Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 168(1-2): 111-120.e11, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28086084

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels underlie the control of rhythmic activity in cardiac and neuronal pacemaker cells. In HCN, the polarity of voltage dependence is uniquely reversed. Intracellular cyclic adenosine monophosphate (cAMP) levels tune the voltage response, enabling sympathetic nerve stimulation to increase the heart rate. We present cryo-electron microscopy structures of the human HCN channel in the absence and presence of cAMP at 3.5 Å resolution. HCN channels contain a K+ channel selectivity filter-forming sequence from which the amino acids create a unique structure that explains Na+ and K+ permeability. The voltage sensor adopts a depolarized conformation, and the pore is closed. An S4 helix of unprecedented length extends into the cytoplasm, contacts the C-linker, and twists the inner helical gate shut. cAMP binding rotates cytoplasmic domains to favor opening of the inner helical gate. These structures advance understanding of ion selectivity, reversed polarity gating, and cAMP regulation in HCN channels.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Canais de Potássio/química , Sequência de Aminoácidos , Microscopia Crioeletrônica/métodos , AMP Cíclico/química , AMP Cíclico/metabolismo , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Modelos Moleculares , Canais de Potássio/metabolismo , Alinhamento de Sequência
2.
Mol Cell ; 81(22): 4650-4662.e4, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34715014

RESUMO

Mutations in ATP13A2, also known as PARK9, cause a rare monogenic form of juvenile-onset Parkinson's disease named Kufor-Rakeb syndrome and other neurodegenerative diseases. ATP13A2 encodes a neuroprotective P5B P-type ATPase highly enriched in the brain that mediates selective import of spermine ions from lysosomes into the cytosol via an unknown mechanism. Here we present three structures of human ATP13A2 bound to an ATP analog or to spermine in the presence of phosphomimetics determined by cryoelectron microscopy. ATP13A2 autophosphorylation opens a lysosome luminal gate to reveal a narrow lumen access channel that holds a spermine ion in its entrance. ATP13A2's architecture suggests physical principles underlying selective polyamine transport and anticipates a "pump-channel" intermediate that could function as a counter-cation conduit to facilitate lysosome acidification. Our findings establish a firm foundation to understand ATP13A2 mutations associated with disease and bring us closer to realizing ATP13A2's potential in neuroprotective therapy.


Assuntos
Encéfalo/metabolismo , Poliaminas/química , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/genética , Sítio Alostérico , Sítios de Ligação , Transporte Biológico , Microscopia Crioeletrônica , Humanos , Íons/química , Lisossomos/química , Mutação , Fosforilação , Domínios Proteicos , Proteínas Recombinantes/química , Espermina/metabolismo , Especificidade por Substrato
3.
Trends Biochem Sci ; 49(5): 417-430, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38514273

RESUMO

Ion channels establish the voltage gradient across cellular membranes by providing aqueous pathways for ions to selectively diffuse down their concentration gradients. The selectivity of any given channel for its favored ions has conventionally been viewed as a stable property, and in many cation channels, it is determined by an ion-selectivity filter within the external end of the ion-permeation pathway. In several instances, including voltage-activated K+ (Kv) channels, ATP-activated P2X receptor channels, and transient receptor potential (TRP) channels, the ion-permeation pathways have been proposed to dilate in response to persistent activation, dynamically altering ion permeation. Here, we discuss evidence for dynamic ion selectivity, examples where ion selectivity filters exhibit structural plasticity, and opportunities to fill gaps in our current understanding.


Assuntos
Canais Iônicos , Humanos , Canais Iônicos/metabolismo , Canais Iônicos/química , Cátions/metabolismo , Cátions/química , Animais , Ativação do Canal Iônico
4.
J Biol Chem ; 300(1): 105542, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072058

RESUMO

The gastric proton pump (H+,K+-ATPase) transports a proton into the stomach lumen for every K+ ion exchanged in the opposite direction. In the lumen-facing state of the pump (E2), the pump selectively binds K+ despite the presence of a 10-fold higher concentration of Na+. The molecular basis for the ion selectivity of the pump is unknown. Using molecular dynamics simulations, free energy calculations, and Na+ and K+-dependent ATPase activity assays, we demonstrate that the K+ selectivity of the pump depends upon the simultaneous protonation of the acidic residues E343 and E795 in the ion-binding site. We also show that when E936 is protonated, the pump becomes Na+ sensitive. The protonation-mimetic mutant E936Q exhibits weak Na+-activated ATPase activity. A 2.5-Å resolution cryo-EM structure of the E936Q mutant in the K+-occluded E2-Pi form shows, however, no significant structural difference compared with wildtype except less-than-ideal coordination of K+ in the mutant. The selectivity toward a specific ion correlates with a more rigid and less fluctuating ion-binding site. Despite being exposed to a pH of 1, the fundamental principle driving the K+ ion selectivity of H+,K+-ATPase is similar to that of Na+,K+-ATPase: the ionization states of the acidic residues in the ion-binding sites determine ion selectivity. Unlike the Na+,K+-ATPase, however, protonation of an ion-binding glutamate residue (E936) confers Na+ sensitivity.


Assuntos
Simulação de Dinâmica Molecular , Potássio , Potássio/metabolismo , Estômago , Sítios de Ligação , Sódio/metabolismo , Adenosina Trifosfatases/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Hidrogênio-Potássio/genética , ATPase Trocadora de Hidrogênio-Potássio/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(46): e2205207119, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343259

RESUMO

Whether ion channels experience ligand-dependent dynamic ion selectivity remains of critical importance since this could support ion channel functional bias. Tracking selective ion permeability through ion channels, however, remains challenging even with patch-clamp electrophysiology. In this study, we have developed highly sensitive bioluminescence resonance energy transfer (BRET) probes providing dynamic measurements of Ca2+ and K+ concentrations and ionic strength in the nanoenvironment of Transient Receptor Potential Vanilloid-1 Channel (TRPV1) and P2X channel pores in real time and in live cells during drug challenges. Our results indicate that AMG517, BCTC, and AMG21629, three well-known TRPV1 inhibitors, more potently inhibit the capsaicin (CAPS)-induced Ca2+ influx than the CAPS-induced K+ efflux through TRPV1. Even more strikingly, we found that AMG517, when injected alone, is a partial agonist of the K+ efflux through TRPV1 and triggers TRPV1-dependent cell membrane hyperpolarization. In a further effort to exemplify ligand bias in other families of cationic channels, using the same BRET-based strategy, we also detected concentration- and time-dependent ligand biases in P2X7 and P2X5 cationic selectivity when activated by benzoyl-adenosine triphosphate (Bz-ATP). These custom-engineered BRET-based probes now open up avenues for adding value to ion-channel drug discovery platforms by taking ligand bias into account.


Assuntos
Canais de Potencial de Receptor Transitório , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Cátion TRPV/metabolismo , Ligantes , Capsaicina/farmacologia , Transferência de Energia , Viés
6.
Nano Lett ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949785

RESUMO

The ion permeability and selectivity of membranes are crucial in nanofluidic behavior, impacting industries ranging from traditional to advanced manufacturing. Herein, we demonstrate the engineering of ion-conductive membranes featuring angstrom-scale ion-transport channels by introducing ionic polyamidoamine (PAMAM) dendrimers for ion separation. The exterior quaternary ammonium-rich structure contributes to significant electrostatic charge exclusion due to enhanced local charge density; the interior protoplasmic channels of PAMAM dendrimer are assembled to provide additional degrees of free volume. This facilitates the monovalent ion transfer while maintaining continuity and efficient ion screening. The dendrimer-assembled hybrid membrane achieves high monovalent ion permeance of 2.81 mol m-2 h-1 (K+), reaching excellent mono/multivalent selectivity up to 20.1 (K+/Mg2+) and surpassing the permselectivities of state-of-the-art membranes. Both experimental results and simulating calculations suggest that the impressive ion selectivity arises from the significant disparity in transport energy barrier between mono/multivalent ions, induced by the "exterior-interior" synergistic effects of bifunctional membrane channels.

7.
Nano Lett ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949896

RESUMO

Recent years have seen a growing interest in zero-dimensional (0D) transport phenomena occurring across two-dimensional (2D) materials for their potential applications to nanopore technology such as ion separation and molecular sensing. Herein, we investigate ion transport through 1 nm-wide nanopores in Ti3C2 MXene using molecular dynamics simulations. The high polarity and fish-bone arrangement of the Ti3C2 MXene offer a built-in potential and an atomic-scale distortion to the nanopore, causing an adsorption preference for cations. Our observation of variable cation-specific ion selectivity and Coulomb blockade highlights the complex interplay between adsorption affinity and cation size. The cation-specific ion selectivity can induce both the ion current and electro-osmotic water transmission, which can be regulated by tailoring the ions' preferential pathways through electric field tilting. Our finding underscores the pivotal role of the atomic arrangement of MXenes in 0D ion transport and provides fundamental insight into the application of 2D material in nanopores-based technologies.

8.
J Biol Chem ; 299(3): 102946, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36707054

RESUMO

Voltage-gated sodium and calcium channels are distinct, evolutionarily related ion channels that achieve remarkable ion selectivity despite sharing an overall similar structure. Classical studies have shown that ion selectivity is determined by specific binding of ions to the channel pore, enabled by signature amino acid sequences within the selectivity filter (SF). By studying ancestral channels in the pond snail (Lymnaea stagnalis), Guan et al. showed in a recent JBC article that this well-established mechanism can be tuned by alternative splicing, allowing a single CaV3 gene to encode both a Ca2+-permeable and an Na+-permeable channel depending on the cellular context. These findings shed light on mechanisms that tune ion selectivity in physiology and on the evolutionary basis of ion selectivity.


Assuntos
Processamento Alternativo , Canais de Cálcio , Canais de Sódio Disparados por Voltagem , Animais , Sequência de Aminoácidos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Íons/metabolismo , Caramujos/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo
9.
Small ; 20(22): e2308904, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38098304

RESUMO

High-salinity wastewater treatment is perceived as a global water resource recycling challenge that must be addressed to achieve zero discharge. Monovalent/divalent salt separation using membrane technology provides a promising strategy for sulfate removal from chlor-alkali brine. However, existing desalination membranes often show low water permeance and insufficient ion selectivity. Herein, an aminal-linked covalent organic framework (COF) membrane featuring a regular long-range pore size of 7 Å and achieving superior ion selectivity is reported, in which a uniform COF layer with subnanosized channels is assembled by the chemical splicing of 1,4-phthalaldehyde (TPA)-piperazine (PZ) COF through an amidation reaction with trimesoyl chloride (TMC). The chemically spliced TPA-PZ (sTPA-PZ) membrane maintains an inherent pore structure and exhibits a water permeance of 13.1 L m-2 h-1 bar-1, a Na2SO4 rejection of 99.1%, and a Cl-/SO4 2- separation factor of 66 for mixed-salt separation, which outperforms all state-of-the-art COF-based membranes reported. Furthermore, the single-stage treatment of NaCl/Na2SO4 mixed-salt separation achieves a high NaCl purity of above 95% and a recovery rate of ≈60%, offering great potential for industrial application in monovalent/divalent salt separation and wastewater resource utilization. Therefore, the aminal-linked COF membrane developed in this work provides a new research avenue for designing smart/advanced membrane materials for angstrom-scale separations.

10.
Environ Sci Technol ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985512

RESUMO

While flow-electrode capacitive deionization (FCDI) is recognized as an attractive desalination technology, its practical implementation has been hindered by the ease of scaling and energy-intensive nature of the single-cell FCDI system, particularly when treating brackish water with elevated levels of naturally coexisting SO42- and Ca2+. To overcome these obstacles, we propose and design an innovative ion-selective metathesis FCDI (ISM-FCDI) system, consisting of a two-stage tailored cell design. Results indicate that the specific energy consumption per unit volume of water for the ISM-FCDI is lower (by up to ∼50%) than that of a conventional single-stage FCDI due to the parallel circuit structure of the ISM-FCDI. Additionally, the ISM-FCDI benefits from a conspicuous disparity in the selective removal of ions at each stage. The separate storage of Ca2+ and SO42- by the metathesis process in the ISM-FCDI (46.25% Ca2+, 14.25% SO42- in electrode 1 and 4.75% Ca2+, 35.25% SO42- in electrode 2) can effectively prevent scaling. Furthermore, configuration-performance analysis on the ion-selective migration suggests that the properties of the ion exchange membrane, rather than the carbon species, govern the selectivity of ion removal. This work introduces system-level enhancements aimed at enhancing energy conservation and scaling prevention, providing critical optimization of the FCDI for brackish water softening.

11.
Nano Lett ; 23(23): 11043-11050, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38032845

RESUMO

Layered MXene nanofluidic membranes still face the problems of low mechanical property, poor ion selectivity, and low output power density. In this work, we successfully constructed heterostructured membranes with the combination of the layered channels of the MXene layer on the top and the nanoscale poly(p-phenylene-benzodioxazole) nanofiber (PBONF) layer on the bottom through a stepwise filtration method. The as-prepared MXene/PBONF-50 heterogeneous membrane exhibits high mechanical properties (strength of 221.6 MPa, strain of 3.2%), high ion selectivity of 0.87, and an excellent output power density of 15.7 W/m2 at 50-fold concentration gradient. Excitingly, the heterogeneous membrane presents a high power density of 6.8 W/m2 at a larger testing area of 0.79 mm2 and long-term stability. This heterogeneous membrane construction provides a viable strategy for the enhancement of mechanical properties and osmotic energy conversion of 2D materials.

12.
Molecules ; 29(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38398605

RESUMO

Ion channels exhibit strong selectivity for specific ions over others under electrochemical potentials, such as KcsA for K+ over Na+. Based on the thermodynamic analysis, this study is focused on exploring the mechanism of ion selectivity in nanopores. It is well known that ions must lose part of their hydration layer to enter the channel. Therefore, the ion selectivity of a channel is due to the rearrangement of water molecules when entering the nanopore, which may be related to the hydrophobic interactions between ions and channels. In our recent works on hydrophobic interactions, with reference to the critical radius of solute (Rc), it was divided into initial and hydrophobic solvation processes. Additionally, the different dissolved behaviors of solutes in water are expected in various processes, such as dispersed and accumulated distributions in water. Correspondingly, as the ion approaches the nanopore, there seems to exist the "repulsive" or "attractive" forces between them. In the initial process (

13.
J Biol Chem ; 298(12): 102621, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36272643

RESUMO

Cav3 T-type calcium channels from great pond snail Lymnaea stagnalis have a selectivity-filter ring of five acidic residues, EE(D)DD. Splice variants with exons 12b or 12a spanning the extracellular loop between the outer helix IIS5 and membrane-descending pore helix IIP1 (IIS5-P1) in Domain II of the pore module possess calcium selectivity or dominant sodium permeability, respectively. Here, we use AlphaFold2 neural network software to predict that a lysine residue in exon 12a is salt-bridged to the aspartate residue immediately C terminal to the second-domain glutamate in the selectivity filter. Exon 12b has a similar folding but with an alanine residue in place of lysine in exon 12a. We express LCav3 channels with mutated exons Ala-12b-Lys and Lys-12a-Ala and demonstrate that they switch the ion preference to high sodium permeability and calcium selectivity, respectively. We propose that in the calcium-selective variants, a calcium ion chelated between Domain II selectivity-filter glutamate and aspartate is knocked-out by the incoming calcium ion in the process of calcium permeation, whereas sodium ions are repelled. The aspartate is neutralized by the lysine residue in the sodium-permeant variants, allowing for sodium permeation through the selectivity-filter ring of four negatively charged residues akin to the prokaryotic sodium channels with four glutamates in the selectivity filter. The evolutionary adaptation in invertebrate LCav3 channels highlight the involvement of a key, ubiquitous aspartate, "a calcium beacon" of sorts in the outer pore of Domain II, as determinative for the calcium ion preference over sodium ions through eukaryotic Cav1, Cav2, and Cav3 channels.


Assuntos
Canais de Cálcio Tipo T , Cálcio , Lisina , Sódio , Ácido Aspártico , Cálcio/química , Ácido Glutâmico , Íons , Lisina/química , Sódio/química , Lymnaea , Animais , Canais de Cálcio Tipo T/química
14.
Small ; 19(28): e2300023, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37191227

RESUMO

Uncontrolled ion transport and susceptible SEI films are the key factors that induce lithium dendrite growth, which hinders the development of lithium metal batteries (LMBs). Herein, a TpPa-2SO3 H covalent organic framework (COF) nanosheet adhered cellulose nanofibers (CNF) on the polypropylene separator (COF@PP) is successfully designed as a battery separator to respond to the aforementioned issues. The COF@PP displays dual-functional characteristics with the aligned nanochannels and abundant functional groups of COFs, which can simultaneously modulate ion transport and SEI film components to build robust lithium metal anodes. The Li//COF@PP//Li symmetric cell exhibits stable cycling over 800 h with low ion diffusion activation energy and fast lithium ion transport kinetics, which effectively suppresses the dendrite growth and improves the stability of Li+ plating/stripping. Moreover, The LiFePO4//Li cells with COF@PP separator deliver a high discharge capacity of 109.6 mAh g-1 even at a high current density of 3 C. And it exhibits excellent cycle stability and high capacity retention due to the robust LiF-rich SEI film induced by COFs. This COFs-based dual-functional separator promotes the practical application of lithium metal batteries.

15.
Angew Chem Int Ed Engl ; 62(18): e202300167, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36882908

RESUMO

Biological proton channels play important roles in the delicate metabolism process, and have led to great interest in mimicking selective proton transport. Herein, we designed a bioinspired proton transport membrane by incorporating flexible 14-crown-4 (14C4) units into rigid frameworks of polyimine films by an interfacial Schiff base reaction. The Young's modulus of the membrane reaches about 8.2 GPa. The 14C4 units could grab water, thereby forming hydrogen bond-water networks and acting as jumping sites to lower the energy barrier of proton transport. The molecular chains present a vertical orientation to the membrane, and the ions travel between the quasi-planar molecular sheets. Furthermore, the 14C4 moieties could bond alkali ions through host-guest interactions. Thus, the ion conductance follows H+ ≫K+ >Na+ >Li+ , and an ultrahigh selectivity of H+ /Li+ (ca. 215) is obtained. This study provides an effective avenue for developing ion-selective membranes by embedding macrocycle motifs with inherent cavities.

16.
Angew Chem Int Ed Engl ; 62(6): e202214194, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36478069

RESUMO

Lithium ions have been applied in the clinic in the treatment of psychiatric disorders. In this work, we report artificial supramolecular lithium channels composed of pore-containing small aromatic molecules. By adjusting the lumen size and coordination numbers, we found that one of the supramolecular channels developed shows unprecedented transmembrane transport of exogenous lithium ions with a Li+ /Na+ selectivity ratio of 23.0, which is in the same level of that of natural Na+ channels. Furthermore, four coordination sites inside channels are found to be the basic requirement for ion transport function. Importantly, this artificial lithium channel displays very low transport of physiological Na+ , K+ , Mg2+ , and Ca2+ ions. This highly selective Li+ channel may become an important tool for studying the physiological role of intracellular lithium ions, especially in the treatment of psychiatric disorders.


Assuntos
Lítio , Sódio , Humanos , Transporte Biológico , Íons , Transporte de Íons
17.
Angew Chem Int Ed Engl ; 62(2): e202215906, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36374215

RESUMO

Biological ion channels penetrated through cell membrane form unique transport pathways for selective ionic conductance. Replicating the success of ion selectivity with mixed matrix membranes (MMMs) will enable new separation technologies but remains challenging. Herein, we report a soft substrate-assisted solution casting method to develop MMMs with penetrating subnanochannels for selective metal ion conduction. The MMMs are composed of penetrating Prussian white (PW) microcubes with subnanochannels in dense polyimide (PI) matrices, achieving selective monovalent metal ion conduction. The ion selectivity of K+ /Mg2+ is up to 14.0, and the ion conductance of K+ can reach 45.5 µS with the testing diameter of 5 mm, which can be further improved by increasing the testing area. Given the diversity of nanoporous materials and polymer matrices, we expect that the MMMs with penetrating subnanochannels could be developed into a versatile nanofluidic platform for various emerging applications.


Assuntos
Metais , Nanoporos , Membrana Celular , Íons , Polímeros
18.
Biophys J ; 121(11): 2206-2218, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35474263

RESUMO

Hyperpolarization-activated cyclic-nucleotide gated channels (HCNs) are responsible for the generation of pacemaker currents (If or Ih) in cardiac and neuronal cells. Despite the overall structural similarity to voltage-gated potassium (Kv) channels, HCNs show much lower selectivity for K+ over Na+ ions. This increased permeability to Na+ is critical to their role in membrane depolarization. HCNs can also select between Na+ and Li+ ions. Here, we investigate the unique ion selectivity properties of HCNs using molecular-dynamics simulations. Our simulations suggest that the HCN1 pore is flexible and dilated compared with Kv channels with only one stable ion binding site within the selectivity filter. We also observe that ion coordination and hydration differ within the HCN1 selectivity filter compared with those in Kv and cyclic-nucleotide gated channels. Additionally, the C358T mutation further stabilizes the symmetry of the binding site and provides a more fit space for ion coordination, particularly for Li+.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Canais de Potássio , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Íons/metabolismo , Nucleotídeos/metabolismo , Potássio/metabolismo , Canais de Potássio/metabolismo , Sódio/metabolismo
19.
J Physiol ; 600(3): 603-622, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34881429

RESUMO

G-protein-gated inwardly rectifying K+ (GIRK; Kir3.x) channels play important physiological roles in various organs. Some of the disease-associated mutations of GIRK channels are known to induce loss of K+ selectivity but their structural changes remain unclear. In this study, we investigated the mechanisms underlying the abnormal ion selectivity of inherited GIRK mutants. By the two-electrode voltage-clamp analysis of GIRK mutants heterologously expressed in Xenopus oocytes, we observed that Kir3.2 G156S permeates Li+ better than Rb+ , while T154del or L173R of Kir3.2 and T158A of Kir3.4 permeate Rb+ better than Li+ , suggesting a unique conformational change in the G156S mutant. Applications of blockers of the selectivity filter (SF) pathway, Ba2+ or Tertiapin-Q (TPN-Q), remarkably increased the Li+ -selectivity of Kir3.2 G156S but did not alter those of the other mutants. In single-channel recordings of Kir3.2 G156S expressed in mouse fibroblasts, two types of events were observed, one attributable to a TPN-Q-sensitive K+ current and the second a TPN-Q-resistant Li+ current. The results show that a novel Li+ -permeable and blocker-resistant pathway exists in G156S in addition to the SF pathway. Mutations in the pore helix, S148F and T151A also induced high Li+ permeation. Our results demonstrate that the mechanism underlying the loss of K+ selectivity of Kir3.2 G156S involves formation of a novel ion permeation pathway besides the SF pathway, which allows permeation of various species of cations. KEY POINTS: G-protein-gated inwardly rectifying K+ (GIRK; Kir3.x) channels play important roles in controlling excitation of cells in various organs, such as the brain and the heart. Some of the disease-associated mutations of GIRK channels are known to induce loss of K+ selectivity but their structural changes remain unclear. In this study, we investigated the mechanisms underlying the abnormal ion selectivity of inherited mutants of Kir3.2 and Kir3.4. Here we show that a novel Na+ , Li+ -permeable and blocker-resistant pathway exists in an inherited mutant, Kir3.2 G156S, in addition to the conventional ion conducting pathway formed by the selectivity filter (SF). Our results demonstrate that the mechanism underlying the loss of K+ selectivity of Kir3.2 G156S involves formation of a novel ion permeation pathway besides the SF pathway, which allows permeation of various species of cations.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G , Proteínas de Ligação ao GTP , Animais , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Camundongos , Mutação , Oócitos/fisiologia
20.
J Biol Chem ; 296: 100262, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33837745

RESUMO

In both prokaryotes and eukaryotes, multidrug and toxic-compound extrusion (MATE) transporters catalyze the efflux of a broad range of cytotoxic compounds, including human-made antibiotics and anticancer drugs. MATEs are secondary-active antiporters, i.e., their drug-efflux activity is coupled to, and powered by, the uptake of ions down a preexisting transmembrane electrochemical gradient. Key aspects of this mechanism, however, remain to be delineated, such as its ion specificity and stoichiometry. We previously revealed the existence of a Na+-binding site in a MATE transporter from Pyroccocus furiosus (PfMATE) and hypothesized that this site might be broadly conserved among prokaryotic MATEs. Here, we evaluate this hypothesis by analyzing VcmN and ClbM, which along with PfMATE are the only three prokaryotic MATEs whose molecular structures have been determined at atomic resolution, i.e. better than 3 Å. Reinterpretation of existing crystallographic data and molecular dynamics simulations indeed reveal an occupied Na+-binding site in the N-terminal lobe of both structures, analogous to that identified in PfMATE. We likewise find this site to be strongly selective against K+, suggesting it is mechanistically significant. Consistent with these computational results, DEER spectroscopy measurements for multiple doubly-spin-labeled VcmN constructs demonstrate Na+-dependent changes in protein conformation. The existence of this binding site in three MATE orthologs implicates Na+ in the ion-coupled drug-efflux mechanisms of this class of transporters. These results also imply that observations of H+-dependent activity likely stem either from a site elsewhere in the structure, or from H+ displacing Na+ under certain laboratory conditions, as has been noted for other Na+-driven transport systems.


Assuntos
Antiporters/química , Proteínas de Transporte de Cátions Orgânicos/química , Conformação Proteica/efeitos dos fármacos , Sódio/química , Antibacterianos/efeitos adversos , Antibacterianos/farmacologia , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Antiporters/ultraestrutura , Sítios de Ligação/efeitos dos fármacos , Cristalografia por Raios X , Humanos , Íons/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Proteínas de Transporte de Cátions Orgânicos/ultraestrutura , Células Procarióticas/química , Células Procarióticas/ultraestrutura , Domínios Proteicos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA