Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 145: 109345, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154761

RESUMO

Type I interferon (IFN) plays a crucial role in the antiviral immune response. Nervous necrosis virus (NNV) and Micropterus salmoides rhabdovirus (MSRV) are the most important viruses in cultured larvae and juveniles, causing great economic losses to fish farming. To better understand the antiviral activities and immunoregulatory role of IFN from orange-spotted grouper (Epinephelus coioides), EcIFNh was cloned from NNV infected sample. EcIFNh has an open reading frame (ORF) of 552 bp and encodes a polypeptide of 183 amino acids. Phylogenetic tree analysis showed that EcIFNh was clustered into the IFNh branch. The tissue distribution analysis revealed that EcIFNh was highly expressed in the liver and brain of healthy orange-spotted grouper. The mRNA levels of EcIFNh were significantly upregulated after poly (I:C) stimulation and NNV or MSRV infection. Furthermore, the promoter of EcIFNh was characterized and significantly activated by EcMDA5, EcMAVS, EcSTING, EcIRF3, and EcIRF7 in the luciferase activity assays. We found that EcIFNh overexpression resisted the replication of NNV and MSRV, while EcIFNh silencing facilitated NNV replication in GB cells. In addition, EcIFNh recombinant protein (rEcIFNh) enhanced the immune response by inducing the expression of ISGs in vivo and in vitro, suggesting the potential application of rEcIFNh for anti-NNV and anti-MSRV. Taken together, our research may offer the foundation for virus-IFN system interaction in orange-spotted grouper.


Assuntos
Bass , Doenças dos Peixes , Nodaviridae , Infecções por Vírus de RNA , Rhabdoviridae , Animais , Filogenia , Proteínas de Peixes/genética , Poli I-C/farmacologia , Necrose , Nodaviridae/fisiologia , Imunidade Inata
2.
Fish Shellfish Immunol ; 140: 108993, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37573969

RESUMO

Methylation at the N6 position of adenosine (m6A) is the most abundant internal mRNA modification in eukaryotes, tightly associating with regulation of viral life circles and immune responses. Here, a methyltransferase-like 3 homolog gene from sea perch (Lateolabrax japonicus), designated LjMETTL3, was cloned and characterized, and its negative role in fish virus pathogenesis was uncovered. The cDNA of LjMETTL3 encoded a 601-amino acid protein with a MT-A70 domain, which shared the closest genetic relationship with Echeneis naucrates METTL3. Spatial expression analysis revealed that LjMETTL3 was more abundant in the immune tissues of sea perch post red spotted grouper nervous necrosis virus (RGNNV) or viral hemorrhagic septicemia virus (VHSV) infection. LjMETTL3 expression was significantly upregulated at 12 and 24 h post RGNNV and VHSV infection in vitro. In addition, ectopic expression of LjMETTL3 inhibited RGNNV and VHSV infection in LJB cells at 12 and 24 h post infection, whereas knockdown of LjMETTL3 led to opposite effects. Furthermore, we found that LjMETTL3 may participate in boosting the type I interferon responses by interacting with TANK-binding kinase. Taken together, these results disclosed the antiviral role of fish METTL3 against RGNNV and VHSV and provided evidence for understanding the potential mechanisms of fish METTL3 in antiviral innate immunity.


Assuntos
Bass , Doenças dos Peixes , Interferon Tipo I , Nodaviridae , Novirhabdovirus , Percas , Infecções por Vírus de RNA , Animais , Bass/genética , Bass/metabolismo , Interferon Tipo I/genética , Imunidade Inata/genética , Nodaviridae/fisiologia , Metiltransferases , Antivirais , Necrose , Proteínas de Peixes/química
3.
Fish Shellfish Immunol ; 107(Pt A): 36-42, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32941975

RESUMO

Fish appear to harbour a complex type I IFN repertoire containing subgroups a, b, c, d, e, f, and h, and IFNh is only reported in perciform fishes. However, no multiple copies of IFNh gene has been identified in fish to date. In this study, two IFNh genes named On-IFNh1 and On-IFNh2 were cloned from Nile tilapia, Oreochromis niloticus. The predicted proteins of On-IFNh1 and On-IFNh2 contain several structural features known in type I IFNs, and estimation of divergence time revealed that these two genes may have arisen from a much recent local duplication event. On-IFNh genes were constitutively expressed in all tissues examined, with the highest expression level observed in gill, and were rapidly induced in all organs/tissues tested following the stimulation of poly(I:C). In addition, both recombinant On-IFNh1 and On-IFNh2 trigger a relative delayed but sustained induction of interferon-stimulated genes (ISGs), whereas recombinant On-IFNc elicits a rapid and transient expression of ISGs in vivo. The present study thus contributes to a better understanding of the functional properties of tilapia interferons, and also provides a new insight into the evolution of IFNh in fish.


Assuntos
Imunidade Adaptativa/genética , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Perciformes/genética , Perciformes/imunologia , Poli I-C/farmacologia , Sequência de Aminoácidos , Animais , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Interferon Tipo I/química , Interferons , Filogenia , Alinhamento de Sequência/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA