Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 415(23): 5755-5767, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37540345

RESUMO

Novel hydrophilic poly(N, N-methylenebisacrylamide/1,2-epoxy-5-hexene) coated magnetic nanospheres functionalized with 2-aminopurine (denoted as Fe3O4@poly(MBA/EH)@2AP) for enriching glycopeptides and glycosylated exosomes were successfully obtained using a simple and green method on the basis of the HILIC (hydrophilic interaction liquid chromatography) enrichment strategy. The high density of polar groups endows the material with amazing hydrophilicity, enabling the nanomaterial to successfully capture glycopeptides and glycosylated exosomes within 1 min. Meanwhile, the materials demonstrated great sensitivity (0.01 fmol/µL), good loading capability (125 µg/mg), high selectivity (BSA:HRP = 1000:1), and repeatability (more than 10 times). Besides, the material was applied in the analysis of bio-samples, a total of 290 glycosylated peptides and 184 glycosylation sites mapping to 185 glycoproteins were identified in the serum of uremic patients. Besides, 42 glycopeptides were enriched from the saliva of healthy people. At the same time, it was verified by TEM and western blot that the complete glycosylated exosomes were successfully captured from the serum of the uremic patients. All experiments have demonstrated that Fe3O4@poly(MBA/EH)@2AP has a promising future in practical applications.


Assuntos
Exossomos , Nanoestruturas , Humanos , Glicopeptídeos/química , Glicosilação , Polímeros , Exossomos/química , Interações Hidrofóbicas e Hidrofílicas , Fenômenos Magnéticos
2.
Anal Bioanal Chem ; 415(10): 1953-1965, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36849617

RESUMO

Persistent and mobile organic compounds (PMOCs) are highly soluble in water, thereby posing a threat to water resource quality. Currently, there are no methods that can accurately quantify guanidine derivative PMOCs, other than 1,3-diphenylguanidine (DPG) and cyanoguanidine (CG), in aqueous media. In this study, we developed a quantitation method that combines solid-phase extraction and liquid chromatography (LC)-tandem mass spectrometry to detect seven guanidine derivatives in aquatic environments and applied it to environmental water samples. Five LC columns were examined, and among them, a hydrophilic interaction liquid chromatography column was chosen owing to its suitable instrument detection limit and retention factor. Method precision was assessed using seven replicate analyses of river water. The corresponding analyte recoveries ranged from 73 to 137% (coefficient of variation = 2.1-5.8%). DPG and CG were detected in ultrapure water samples at levels up to 0.69 and 150 ng L-1, respectively; DPG and CG levels up to 44 and 2600 ng L-1, respectively, were detected in lake water, river water, sewage effluent, and tap water sampled in Western Japan. This is the first reported detection of DPG in the surface water of Japan, revealing that DPG and CG are ubiquitous compounds in aquatic environments. Moreover, this is the first study to detect 1-(o-tolyl)biguanide and N,N'''-1,6-hexanediylbis(N'-cyanoguanidine) in water. This study provides a foundation for further research on the distribution, fate, and emission source of these pollutants, which is critical to maintain high water quality and to determine regulatory limits for these pollutants.

3.
Chem Pharm Bull (Tokyo) ; 71(1): 10-14, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36596506

RESUMO

In this study, an HPLC analysis method using pre-column derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) was developed for the determination of o-phosphoethanolamine (PEA), which is a potential biomarker for the diagnosis of major depressive disorder, in human plasma sample. After PEA was derivatized with AQC under mild conditions, the obtained derivative was subjected to purification with a titanium dioxide-modified monolithic silica spin column (MonoSpin® TiO). The eluate from the MonoSpin® TiO was directly injected into an amide-type hydrophilic interaction liquid chromatography (HILIC) column-equipped HPLC system, and the resulting derivative could be separated on the column under alkaline mobile phase conditions and subsequently detected fluorometrically at excitation and emission wavelengths of 250 and 395 nm, respectively. The limit of detection and limit of quantification for a 10 µL injection volume of PEA were 0.052 and 0.17 µM, respectively. The method was validated at 0.2, 1.0, and 5.0 nmol/mL levels in plasma sample, and the precision values were 2.0-6.6% as relative standard deviation and the correlation coefficient (r) of the calibration curve was 0.9995. Furthermore, applicability of this method was demonstrated by analyzing PEA levels in plasma samples from mental illness patients.


Assuntos
Transtorno Depressivo Maior , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Etanolaminas , Indicadores e Reagentes , Reprodutibilidade dos Testes
4.
Anal Bioanal Chem ; 412(7): 1497-1508, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32025769

RESUMO

Analysis of glycoprotein sialylation is challenging due to the relatively low abundance of sialylated glycopeptides (SGPs) in complex biosamples and low signals of SGPs in mass spectrometry. In this study, a mesoporous poly-melamine-formaldehyde (mPMF) polymer was prepared and utilized as the high-efficiency sorbent for SGPs. The mPMF polymer featured high surface area (755.4 m2 g-1) and high density of amine and triazine functional groups. This polymer demonstrated high enrichment selectivity (resistant to 100 molar fold interference of BSA) and superior adsorption capacity (560 mg g-1) for SGPs. The high performance of mPMF toward SGPs ascribes to the unique physicochemical properties of mPMF and high density of accessible binding sites for glycopeptides. Further application of mPMF to HeLa S3 cell lysate resulted in 576 characterized glycopeptides with 218 unique glycosylation sites. This finding provides a new choice of promising extraction approach for characterization of protein glycosylation. Graphical abstract A mesoporous poly-melamine-formaldehyde (mPMF) polymer was prepared and utilized as the high-efficiency enrichment sorbent for sialylated glycopeptides (SGPs).


Assuntos
Glicopeptídeos/química , Ácido N-Acetilneuramínico/química , Polímeros/química , Triazinas/química , Cromatografia Líquida/métodos , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Massas/métodos , Porosidade
5.
Biometals ; 31(5): 785-795, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29956040

RESUMO

The structures of three previously unknown siderophores produced by the fluorescent, biotechnologically relevant Pseudomonas taiwanensis (P. taiwanensis) VLB120 bacteria were elucidated by means of hydrophilic interaction liquid chromatography (HILIC) hyphenated to high-resolution tandem mass spectrometry (HRMS/MS). They could be verified as iron(III)- and aluminum(III) complexes as well as the protonated molecules of the siderophores formed by in-source fragmentation. The siderophores were separated according to their different acyl side chains and additionally according their central ions. One of the siderophores was identified as pyoverdine with a malic acid (hydroxy succinic acid) amide side chain and a peptide moiety consisting of Orn-Asp-OHAsn-Thr-AcOHOrn-Ser-cOHOrn. The other analytes were assigned to an azotobactin with the identical peptide chain linked to the characteristic chromophoric unit and a pyoverdine with a variation in the amino acid sequence. Proline is directly linked to the pyoverdine chromophore instead of ornithine. Acidic and enzymatic hydrolyses were carried out to analyze the individual amino acids. Beside OHAsn, each amino acid of the peptide part was identified by HILIC-HRMS and comparison to authentic standards. Additionally, 15N-labeled cellular supernatants were analyzed by means of HRMS/MS. The results of the MS/MS experiments complemented by accurate mass data facilitated elucidation of the structures studied in this work and provided further confirmation of the three recently described pyoverdines of P. taiwanensis VLB120 (Baune et al. in Biometals 30:589-597, 2017. https://doi.org/10.1007/s10534-017-0029-7 ).


Assuntos
Nitrogênio/química , Pseudomonas/metabolismo , Sideróforos/análise , Marcação por Isótopo , Sideróforos/biossíntese , Espectrometria de Massas em Tandem
6.
Anal Bioanal Chem ; 409(2): 477-485, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27287011

RESUMO

Therapeutic proteins are among the top selling drugs in the pharmaceutical industry. More than 60 % of the approved therapeutic proteins are glycosylated. Nowadays, it is well accepted that changes in glycosylation may affect the safety and the efficacy of the therapeutic proteins. For this reason, it is important to characterize both the protein and the glycan structures. In this study, analytical and data processing methods were developed ensuring an easier characterization of glycoprofiles. N-glycans were (i) enzymatically released using peptide-N-glycosidase F (PNGase F), (ii) reduced, and (iii) analyzed by hydrophilic interaction liquid chromatography coupled to a high-resolution mass spectrometer (HILIC-HRMS). Glycosylation changes were analyzed in human plasma immunoglobulin G samples which had previously been artificially modified by adding other glycoproteins (such as ribonuclease B and fetuin) or by digesting with enzyme (neuraminidase). Principal component analysis (PCA) and classification through soft independent modelling by class analogy (SIMCA) were used to detect minor glycosylation changes. Using HILIC-MS-PCA/SIMCA approach, it was possible to detect small changes in N-glycosylation, which had not been detected directly from the extracted-ion chromatograms, which is current technique to detect N-glycosylation changes in batch-to-batch analysis. The HILIC-MS-PCA/SIMCA approach is highly sensitive approach due to the sensitivity of MS and appropriate data processing approaches. It could help in assessing the changes in glycosylation, controlling batch-to-batch consistency, and establishing acceptance limits according to the glycosylation changes, ensuring safety and efficacy. Graphical abstract N-glycosylation characterization using LC-MS-PCA approach.


Assuntos
Química Farmacêutica/métodos , Cromatografia Líquida , Glicoproteínas/sangue , Glicoproteínas/química , Modelos Químicos , Espectrometria de Massas em Tandem , Química Farmacêutica/normas , Glicosilação , Humanos , Imunoglobulina G/química , Imunoglobulina G/uso terapêutico , Limite de Detecção , Análise de Componente Principal
7.
Biometals ; 30(4): 589-597, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28631237

RESUMO

The previously unknown sequences of several pyoverdines (PVD) produced by a biotechnologically-relevant bacterium, namely, Pseudomonas taiwanensis VLB120, were characterized by high performance liquid chromatography (HPLC)-high resolution mass spectrometry (HRMS). The same structural characterization scheme was checked before by analysis of Pseudomonas sp. putida KT2440 samples with known PVDs. A new sample preparation strategy based on solid-phase extraction was developed, requiring significantly reduced sample material as compared to existing methods. Chromatographic separation was performed using hydrophilic interaction liquid chromatography with gradient elution. Interestingly, no signals for apoPVDs were detected in these analyses, only the corresponding aluminum(III) and iron(III) complexes were seen. The chromatographic separation readily enabled separation of PVD complexes according to their individual structures. HPLC-HRMS and complementary fragmentation data from collision-induced dissociation and electron capture dissociation enabled the structural characterization of the investigated pyoverdines. In Pseudomonas sp. putida KT2240 samples, the known pyoverdines G4R and G4R A were readily confirmed. No PVDs have been previously described for Pseudomonas sp. taiwanensis VLB120. In our study, we identified three new PVDs, which only differed in their acyl side chains (succinic acid, succinic amide and malic acid). Peptide sequencing by MS/MS provided the sequence Orn-Asp-OHAsn-Thr-AcOHOrn-Ser-cOHOrn. Of particular interest is the presence of OHAsn, which has not been reported as PVD constituent before.


Assuntos
Complexos de Coordenação/isolamento & purificação , Oligopeptídeos/isolamento & purificação , Pseudomonas putida/química , Pseudomonas/química , Sideróforos/isolamento & purificação , Alumínio/química , Cromatografia Líquida/métodos , Complexos de Coordenação/química , Ferro/química , Estrutura Molecular , Oligopeptídeos/química , Pseudomonas/metabolismo , Pseudomonas putida/metabolismo , Sideróforos/química , Extração em Fase Sólida/métodos
8.
Saudi Pharm J ; 25(6): 852-856, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28951669

RESUMO

Glimepiride is one of the most widely prescribed antidiabetic drugs and contains both hydrophobic and hydrophilic functional groups in its molecules, and thus could be analyzed by either reversed-phase high performance liquid chromatography (HPLC) or hydrophilic interaction liquid chromatography (HILIC). In the literature, however, only reversed-phase HPLC has been reported. In this study, a simple, rapid and accurate hydrophilic interaction liquid chromatographic method was developed for the determination of glimepiride in pharmaceutical formulations. The analytical method comprised a fast ultrasound-assisted extraction with acetonitrile as a solvent followed by HILIC separation and quantification using a Waters Spherisorb S5NH2 hydrophilic column with a mobile phase consisting of acetonitrile and aqueous acetate buffer (5.0 mM). The retention time of glimepiride increased slightly with decrease of mobile phase pH value from 6.8 to 5.8 and of acetonitrile content from 60% to 40%, indicating that both hydrophilic, ionic, and hydrophobic interactions were involved in the HILIC retention and elution mechanisms. Quantitation was carried out with a mobile phase of 40% acetonitrile and 60% aqueous acetate buffer (5.0 mM) at pH 6.3, by relating the peak area of glimepiride to that of the internal standard, with a detection limit of 15.0 µg/L. UV light absorption responses at 228 nm were linear over a wide concentration range from 50.0 µg/L to 6.00 mg/L. The recoveries of the standard added to pharmaceutical tablet samples were 99.4-103.0% for glimepiride, and the relative standard deviation for the analyte was less than 1.0%. This method has been successfully applied to determine the glimepiride contents in pharmaceutical formulations.

9.
Mar Drugs ; 14(3)2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26938542

RESUMO

Exposure to ß-N-methylamino-l-alanine (BMAA) might be linked to the incidence of amyotrophic lateral sclerosis, Alzheimer's disease and Parkinson's disease. Analytical chemistry plays a crucial role in determining human BMAA exposure and the associated health risk, but the performance of various analytical methods currently employed is rarely compared. A CYANOCOST initiated workshop was organized aimed at training scientists in BMAA analysis, creating mutual understanding and paving the way towards interlaboratory comparison exercises. During this workshop, we tested different methods (extraction followed by derivatization and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analysis, or directly followed by LC-MS/MS analysis) for trueness and intermediate precision. We adapted three workup methods for the underivatized analysis of animal, brain and cyanobacterial samples. Based on recovery of the internal standard D3BMAA, the underivatized methods were accurate (mean recovery 80%) and precise (mean relative standard deviation 10%), except for the cyanobacterium Leptolyngbya. However, total BMAA concentrations in the positive controls (cycad seeds) showed higher variation (relative standard deviation 21%-32%), implying that D3BMAA was not a good indicator for the release of BMAA from bound forms. Significant losses occurred during workup for the derivatized method, resulting in low recovery (<10%). Most BMAA was found in a trichloroacetic acid soluble, bound form and we recommend including this fraction during analysis.


Assuntos
Diamino Aminoácidos/análise , Cromatografia Líquida/métodos , Neurotoxinas/análise , Espectrometria de Massas em Tandem/métodos , Diamino Aminoácidos/metabolismo , Animais , Encéfalo/metabolismo , Cianobactérias/metabolismo , Toxinas de Cianobactérias , Daphnia , Neurotoxinas/metabolismo , Reprodutibilidade dos Testes , Ácido Tricloroacético/química
10.
Food Chem ; 456: 139968, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38861865

RESUMO

Galactooligosaccharides (GOS) are important prebiotics with function closely related to their structure. However, a comprehensive overview of the structure-function relationship is still limited due to the challenge in characterizing multiple isomers in GOS. This study presents a strategy of combining both hydrophilic interaction liquid chromatography (HILIC) retention time and tandem mass spectrometry (MS/MS) fragmentation pattern to distinguish α/ß-linkages and linkage positions of disaccharide isomers in GOS through HILIC-MS/MS analysis. The results indicated that the ratio of m/z 203.0524 to m/z 365.1054 could distinguish α/ß-linkages, while the ratios of m/z 347.0947 to m/z 365.1054, m/z 245.0642 to m/z 365.1054 and HILIC retention time could distinguish (1 â†’ 2), (1 â†’ 3), (1 â†’ 4) and (1 â†’ 6) linkages. The above rules enabled effective characterization of disaccharides in GOS-containing food samples, including milk powder, rice flour, drink, yogurt. This method can be used in the quality control of GOS and future research on the structure-specific health effects of GOS.


Assuntos
Dissacarídeos , Oligossacarídeos , Espectrometria de Massas em Tandem , Dissacarídeos/química , Oligossacarídeos/química , Animais , Prebióticos/análise , Interações Hidrofóbicas e Hidrofílicas , Isomerismo , Leite/química , Oryza/química , Iogurte/análise
11.
Methods Mol Biol ; 2763: 159-169, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347409

RESUMO

Structural analysis of O-glycans from mucins and characterization of the interaction of these glycans with other biomolecules are essential for a full understanding of mucins. Various techniques have been developed for the structural and functional analysis of glycans. While 9-fluorenylmethyl chloroformate (Fmoc-Cl) is generally used to protect amino groups in peptide synthesis, it can also be used as a glycan-labeling reagent for structural analysis. Fmoc-labeled glycans are strongly fluorescent and can be analyzed with high sensitivity using liquid chromatography-fluorescence detection (LC-FD) analysis as well as being analyzed with high sensitivity by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). Fmoc-labeled glycans can be easily delabeled and converted to glycosylamine-form or free (hemiacetal or aldehyde)-form glycans that can be used to fabricate glycan arrays or synthesize glycosyl dendrimers. This derivatization allows for the isolation from biological samples of glycans that are difficult to synthesize chemically, as well as the fabrication of immobilized-glycan devices. The Fmoc labeling method promises to be a tool for accelerating O-glycan structural analysis and an understanding of molecular interactions. In this chapter, we introduce the Fmoc labeling method for analysis of O-glycans and fabrication of O-glycan arrays.


Assuntos
Fluorenos , Polissacarídeos , Fluorenos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Polissacarídeos/química , Mucinas/química
12.
Se Pu ; 42(7): 601-612, 2024 Jul.
Artigo em Zh | MEDLINE | ID: mdl-38966969

RESUMO

Proteomics profiling plays an important role in biomedical studies. Proteomics studies are much more complicated than genome research, mainly because of the complexity and diversity of proteomic samples. High performance liquid chromatography-mass spectrometry (HPLC-MS) is a fundamental tool in proteomics research owing to its high speed, resolution, and sensitivity. Proteomics research targets from the peptides and individual proteins to larger protein complexes, the molecular weight of which gradually increases, leading to sustained increases in structural and compositional complexity and alterations in molecular properties. Therefore, the selection of various separation strategies and stationary-phase parameters is crucial when dealing with the different targets in proteomics research for in-depth proteomics analysis. This article provides an overview of commonly used chromatographic-separation strategies in the laboratory, including reversed-phase liquid chromatography (RPLC), hydrophilic interaction liquid chromatography (HILIC), hydrophobic interaction chromatography (HIC), ion-exchange chromatography (IEC), and size-exclusion chromatography (SEC), as well as their applications and selectivity in the context of various biomacromolecules. At present, no single chromatographic or electrophoretic technology features the peak capacity required to resolve such complex mixtures into individual components. Multidimensional liquid chromatography (MDLC), which combines different orthogonal separation modes with MS, plays an important role in proteomics research. In the MDLC strategy, IEC, together with RPLC, remains the most widely used separation mode in proteomics analysis; other chromatographic methods are also frequently used for peptide/protein fractionation. MDLC technologies and their applications in a variety of proteomics analyses have undergone great development. Two strategies in MDLC separation systems are mainly used in proteomics profiling: the "bottom-up" approach and the "top-down" approach. The "shotgun" method is a typical "bottom-up" strategy that is based on the RPLC or MDLC separation of whole-protein-sample digests coupled with MS; it is an excellent technique for identifying a large number of proteins. "Top-down" analysis is based on the separation of intact proteins and provides their detailed molecular information; thus, this technique may be advantageous for analyzing the post-translational modifications (PTMs) of proteins. In this paper, the "bottom-up" "top-down" and protein-protein interaction (PPI) analyses of proteome samples are briefly reviewed. The diverse combinations of different chromatographic modes used to set up MDLC systems are described, and compatibility issues between mobile phases and analytes, between mobile phases and MS, and between mobile phases in different separation modes in multidimensional chromatography are analyzed. Novel developments in MDLC techniques, such as high-abundance protein depletion and chromatography arrays, are further discussed. In this review, the solutions proposed by researchers when encountering compatibility issues are emphasized. Moreover, the applications of HPLC-MS combined with various sample pretreatment methods in the study of exosomal and single-cell proteomics are examined. During exosome isolation, the combined use of ultracentrifugation and SEC can yield exosomes of higher purity. The use of SEC with ultra-large-pore-size packing materials (200 nm) enables the isolation of exosomal subgroups, and proteomics studies have revealed significant differences in protein composition and function between these subgroups. In the field of single-cell proteomics, researchers have addressed challenges related to reducing sample processing volumes, preventing sample loss, and avoiding contamination during sample preparation. Innovative methods and improvements, such as the utilization of capillaries for sample processing and microchips as platforms to minimize the contact area of the droplets, have been proposed. The integration of these techniques with HPLC-MS shows some progress. In summary, this article focuses on the recent advances in HPLC-MS technology for proteomics analysis and provides a comprehensive reference for future research in the field of proteomics.


Assuntos
Espectrometria de Massas , Proteômica , Proteômica/métodos , Espectrometria de Massas/métodos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Espectrometria de Massa com Cromatografia Líquida
13.
Methods Mol Biol ; 2763: 171-185, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347410

RESUMO

To reveal O-glycan structures in mucins, it is necessary to release covalently bound O-glycans from the polypeptide backbone and derivatize to a form suitable for structural analysis. Various derivatization methods can now be applied in the analysis of O-glycans following the development of O-glycan release methods. Among the many derivatization methods available, we prefer to use fluorescent labeling with 2-aminobenzoic acid (anthranilic acid, 2AA). 2AA-labeled O-glycans can be detected with high sensitivity using liquid chromatography fluorescence detection (LC-FD) analysis because of the strong fluorescence. In addition, as 2AA has a carboxyl group that carries a negative charge, 2AA-labeled O-glycans can be analyzed with high sensitivity in negative ion mode mass spectrometry. Furthermore, because the negative charge of 2AA provides a driving force for electrophoresis, 2AA-labeled O-glycans can be analyzed using capillary electrophoresis (CE) and capillary affinity electrophoresis. High detection sensitivity and versatility are key advantages of the 2AA-labeling method. Here we present our preferred LC-FD and CE analytical methods for 2AA-labeled O-glycans.


Assuntos
Eletroforese Capilar , Polissacarídeos , Polissacarídeos/química , Espectrometria de Massas/métodos , Eletroforese Capilar/métodos , Cromatografia Líquida , Mucinas
14.
J Chromatogr A ; 1702: 464065, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37224587

RESUMO

Polymer modified silica materials are widely used as stationary phases in hydrophilic interaction liquid chromatography (HILIC), whereas a stationary phase with excellent performance is highly desired. In this study, vinyl modified silica was first synthesized through a silane coupling reaction, and then a polyacrylamide modified silica (PAM-SIL) stationary phase was successfully prepared using acrylamide as a copolymer monomer via free radical polymerization. The retention behaviors of polar analytes on the stationary phase under various chromatographic conditions, including acetonitrile content, buffer concentration and pH values were investigated, and a typical hydrophilic interaction retention mechanism was inferred. Exceptionally, the separation performance of the stationary phases could be regulated by controlling the polymer structure. Model analytes separated rapidly on the stationary phase which has an optimal grafting amount of vinyl, with the highest number of theoretical plates of orotic acid reaching 119,966/m. While the stationary phases with high acrylamide concentrations exhibited enhanced retention behavior and higher resolution for analytes. The adjustable separation performance will have huge potential in future separation and analysis applications.


Assuntos
Resinas Acrílicas , Dióxido de Silício , Dióxido de Silício/química , Interações Hidrofóbicas e Hidrofílicas , Acrilamidas
15.
J Agric Food Chem ; 71(29): 11263-11275, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37433133

RESUMO

Cereals contain lipids that fulfill important physiological roles and are associated with stress in the plant. However, many of the specific biological roles of lipids are yet unknown. Comprehensive analysis of these polar lipid categories in whole grain wheat and oat, cereals highly relevant also in nutrition, was performed. Hydrophilic interaction liquid chromatography (HILIC) and reversed-phase high-performance liquid chromatography (RP-HPLC) coupled with high-resolution mass spectrometry using electrospray ionization in both positive and negative ionization mode was used. Exploiting the different separation mechanisms, HILIC was used as a screening method for straightforward lipid class assignment and enabled differentiation of isomeric lipid classes, like phosphatidylethanolamine and lyso-N-acylphosphatidylethanolamine, while RP-HPLC facilitated separation of constitutional isomers. In combination with data-dependent MS/MS experiments, 67 lipid species belonging to nine polar lipid classes could be identified. Furthermore, with both ionization modes, fatty acyl chains directly connected to the lipid headgroups could be assigned. This work focused on the four lipid classes N-acylphosphatidylethanolamines, acyl-monogalactosyldiacylglycerols, digalactosyldiacylglycerols, and monogalactosyldiacylglycerols as they were less studied in detail in the past. Applying the complementary approach, the relative lipid species compositions in these lipid classes was investigated in detail.


Assuntos
Avena , Triticum , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Cromatografia de Fase Reversa/métodos , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Massas por Ionização por Electrospray/métodos
16.
Methods Mol Biol ; 2625: 259-267, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36653649

RESUMO

Analysis and quantification of ether-lipid phospholipid species-also known as plasmalogens-is a crucial step in the study of the biological functions played by these lipids. Application of analytical separation methods and high-resolution mass spectrometry has gained much attention in this regard, while resolution issues and time-consuming sequences interfered with these advances. Herein, we describe a simple and rapid method for the analysis of plasmalogen (Pl) species by HILIC-HRMS. This method is able to identify and quantify relative levels of ethanolamine-plasmalogens (PlsEtn) and choline-plasmalogens (PlsCho) in biological matrices such as whole blood, plasma, erythrocytes, and also retina. Moreover, we provide a detailed and modified lipid extraction method that is applicable to almost all biological matrices.


Assuntos
Plasmalogênios , Espectrometria de Massas em Tandem , Plasmalogênios/análise , Espectrometria de Massas em Tandem/métodos
17.
Se Pu ; 41(9): 799-806, 2023 Sep.
Artigo em Zh | MEDLINE | ID: mdl-37712544

RESUMO

Carbon dioxide (CO2) absorption and capture is an effective measure to achieve the "dual carbon" goal of carbon peak and carbon neutrality in China. Organic amine compounds are widely used in the industrial separation and recovery of CO2. Thus, the establishment of analytical methods for organic amine compounds is of great significance for the research and development of carbon capture and storage (CCS) technology and carbon capture, utilization and storage (CCUS) technology. In this study, a method was developed for the determination of nine organic amine compounds in CO2 absorption liquid by hydrophilic interaction liquid chromatography (HILIC)-electrostatic field orbitrap high resolution mass spectrometry. The sample was diluted with water and filtered through a 0.22 µm nylon membrane before sampling and analysis. An Accucore HILIC column (100 mm×2.1 mm, 2.6 µm) was used for separation at 30 ℃. Gradient elution was conducted using 90% acetonitrile aqueous solution containing 5 mmol/L ammonium formate and 0.1% formic acid as mobile phase A and 10% acetonitrile aqueous solution containing 5 mmol/L ammonium formate and 0.1% formic acid as mobile phase B. Determination was performed using an electrospray ion source (ESI) in the positive ion mode. The quantitative analysis was carried out by standard addition method. The chromatographic retention performance of different chromatographic columns and the influence of different mobile phases on the separation of the organic amine compounds were compared, and the method was validated. The results showed that the linear ranges of the nine organic amine compounds were 0.04-25000 ng/mL with the linear correlation coefficients (R2) greater than 0.9910. The limits of detection (LODs) of the method were in the range of 0.0004-0.0080 ng/mL, and the limits of quantification (LOQs) of the method were in the range of 0.0035-0.0400 ng/mL. The average recoveries of the method ranged from 85.30% to 104.26% with relative standard deviations (RSDs) of 0.04%-7.95% at the spiked levels of 1, 1.5 and 3 times sample concentration. The established method was applied to detect the absorption waste liquid of a cement plant, and nine organic amine compounds could be effectively detected. The stability of the actual sample was tested, and the RSDs were 0.10%-6.35% in 48 h at 4 ℃. The method is sensitive, rapid and accurate for the determination of the nine organic amine compounds in industrial waste water. It can provide reference for the detection of organic amine compounds, and provide strong technical support for the research and industrial application of CO2 capture technology.

18.
Metabolites ; 12(9)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36144187

RESUMO

In the case of many bacteria, such as Escherichia coli, the composition of lipid molecules, termed the lipidome, temporally adapts to different environmental conditions and thus modifies membrane properties to permit growth and survival. Details of the relationship between the environment and lipidome composition are lacking, particularly for growing cultures under either favourable or under stress conditions. Here, we highlight compositional lipidome changes by describing the dynamics of molecular species throughout culture-growth phases. We show a steady cyclopropanation of fatty acyl chains, which acts as a driver for lipid diversity. There is a bias for the cyclopropanation of shorter fatty acyl chains (FA 16:1) over longer ones (FA 18:1), which likely reflects a thermodynamic phenomenon. Additionally, we observe a nearly two-fold increase in saturated fatty acyl chains in response to the presence of ampicillin and chloramphenicol, with consequences for membrane fluidity and elasticity, and ultimately bacterial stress tolerance. Our study provides the detailed quantitative lipidome composition of three E. coli strains across culture-growth phases and at the level of the fatty acyl chains and provides a general reference for phospholipid composition changes in response to perturbations. Thus, lipidome diversity is largely transient and the consequence of lipid synthesis and cyclopropanation.

19.
Artigo em Inglês | MEDLINE | ID: mdl-36283260

RESUMO

For large-scale and long-term metabolomics studies that involve a large batch or multiple batches of analyses, batch effects cause nonbiological systematic biases that may lead to false positive or false negative findings. Quantitative monitoring and correction of batch effects is critical to the development of reproducible and robust metabolomics platforms either for untargeted or targeted analyses. To achieve sufficient retention and separation of a broad range of metabolites with diverse chemical structures and physicochemical properties, LC-MS/MS based targeted metabolomics often involves 3 complemented chromatographic separation methods, including reversed-phase liquid chromatography (RP-LC), hydrophilic interaction liquid chromatography (HILIC), and ion-pair liquid chromatography (IP-LC). The purpose of this study is to quantitatively evaluate intra-batch variations or injection order effects of the RP-LC, HILIC, and IP-LC methods for targeted metabolomics analyses, and develop strategies to minimize intra-batch variations and correct injection order effects for problematic metabolites. Both RP-LC and HILIC methods exhibit robust intra-batch reproducibility in 0.2 µM standard mix QC, with ∼96 % of the measured metabolites showing acceptable intra-batch variations (<20 %); whereas, the intra-batch reproducibility for some metabolites in cell matrix QC may be compromised due to stability issue, suboptimal chromatographic retention, and/or matrix effects causing ionization suppression and/or retention instability. The IP-LC method exhibits significant injection order effects, which could be effectively corrected by the developed exponential models of signal drift trends as a function of injection order for individual targeted metabolites.


Assuntos
Metaboloma , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos , Metabolômica/métodos , Interações Hidrofóbicas e Hidrofílicas
20.
Se Pu ; 39(4): 444-452, 2021 Apr 08.
Artigo em Zh | MEDLINE | ID: mdl-34227766

RESUMO

Ginseng extracts are rich in a variety of ginseng monomer saponins, which have pharmacological functions of retarding aging, enhancing immunity, stimulating blood circulation, and lowering blood pressure. Ginseng is widely used in health products and dietary supplements in the domestic and foreign market. However, the amount of pesticide residues is an important index for measuring the quality of ginseng and ginseng extracts. Therefore, studies focused on methods for the removal of pesticide residues in ginseng extract are of great significance. Hydrophilic interaction liquid chromatography (HILIC) is used to improve the retention and separation selectivity of strongly polar substances, and it is widely employed in drug analysis, metabolomics, proteomics, etc. In this study, a method for the removal of pesticide residues was developed based on the difference in the retention behavior of pesticide residues and ginsenosides on the HILIC column. Using commercially available ginsenoside extracts, the retention behaviors of pesticide residues and ginsenosides on reverse chromatography and hydrophilic chromatographic columns were evaluated by high performance liquid chromatography. The results proved that on the reversed-phase liquid chromatography (RPLC) stationary phase, in addition to the strong retentions of quintozene and pentachloroaniline, which could be clearly separated from the saponins, the retentions of the other five pesticide residues including carbendazim, azoxystrobin, procymidone, iprodione and propiconazole were similar to total ginsenosides. The seven ginsenosides showed strong retention due to the formation of hydrogen bonds between the hydroxyl groups on the sugar chain and the carboxyl groups on the HILIC stationary phase. However, the pesticide residues were not well retained because of their poor hydrophilicity and small molecular weights. For this reason, the pesticide residues and ginsenosides could be completely separated on the HILIC column. Thus, enrichment of the seven ginsenosides and removal of the 14 pesticide residues was realized in one step on the HILIC column. In addition, the effects of loading amount, loading volume, and washing volume on the removal of pesticide residues in ginsenosides were investigated using the Click XIon SPE column. Then, taking the ginsenoside recoveries and pesticide residue removal rates into account, we confirmed the following: the ratio of the maximum sample loading mass to the filler mass was 1∶10; the optimal elution volume was twice the column volume; and the optimal loading volume was twice the column volume. The ginseng extracts were solvated with a 95% ethanol solution and loaded onto an HILIC column. The sample was subjected to pesticide residue removal, and ginsenoside purification and enrichment under the optimum removal conditions. Gradient elution was carried out using ethanol and water as the mobile phases. The total ginsenoside content in the final extracts was increased to 69.61%. The recovery of the total ginsenosides was 94.4%. The pesticide residues in the samples were quantitatively detected by gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS) in the multiple reaction monitoring (MRM) mode. The 14 pesticide residues in the original ginsenoside extracts were effectively removed. The amounts of five residues were reduced to below 0.05 mg/kg, while the other nine residues were completely eliminated. This study demonstrates the application of HILIC to pesticide residue removal in traditional Chinese medicine extracts and reveals a new technique for the purification of natural products. The proposed method shows a high removal rate of pesticide residues and a high recovery of total ginsenosides. It is safe, efficient, and environment-friendly, and can aid the development of high-quality ginsenoside extracts.


Assuntos
Ginsenosídeos , Panax , Resíduos de Praguicidas , Extratos Vegetais/análise , Cromatografia Líquida de Alta Pressão , Contaminação de Medicamentos , Cromatografia Gasosa-Espectrometria de Massas , Ginsenosídeos/análise , Interações Hidrofóbicas e Hidrofílicas , Panax/química , Resíduos de Praguicidas/isolamento & purificação , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA