Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 332
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(11): e2317440121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437532

RESUMO

Silicone-based elastomers (SEs) have been extensively applied in numerous cutting-edge areas, including flexible electronics, biomedicine, 5G smart devices, mechanics, optics, soft robotics, etc. However, traditional strategies for the synthesis of polymer elastomers, such as bulk polymerization, suspension polymerization, solution polymerization, and emulsion polymerization, are inevitably restricted by long-time usage, organic solvent additives, high energy consumption, and environmental pollution. Here, we propose a Joule heating chemistry method for ultrafast universal fabrication of SEs with configurable porous structures and tunable components (e.g., graphene, Ag, graphene oxide, TiO2, ZnO, Fe3O4, V2O5, MoS2, BN, g-C3N4, BaCO3, CuI, BaTiO3, polyvinylidene fluoride, cellulose, styrene-butadiene rubber, montmorillonite, and EuDySrAlSiOx) within seconds by only employing H2O as the solvent. The intrinsic dynamics of the in situ polymerization and porosity creation of these SEs have been widely investigated. Notably, a flexible capacitive sensor made from as-fabricated silicone-based elastomers exhibits a wide pressure range, fast responses, long-term durability, extreme operating temperatures, and outstanding applicability in various media, and a wireless human-machine interaction system used for rescue activities in extreme conditions is established, which paves the way for more polymer-based material synthesis and wider applications.

2.
Nano Lett ; 24(22): 6488-6495, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38771151

RESUMO

Understanding heating and cooling mechanisms in mesoscopic superconductor-semiconductor devices is crucial for their application in quantum technologies. Owing to their poor thermal conductivity, heating effects can drive superconducting-to-normal transitions even at low bias, observed as sharp conductance dips through the loss of Andreev excess currents. Tracking such dips across magnetic field, cryostat temperature, and applied microwave power allows us to uncover cooling bottlenecks in different parts of a device. By applying this "Joule spectroscopy" technique, we analyze heat dissipation in devices based on InAs-Al nanowires and reveal that cooling of superconducting islands is limited by the rather inefficient electron-phonon coupling, as opposed to grounded superconductors that primarily cool by quasiparticle diffusion. We show that powers as low as 50-150 pW are able to suppress superconductivity on the islands. Applied microwaves lead to similar heating effects but are affected by the interplay of the microwave frequency and the effective electron-phonon relaxation time.

3.
Nano Lett ; 24(6): 2003-2010, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38306120

RESUMO

Heat-assisted magnetic anisotropy engineering has been successfully used in selective magnetic writing and microwave amplification due to a large interfacial thermal resistance between the MgO barrier and the adjacent ferromagnetic layers. However, in spin-orbit torque devices, the writing current does not flow through the tunnel barrier, resulting in a negligible heating effect due to efficient heat dissipation. Here, we report a dramatically reduced switching current density of ∼2.59 MA/cm2 in flexible spin-orbit torque heterostructures, indicating a 98% decrease in writing energy consumption compared with that on a silicon substrate. The reduced driving current density is enabled by the dramatically decreased magnetic anisotropy due to Joule dissipation and the lower thermal conductivity of the flexible substrate. The large magnetic anisotropy could be fully recovered after the impulse, indicating retained high stability. These results pave the way for flexible spintronics with the otherwise incompatible advantages of low power consumption and high stability.

4.
Adv Funct Mater ; 34(33)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39399303

RESUMO

Stretchable electrodes are an essential component in soft actuator systems. In particular, Joule heating electrodes (JHEs) are required for thermal actuation systems. A highly stretchable, patternable, and low-voltage operating JHE based on hybrid layers of silver nanowires (AgNWs) and carbon nanotubes (CNTs) is reported. The conductive layers were applied on a locally pre-strained bistable electroactive polymer (BSEP) membrane to form a wrinkled conductive surface with a low resistance of 300 Ω/sq, and subsequently patterned to a serpentine trace by laser engraving. The resistance of the resulting electrode remains nearly unchanged up to ~80-90% area strain. By applying a voltage of 7 - 9 V to the electrode, the temperature of the BSEP membrane increased to more than 60 °C, well above the polymer's phase transition temperature of 46 °C, thereby lowering its modulus by a factor of 103. An electronic Braille device based on the JHEs on a BSEP membrane was assembled with a diaphragm chamber. The electrode was patterned into 3 × 2 individually addressable pixels according to the standard U.S. Braille cell format. Through Joule heating of the pixels and local expansion of the BSEP membrane using a small pneumatic pressure, the pixels deformed out of the plane by over 0.5 mm to display specific Braille letters. The Braille content can be refreshed for 20,000 cycles at the same operating voltage.

5.
Small ; 20(7): e2305390, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37797192

RESUMO

A FeCo/DA@NC catalyst with the well-defined FeCoN6 moiety is customized through a novel and ultrafast Joule heating technique. This catalyst demonstrates superior oxygen reduction reaction activity and stability in an alkaline environment. The power density and charge-discharge cycling of znic-air batteries driven by FeCo/DA@NC also surpass those of Pt/C catalyst. The source of the excellent oxygen reduction reaction activity of FeCo/DA@NC originates from the significantly changed charge environment and 3d orbital spin state. These not only improve the bonding strength between active sites and oxygen-containing intermediates, but also provide spare reaction sites for oxygen-containing intermediates. Moreover, various in situ detection techniques reveal that the rate-determining step in the four-electron oxygen reduction reaction is *O2 protonation. This work provides strong support for the precise design and rapid preparation of bimetallic catalysts and opens up new ideas for understanding orbital interactions during oxygen reduction reactions.

6.
Small ; 20(35): e2401491, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38751305

RESUMO

The design and fabrication of a lithiophilic skeleton are highly important for constructing advanced Li metal anodes. In this work, a new lithiophilic skeleton is reported by planting metal sulfides (e.g., Ni3S2) on vertical graphene (VG) via a facile ultrafast Joule heating (UJH) method, which facilitates the homogeneous distribution of lithiophilic sites on carbon cloth (CC) supported VG substrate with firm bonding. Ni3S2 nanoparticles are homogeneously anchored on the optimized skeleton as CC/VG@Ni3S2, which ensures high conductivity and uniform deposition of Li metal with non-dendrites. By means of systematic electrochemical characterizations, the symmetric cells coupled with CC/VG@Ni3S2 deliver a steady long-term cycle within 14 mV overpotential for 1800 h (900 cycles) at 1 mA cm-2 and 1 mAh cm-2. Meanwhile, the designed CC/VG@Ni3S2-Li||LFP full cell shows notable electrochemical performance with a capacity retention of 92.44% at 0.5 C after 500 cycles and exceptional rate performance. This novel synthesis strategy for metal sulfides on hierarchical carbon-based materials sheds new light on the development of high-performance lithium metal batteries (LMBs).

7.
Small ; 20(9): e2307873, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37853209

RESUMO

Designing smart textiles for personal thermal management (PTM) is an effective strategy for thermoregulation and energy saving. However, the manufacture of versatile high-performance thermal management textiles for complex real-world environments remains a challenge due to the limitations of functional integration, material properties, and preparation procedures. In this study, an aramid fabric based on in situ anchored copper sulfide nanostructure is developed. The textile with excellent solar and Joule heating properties can effectively keep the body warm even at low energy inputs. Meanwhile, the reduced infrared emissivity of the textile decreases the thermal radiation losses and helps to maintain a constant body temperature. Impressively, the textile integrates superb electromagnetic shielding, near-complete UV protection properties, and ideal resistance to fire and bacteria. This work provides a simple strategy for fabricating multi-functional integrated wearable devices with flexibility and breathability, which is highly promising in versatile PTM applications.

8.
Small ; 20(3): e2305406, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37702139

RESUMO

In recent years, nitrogen-doped carbons show great application potentials in the fields of electrochemical energy storage and conversion. Here, the ultrafast and green preparation of nitrogen-doped carbon nanotubes (N-CNTs) via an efficient flash Joule heating method is reported. The precursor of 1D core-shell structure of CNT@polyaniline is first synthesized using an in situ polymerization method and then rapidly conversed into N-CNTs at ≈1300 K within 1 s. Electrochemical tests reveal the desirable capacitive property and oxygen catalytic activity of the optimized N-CNT material. It delivers an improved area capacitance of 101.7 mF cm-2 at 5 mV s-1 in 1 m KOH electrolyte, and the assembled symmetrical supercapacitor shows an energy density of 1.03 µWh cm-2 and excellent cycle stability over 10 000 cycles. In addition, the flash N-CNTs exhibit impressive catalytic performance toward oxygen reduction reaction with a half-wave potential of 0.8 V in alkaline medium, comparable to the sample prepared by the conventional long-time pyrolysis method. The Zn-air battery presents superior charge-discharge ability and long-term durability relative to commercial Pt/C catalyst. These remarkable electrochemical performances validate the superiorities of the Joule heating method in preparing the heteroatom-doped carbon materials for wide applications.

9.
Small ; 20(3): e2304327, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37699748

RESUMO

Flexible composite films have attracted considerable attention due to great potential for healthcare, telecommunication, and aerospace. However, it is still challenging to achieve high conductivity and multifunctional integration, mainly due to poorly designed composite structures of these films. Herein, a novel sandwich-structured assembly strategy is proposed to fabricate flexible composite thin films made of Ag nanowire (AgNW) core and MXene layers by combination of spray coating and vacuum filtration process. In this case, ultrathin MXene layers play crucial roles in constructing compact composite structures strongly anchored to substrate with extensive hydrogen-bonding interactions. The resultant sandwich-structured MXene/AgNW composite thin films (SMAFs) exhibit ultrahigh electrical conductivity (up to 27193 S cm-1 ), resulting in exceptional electromagnetic interference shielding effectiveness of 16 223.3 dB cm2 g-1 and impressive Joule heating performance with rapid heating rate of 10.4 °C s-1 . Moreover, the uniform SMAFs can also be facilely cut into kirigami-patterned interconnects, which indicate superior strain-insensitive conductance even after long-term exposure to extreme temperatures. The demonstrated strategy offers a significant paradigm to construct multifunctional composite thin films for next-generation integrated flexible electronics with practical applications.

10.
Small ; 20(22): e2308514, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38098438

RESUMO

Highly robust flexible multifunctional film with excellent electromagnetic interference shielding and electrothermal/photothermal characteristics are highly desirable for aerospace, military, and wearable devices. Herein, an asymmetric gradient multilayer structured bacterial cellulose@Fe3O4/carbon nanotube/Ti3C2Tx (BC@Fe3O4/CNT/Ti3C2Tx) multifunctional composite film is fabricated with simultaneously demonstrating fast Joule response, excellent EMI shielding effectiveness (EMI SE) and photothermal conversion properties. The asymmetric gradient 6-layer composite film with 40% of Ti3C2Tx possesses excellent mechanical performance with exceptional tensile strength (76.1 MPa), large strain (14.7%), and good flexibility. This is attributed to the asymmetric gradient multilayer structure designed based on the hydrogen bonding self-assembly strategy between Ti3C2Tx and BC. It achieved an EMI SE of up to 71.3 dB, which is attributed to the gradient "absorption-reflection-reabsorption" mechanism. Furthermore, this composite film also exhibits excellent low-voltage-driven Joule heating (up to 80.3 °C at 2.5 V within 15 s) and fast-response photothermal performance (up to 101.5 °C at 1.0 W cm-2 within 10 s), which is attributed to the synergistic effect of heterostructure. This work demonstrates the fabrication of multifunctional bacterial cellulose@Fe3O4/carbon nanotube/Ti3C2Tx composite film has promising potentials for next-generation wearable electronic devices in energy conversion, aerospace, and artificial intelligence.


Assuntos
Celulose , Nanotubos de Carbono , Dispositivos Eletrônicos Vestíveis , Celulose/química , Nanotubos de Carbono/química , Titânio/química , Bactérias , Nanocompostos/química
11.
Small ; 20(27): e2310801, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38308086

RESUMO

Lithium-sulfur (Li-S) batteries show extraordinary promise as a next-generation battery technology due to their high theoretical energy density and the cost efficiency of sulfur. However, the sluggish reaction kinetics, uncontrolled growth of lithium sulfide (Li2S), and substantial Li2S oxidation barrier cause low sulfur utilization and limited cycle life. Moreover, these drawbacks get exacerbated at high current densities and high sulfur loadings. Here, a heterostructured WOx/W2C nanocatalyst synthesized via ultrafast Joule heating is reported, and the resulting heterointerfaces contribute to enhance electrocatalytic activity for Li2S oxidation, as well as controlled Li2S deposition. The densely distributed nanoparticles provide abundant binding sites for uniform deposition of Li2S. The continuous heterointerfaces favor efficient adsorption and promote charge transfer, thereby reducing the activation barrier for the delithiation of Li2S. These attributes enable Li-S cells to deliver high-rate performance and high areal capacity. This study provides insights into efficient catalyst design for Li2S oxidation under practical cell conditions.

12.
Small ; : e2403967, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39106223

RESUMO

Platinum-Ruthenium (PtRu) bimetallic nanoparticles are promising catalysts for methanol oxidation reaction (MOR) required by direct methanol fuel cells. However, existing catalyst synthesis methods have difficulty controlling their composition and structures. Here, a direct Joule heating method to yield highly active and stable PtRu catalysts for MOR is shown. The optimized Joule heating condition at 1000 °C over 50 microseconds produces uniform PtRu nanoparticles (6.32 wt.% Pt and 2.97 wt% Ru) with an average size of 2.0 ± 0.5 nanometers supported on carbon black substrates. They have a large electrochemically active surface area (ECSA) of 239 m2 g-1 and a high ECSA normalized specific activity of 0.295 mA cm-2. They demonstrate a peak mass activity of 705.9 mA mgPt -1 for MOR, 2.8 times that of commercial 20 wt.% platinum/carbon catalysts, and much superior to PtRu catalysts obtained by standard hydrothermal synthesis. Theoretical calculation results indicate that the superior catalytic activity can be attributed to modified Pt sites in PtRu nanoparticles, enabling strong methanol adsorption and weak carbon monoxide binding. Further, the PtRu catalyst demonstrates excellent stability in two-electrode methanol fuel cell tests with 85.3% current density retention and minimum Pt surface oxidation after 24 h.

13.
Small ; : e2404364, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115351

RESUMO

Ultrahigh-temperature Joule-heating of carbon nanostructures opens up unique opportunities for property enhancements and expanded applications. This study employs rapid electrical Joule-heating at ultrahigh temperatures (up to 3000 K within 60 s) to induce a transformation in nanocarbon aerogels, resulting in highly graphitic structures. These aerogels function as versatile platforms for synthesizing customizable metal oxide nanoparticles while significantly reducing carbon emissions compared to conventional furnace heating methods. The thermal conductivity of the aerogel, characterized by Umklapp scattering, can be precisely adjusted by tuning the heating temperature. Utilizing the aerogel's superhydrophobic properties enables its practical application in filtration systems for efficiently separating toxic halogenated solvents from water. The hierarchically porous aerogel, featuring a high surface area of 607 m2 g-1, ensures the uniform distribution and spacing of embedded metal oxide nanoparticles, offering considerable advantages for catalytic applications. These findings demonstrate exceptional catalytic performance in oxidative desulfurization, achieving a 98.9% conversion of dibenzothiophene in the model fuel. These results are corroborated by theoretical calculations, surpassing many high-performance catalysts. This work highlights the pragmatic and highly efficient use of nanocarbon structures in nanoparticle synthesis under ultrahigh temperatures, with short heating durations. Its broad implications extend to the fields of electrochemistry, energy storage, and high-temperature sensing.

14.
Small ; 20(31): e2310191, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38431965

RESUMO

Wearable heaters with multifunctional performances are urgently required for the future personal health management. However, it is still challengeable to fabricate multifunctional wearable heaters simultaneously with flexibility, air-permeability, Joule heating performance, electromagnetic shielding property, and anti-bacterial ability. Herein, silver nanoparticles (AgNPs)@MXene heterostructure-decorated graphite felts are fabricated by introducing MXene nanosheets onto the graphite felts via a simple dip-coating method and followed by a facile in situ growth approach to grow AgNPs on MXene layers. The obtained AgNPs@MXene heterostructure decorated graphite felts not only maintain the intrinsic flexibility, air-permeability and comfort characteristics of the matrixes, but also present excellent Joule heating performance including wide temperature range (30-128 °C), safe operating conditions (0.9-2.7 V), and rapid thermal response (reaching 128 °C within 100 s at 2.7 V). Besides, the multifunctional graphite felts exhibit excellent electromagnetic shielding effectiveness (53 dB) and outstanding anti-bacterial performances (>95% anti-bacterial rate toward Bacillus subtilis, Escherichia coli and Staphy-lococcus aureus). This work sheds light on a novel avenue to fabricate multifunctional wearable heaters for personal healthcare and personal thermal management.


Assuntos
Antibacterianos , Grafite , Nanopartículas Metálicas , Prata , Dispositivos Eletrônicos Vestíveis , Grafite/química , Prata/química , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Escherichia coli/efeitos dos fármacos
15.
Small ; 20(33): e2400593, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38529744

RESUMO

As a kind of flexible electronic device, flexible pressure sensor has attracted wide attention in medical monitoring and human-machine interaction. With the continuous deepening of research, high-sensitivity sensor is developing from single function to multi-function. However, Current multifunctional sensors lack the ability to integrate joule heating, detect sliding friction, and self-healing. Herein, a MXene/polyurethane (PU) flexible pressure sensor with a self-healing property for joule heating and friction sliding is fabricated. The MXene/PU sensitive layer with special spinosum structure is prepared by a simple spraying method. After face-to-face assembly of the sensitive layers, the MXene/PU flexible pressure sensor is obtained and showed excellent sensitivity (150.65 kPa-1), fast response/recovery speed (75.5/63.9 ms), and good stability (10 000 cycles). Based on the self-healing property of PU, the sensor also has the ability to heal after mechanical damage. In addition, the sensor realizes the joule heating function under low voltage, and has the real-time monitoring ability of sliding objects. Combined with low cost and simple manufacturing method, the multi-functional MXene/PU flexible sensor shows a wide range of application potential in human activity monitoring, thermal management, and slip recognition.

16.
Small ; : e2311021, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813711

RESUMO

Landfilling is long the most common method of disposal for municipal solid waste (MSW). However, many countries seek to implement different methods of MSW treatment due to the high global warming potential associated with landfilling. Other methods such as recycling and incineration are either limited to only a fraction of generated MSW or still produce large greenhouse gas emissions, thereby providing an unsustainable disposal method. Here, the production of graphene from treated MSW is reported that including treated wood waste, using flash Joule heating. Results indicated a 71%-83% reduction in global warming potential compared to traditional disposal methods at a net cost of -$282 of MSW, presuming the graphene is sold at just 5% of its current market value to offset the cost of the flash Joule heating process.

17.
Small ; 20(24): e2309937, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38178644

RESUMO

High entropy materials offer almost unlimited catalytic possibilities due to their variable composition, unique structure, and excellent electrocatalytic performance. However, due to the strong tendency of nanoparticles to coarsen and agglomerate, it is still a challenge to synthesize nanoparticles using simple methods to precisely control the morphology and size of the nanoparticles in large quantities, and their large-scale application is limited by high costs and low yields. Herein, a series of high-entropy oxides (HEOs) nanoparticles with high-density and ultrasmall size (<5 nm) loaded on carbon nanosheets with large quantities are prepared by Joule-heating treatment of gel precursors in a short period of time (≈60 s). Among them, the prepared (FeCoNiRuMn)3O4-x catalyst shows the best electrocatalytic activity for oxygen evolution reaction, with low overpotentials (230 mV @10 mA cm-2, 270 mV @100 mA cm-2), small Tafel slope (39.4 mV dec-1), and excellent stability without significant decay at 100 mA cm-2 after 100 h. The excellent performance of (FeCoNiRuMn)3O4-x can be attributed to the synergistic effect of multiple elements and the inherent structural stability of high entropy systems. This study provides a more comprehensive design idea for the preparation of efficient and stable high entropy catalysts.

18.
Small ; : e2400892, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953333

RESUMO

Ammonia fuel cells using carbon-neutral ammonia as fuel are regarded as a fast, furious, and flexible next-generation carbon-free energy conversion technology, but it is limited by the kinetically sluggish ammonia oxidation reaction (AOR), oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER). Platinum can efficiently drive these three types of reactions, but its scale-up application is limited by its susceptibility to poisoning and high cost. In order to reduce the cost and alleviate poisoning, incorporating Pt with various metals proves to be an efficient and feasible strategy. Herein, PtFeCoNiIr/C trifunctional high-entropy alloy (HEA) catalysts are prepared with uniform mixing and ultra-small size of 2 ± 0.5 nm by Joule heating method. PtFeCoNiIr/C exhibits efficient performance in AOR (Jpeak = 139.8 A g-1 PGM), ORR (E1/2 = 0.87 V), and HER (E10 = 20.3 mV), outperforming the benchmark Pt/C, and no loss in HER performance at 100 mA cm-2 for 200 h. The almost unchanged E1/2 in the anti-poisoning test indicates its promising application in real fuel cells powered by ammonia. This work opens up a new path for the development of multi-functional electrocatalysts and also makes a big leap toward the exploration of cost-effective device configurations for novel fuel cells.

19.
Electrophoresis ; 45(17-18): 1495-1504, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38687164

RESUMO

Capillary temperature control during capillary electrophoresis (CE) separations is key for achieving accurate and reproducible results with a broad array of potential methods. However, the difficulty of enabling typical fluid temperature control loops on portable instruments has meant that active capillary temperature control of in situ CE systems has frequently been overlooked. This work describes construction and test of a solid-state device for capillary temperature control that is suitable for inclusion with in situ instruments, including those designed for space missions. Two test articles were built, a thermal mass model (TMM) and a functional model (FM). The TMM demonstrated that temperature gradients could be limited using the proposed control scheme, and that our thermal modeling of the system can be relied on for future adaptations of physical geometries of the system. The FM demonstrated CE analytical performance while under active temperature control and that the device was compatible with the harsh thermal-vacuum environments that might be encountered during space flight.


Assuntos
Eletroforese Capilar , Desenho de Equipamento , Voo Espacial , Temperatura , Eletroforese Capilar/instrumentação , Eletroforese Capilar/métodos , Voo Espacial/instrumentação
20.
Chemistry ; 30(38): e202400651, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38705845

RESUMO

Proton exchange membrane water electrolysis (PEMWE) is considered a promising technology for coupling with renewable energy sources to achieve clean hydrogen production. However, constrained by the sluggish kinetics of the anodic oxygen evolution reaction (OER) and the acidic abominable environment render the grand challenges in developing the active and stable OER electrocatalyst, leading to low efficiency of PEMWE. Herein, we develop the rutile-type IrO2 nanoparticles with abundant grain boundaries and the continuous nanostructure through the joule heating and sacrificial template method. The optimal candidate (350-IrO2) demonstrates remarkable electrocatalytic activity and stability during the OER, presenting a promising advancement for efficient PEMWE. DFT calculations verified that grain boundaries can modulate the electronic structure of Ir sites and optimize the adsorption of oxygen intermediates, resulting in the accelerated kinetics. 350-IrO2 affords a rapid OER process with 20 times higher mass activity (0.61 A mgIr -1) than the commercial IrO2 at 1.50 V vs. RHE. Benefiting from the reduced overpotential and the preservation of the stable rutile structure, 350-IrO2 exhibits the stability of 200 h test at 10 mA cm-2 with only trace decay of 11.8 mV. Moreover, the assembled PEMWE with anode 350-IrO2 catalyst outputs the current density up to 2 A cm-2 with only 1.84 V applied voltage, long-term operation for 100 h without obvious performance degradation at 1 A cm-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA