dobradas , Gencitabina
12.
Arch Biochem Biophys ; 703: 108853, 2021 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-33811847

RESUMO

Generation of mitochondrial reactive oxygen species (ROS), lipid peroxidation, 4-hydroxy-2-nonenal, and heat-shock protein (HSP) 47 after electron and X-ray irradiations were detected in the human neuroblastoma cell line SK-N-SH. After 10 Gy electron irradiation and 15 Gy X-ray irradiation, mitochondrial ROS production and lipid peroxidation were significantly increased. Additionally, we observed a significant increase in the levels of HSP47 after 3 and 10 Gy electron irradiation as well as 15 Gy X-ray irradiation. Furthermore, myristoylation and farnesylation were increased after 10 Gy electron and 15 Gy X-ray irradiations. We found that the level of HSP47 increased in the mitochondria after 10 Gy electron and 15 Gy X-ray irradiations. HSP47 coexisted with myristoylation and farnesylation. Furthermore, HSP47 overexpression increased mitochondrial ROS production. These results suggest that HSP47 plays an important role in mitochondria and induces mitochondrial ROS production in SK-N-SH cells.


Assuntos
Elétrons , Proteínas de Choque Térmico HSP47/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Neuroblastoma/patologia , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Humanos , Processamento de Proteína Pós-Traducional/efeitos da radiação , Transporte Proteico/efeitos da radiação , Raios X
13.
Exp Eye Res ; 213: 108804, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34756941

RESUMO

PURPOSE: Alike keratoconus (KC), keratoglobus (KG) and pellucid marginal degeneration (PMD) belong to ectatic corneal diseases. While there are numerous studies on keratoconus pathophysiology, there is no exact knowledge on genetic and pathophysiological background of KG and PMD, so far. It is not yet clarified, whether KG and PMD are independent clinical entities or represent different stages of the same disease. Our purpose was to investigate key parameters concerning collagen synthesis, intracellular LOX expression and inflammation in corneal stromal cells of KG and PMD subjects, in vitro. METHODS: Normal human keratocytes of corneas from the LIONS Cornea Bank Saar-Lor-Lux, Trier/Westpfalz and human keratocytes of KG and PMD patients were isolated and cultured as keratocytes. To examine Collagen I and V (Col I, Col V), heat shock protein 47 (Hsp47), Lysyl Oxidase (LOX), nuclear factor kappa B (NF-κB) mRNA and protein expression in all cell types, quantitative PCR and Western blot analysis has been performed. RESULTS: Col5A1 mRNA expression was significantly lower in KG and PMD keratocytes and LOX mRNA expression was significantly higher in KG-keratocytes, compared to controls. Col1A1, Hsp47 and NF-κB mRNA expression and the analyzed protein expressions did not differ from controls, in KG or PMD. CONCLUSIONS: Col5A1 mRNA expression is decreased in KG and PMD and LOX mRNA expression is increased in KG. Therefore, the pathophysiology of KG and PMD differs from KC and these seem to be from KC independent entities. The explanation of the peripheral corneal thinning in KG and PMD must be investigated in further studies.


Assuntos
Colágeno Tipo V/genética , Distrofias Hereditárias da Córnea/genética , Ceratócitos da Córnea/metabolismo , Regulação da Expressão Gênica/fisiologia , Ceratocone/genética , Proteína-Lisina 6-Oxidase/genética , RNA Mensageiro/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Western Blotting , Células Cultivadas , Distrofias Hereditárias da Córnea/metabolismo , Distrofias Hereditárias da Córnea/fisiopatologia , Distrofias Hereditárias da Córnea/cirurgia , Substância Própria/citologia , Feminino , Voluntários Saudáveis , Humanos , Ceratocone/metabolismo , Ceratocone/fisiopatologia , Ceratocone/cirurgia , Ceratoplastia Penetrante , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Doadores de Tecidos
14.
FASEB J ; 34(9): 12040-12052, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32716577

RESUMO

Although collagens are the most abundant proteins implicated in various disease pathways, essential mechanisms required for their proper folding and assembly are poorly understood. Heat-shock protein 47 (HSP47), an ER-resident chaperone, was mainly reported to fulfill key functions in folding and secretion of fibrillar collagens by stabilizing pro-collagen triple-helices. In this study, we demonstrate unique functions of HSP47 for different collagen subfamilies. Our results show that HSP47 binds to the N-terminal region of procollagen I and is essential for its secretion. However, HSP47 ablation does not majorly impact collagen VI secretion, but its lateral assembly. Moreover, specific ablation of Hsp47 in murine keratinocytes revealed a new role for the transmembrane collagen XVII triple-helix formation. Incompletely folded collagen XVII C-termini protruding from isolated HSP47 null keratinocyte membrane vesicles could be fully restored upon the application of recombinant HSP47. Thus, our study expands the current view regarding the client repertoire and function of HSP47, as well as emphasizes its importance for transmembrane collagen folding.


Assuntos
Proteínas de Choque Térmico HSP47/metabolismo , Queratinócitos/metabolismo , Pró-Colágeno/metabolismo , Dobramento de Proteína , Animais , Proteínas de Choque Térmico HSP47/genética , Camundongos , Pró-Colágeno/genética
15.
Genomics ; 112(1): 552-566, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30986427

RESUMO

Heat shock protein 47 kDa (HSP47) serves as a client-specific chaperone, essential for collagen biosynthesis and its folding and structural assembly. To date, there is no comprehensive study on mutational hotspots. Using five different human mutational databases, we deduced a comprehensive list of human HSP47 mutations with 24, 67, 50, 43 and 2 deleterious mutations from the 1000 genomes data, gnomAD, COSMICv86, cBioPortal, and CanVar, respectively. We identified thirteen top-ranked missense mutations of HSP47 with the stringent cut-off of CADD score (>25) and Grantham score (≥151) as Ser76Trp, Arg103Cys, Arg116Cys, Ser159Phe, Arg167Cys, Arg280Cys, Trp293Cys, Gly323Trp, Arg339Cys, Arg373Cys, Arg377Cys, Ser399Phe, and Arg405Cys with the arginine-cysteine changes as the predominant mutations. These findings will assist in the evaluation of roles of HSP47 in collagen misfolding and human diseases such as cancer and bone disorders.


Assuntos
Proteínas de Choque Térmico HSP47/genética , Mutação de Sentido Incorreto , Neoplasias/genética , Doenças Ósseas/genética , Bases de Dados de Ácidos Nucleicos , Proteínas de Choque Térmico HSP47/química , Humanos , Conformação Proteica
16.
Electromagn Biol Med ; 40(1): 201-209, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33073635

RESUMO

Capacitive-Resistive Electric Transfer (CRET) thermotherapies aim at tissue repair and regeneration through non-invasive application of RF currents. We have reported that the cellular response to subthermal CRET currents is non-linearly dependent on the signal frequency, and that in vitro exposure to a 448-kHz CRET signal promotes ADSC proliferation, as well as collagen and glycosaminoglycan synthesis in prechondrocytic cells. The present work investigates the response of neonatal fibroblasts to subthermal exposure (100 µA/mm2) to two CRET signals: a 448-kHz, non-modulated sinusoidal wave vs. a 20-kHz amplitude-modulation of the 448-kHz carrier. To that end, cell proliferation and expression of the biomarkers Hsp47, Hsp27 and decorin were assessed by cell count, PCNA and Western blotting. The results revealed that while both signals significantly and equivalently increased early (4 h) expression of Hsp47, the modulated signal was more efficient in inducing Hsp27 and decorin overexpression and promoting cell proliferation. These data indicate that the cellular response is dependent on the RF signal modulation and suggest that the therapeutic effects of CRET could be mediated by promotion of fibroblastic proliferation and overexpression of biomarkers that are essential in skin regeneration.


Assuntos
Fibroblastos/citologia , Fibroblastos/efeitos da radiação , Ondas de Rádio , Relação Dose-Resposta à Radiação , Humanos , Recém-Nascido
17.
J Biol Chem ; 294(44): 15962-15972, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31492754

RESUMO

Molecular chaperones perform pivotal roles in proteostasis by engaging in protein-protein interactions (PPIs). The collagen-specific molecular chaperone Hsp47 (heat shock protein 47) interacts with procollagen in the endoplasmic reticulum (ER) and plays crucial roles in collagen synthesis. PPIs between Hsp47 and collagen could offer a therapeutic target for fibrosis, which is characterized by abnormal collagen accumulation in the extracellular matrix of fibrotic organs. Herein, we established a bioluminescence resonance energy transfer (BRET) system for assessing Hsp47-collagen interaction dynamics within the ER. After optimization and validation of the method, we could demonstrate inhibition of the interaction between Hsp47 and collagen by a small molecule (Col003) in the ER. Using the BRET system, we also found that Hsp47 interacts not only with the Gly-Pro-Arg motif but also weakly with Gly-Pro-Hyp motifs of triple-helical collagen in cells. Moreover, we found that the serpin loop of Hsp47 (SerpinH1) contributes to its binding to collagen. We propose that the method developed here can provide valuable information on PPIs between Hsp47 and collagen and on the effects of PPI inhibitors important for the management of fibrotic disorders.


Assuntos
Colágeno/metabolismo , Proteínas de Choque Térmico HSP47/metabolismo , Sítios de Ligação , Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Colágeno/química , Retículo Endoplasmático/metabolismo , Células HEK293 , Proteínas de Choque Térmico HSP47/antagonistas & inibidores , Proteínas de Choque Térmico HSP47/química , Humanos , Ligação Proteica
18.
Artigo em Inglês | MEDLINE | ID: mdl-32081434

RESUMO

Skin aging cannot be escaped, being due to both intrinsic and extrinsic stimuli. They lead to a reduced extracellular collagen matrix in the dermis, along with a higher degradation by metalloproteases (MMPs) activity, as well as a lower differentiation and function of epidermis keratinocytes, characterized by wrinkling and loss of skin elasticity. One of the recent technology to overcome this skin aging process is the use of radiofrequency (RF) and ultrasound (US) technologies which use thermal stimulation to induce neocollagenesis in the skin. But no explanations exist on the involved pathways. Our hypothesis is that RF-US generated heat increases the collagen formation via the heat shock protein 47 (HSP47) induction, a heat sensitive protein related to the collagen expression. To confirm this hypothesis, normal human skin substitutes were subjected to RF-US treatment and results were monitored after 24 and 44 h. RNA sequencing showed a significant induction for the genes related to the epidermis differentiation processes. Almost all keratin genes were thus found upregulated from 2 to 15 times, while collagen type XVII and collagen type IV were increased 12 and 5 times respectively. In parallel, most of MMP genes were observed downregulated. RF-US treatment significantly increased levels of HSP47 proteins, while collagen XVII proteins showed a tendency to be increased and glycosaminoglycans were found 1.4 times significantly enhanced. Finally, histology assessment showed a higher expression of cytokeratins 10 and 14 which can testify a possible reactivation of the skin proliferative state as a rejuvenation strategy.

19.
Int J Med Sci ; 17(12): 1692-1703, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714072

RESUMO

Reconstruction of bone defects is one of the most substantial and difficult clinical challenges in orthopedics. Transforming growth factor beta 1 (TGFß1) might play an important role in stimulating osteogenic differentiation of bone morphogenetic protein 9 (BMP9)-induced C3H10T1/2 mesenchymal stem cells. In our current study, we examined the potential synergy between TGFß1 and BMP9 in promoting the osteogenesis of C3H10T1/2 cells, and whether such effects could contribute to bone formation in vivo. Our experiment data indicated that TGFß1 could increase the expression of osteogenic markers and the formation of mineralized calcium nodules in, while suppressing the proliferation of, BMP9-induced C3H10T1/2 cells. Furthermore, mice intramuscularly injected with BMP9/TGFß1-transduced C3H10T1/2 cells into the gastrocnemius muscle on their tibiae developed ectopic bone masses with more mature osteoid structures, compared to those grafted with cells expressing BMP9/RFP. Subsequent mechanistic studies found that TGFß1-induced enhancement of osteogenesis in BMP9-overexpressing C3H10T1/2 cells was accompanied by augmented expression of heat shock protein 47 (HSP47), a collagen-specific molecular chaperone essential for collagen biosynthesis, and can be attenuated by pirfenidone, a known anti-fibrotic inhibitor. Interestingly, protein microarray analysis suggested that TGFß1/BMP9-dependent osteogenesis of C3H10T1/2 cells seemed to involve several non-canonical signaling pathways such as Janus kinase-signal transducer and activator of transcription, phosphoinositide-3-kinase-protein kinase B, and mitogen-activated protein kinase. These results provided further evidence that TGFß1 could promote bone formation from BMP9-induced C3H10T1/2 cells and shed important light on the underlying molecular mechanisms.


Assuntos
Calcificação Fisiológica/genética , Fator 2 de Diferenciação de Crescimento/genética , Proteínas de Choque Térmico HSP47/genética , Osteogênese/genética , Fator de Crescimento Transformador beta1/genética , Animais , Calcificação Fisiológica/fisiologia , Diferenciação Celular/genética , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Fosforilação/genética , Transdução de Sinais/genética
20.
Zhonghua Yi Xue Za Zhi ; 100(6): 430-436, 2020 Feb 18.
Artigo em Zh | MEDLINE | ID: mdl-32146765

RESUMO

Objective: To investigate the effect and specific mechanism of heat shock protein 47 (HSP47) on streptozotocin (STZ)-induced diabetic cardiomyopathy (DCM). Methods: A mouse model of type 1 diabetic cardiomyopathy was established by intraperitoneal injection of STZ. After 8 weeks of successful modeling, HSP47 was overexpressed by tail vein injection, and the heart of the mouse was harvested after 6 weeks. Hematoxylin-eosin (HE) staining and Sirius red (PSR) staining were used to detect the cross-sectional area of myocardial cells and myocardial fibrosis, respectively. Immunofluorescence staining with α-smooth muscle actin (α-SMA) and collagen Ⅰ was used to detect the degree of fibrosis activation. The expression level of fibrosis-related proteins was determined by Western blot. Results: The expression level of HSP47 in the myocardium of the diabetic group up-regulated (2.014±0.264 vs 1.004±0.064, P<0.001). The area of myocardial cells in the diabetic group was increased compared with the control group [(235.3±20.7) µm(2) vs (172.8±13.6) µm(2), P<0.001] and the cross-sectional area of myocardial cells in the HSP47 overexpression-diabetes group was further increased [(302.2±41.0) µm(2) vs (235.3±20.7) µm(2), P=0.009], while the mRNA levels of mouse cardiac hypertrophic markers atrial natriuretic peptide (ANP), type B brain natriuretic peptide (BNP), myosin heavy chain ß (ß-MHC) further upregulated (all P<0.001). Compared with the control group, the myocardial fibrosis content in the diabetic group increased [(7.333±1.127)% vs (4.837±0.775)%, P=0.002] and the left ventricular fibrosis content of the HSP47 overexpressing diabetic group further increased [(9.175±1.008)% vs (7.333±1.127)%, P=0.025] and the mRNA levels of fibrosis index collagenⅠ, collagen Ⅲ, connective tissue growth factor (CTGF) and transforming growth factor ß (TGFß) further up-regulated (all P<0.001). Immunofluorescence results showed that compared with the control group, the expression of collagenⅠ up-regulated in the endothelial stroma of the diabetic group and the content of collagenⅠ in the HSP47 over-expressing diabetic group was higher (P<0.001). Western blot results indicated that the phosphorylation level of Smad3 and the protein levels of α-SMA and TGFß in HSP47 overexpressing diabetic group increased, compared with those of diabetic group (all P<0.001). Conclusion: HSP47 ameliorates STZ-induced diabetic myocardial fibrosis by activating the TGFß/Smad3 signaling pathway.


Assuntos
Cardiomiopatias Diabéticas , Animais , Fibrose , Proteínas de Choque Térmico HSP47 , Camundongos , Miocárdio , Estreptozocina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA