Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(21): 4528-4545.e18, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37788669

RESUMO

MLL/KMT2A amplifications and translocations are prevalent in infant, adult, and therapy-induced leukemia. However, the molecular contributor(s) to these alterations are unclear. Here, we demonstrate that histone H3 lysine 9 mono- and di-methylation (H3K9me1/2) balance at the MLL/KMT2A locus regulates these amplifications and rearrangements. This balance is controlled by the crosstalk between lysine demethylase KDM3B and methyltransferase G9a/EHMT2. KDM3B depletion increases H3K9me1/2 levels and reduces CTCF occupancy at the MLL/KMT2A locus, in turn promoting amplification and rearrangements. Depleting CTCF is also sufficient to generate these focal alterations. Furthermore, the chemotherapy doxorubicin (Dox), which associates with therapy-induced leukemia and promotes MLL/KMT2A amplifications and rearrangements, suppresses KDM3B and CTCF protein levels. KDM3B and CTCF overexpression rescues Dox-induced MLL/KMT2A alterations. G9a inhibition in human cells or mice also suppresses MLL/KMT2A events accompanying Dox treatment. Therefore, MLL/KMT2A amplifications and rearrangements are controlled by epigenetic regulators that are tractable drug targets, which has clinical implications.


Assuntos
Epigênese Genética , Proteína de Leucina Linfoide-Mieloide , Adulto , Animais , Humanos , Lactente , Camundongos , Doxorrubicina/farmacologia , Rearranjo Gênico , Antígenos de Histocompatibilidade , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Leucemia/metabolismo , Lisina/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Translocação Genética
2.
Genes Dev ; 36(5-6): 368-389, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35301220

RESUMO

Acute myeloid leukemia with KMT2A (MLL) rearrangements is characterized by specific patterns of gene expression and enhancer architecture, implying unique core transcriptional regulatory circuitry. Here, we identified the transcription factors MEF2D and IRF8 as selective transcriptional dependencies of KMT2A-rearranged AML, where MEF2D displays partially redundant functions with its paralog, MEF2C. Rapid transcription factor degradation followed by measurements of genome-wide transcription rates and superresolution microscopy revealed that MEF2D and IRF8 form a distinct core regulatory module with a narrow direct transcriptional program that includes activation of the key oncogenes MYC, HOXA9, and BCL2. Our study illustrates a mechanism of context-specific transcriptional addiction whereby a specific AML subclass depends on a highly specialized core regulatory module to directly enforce expression of common leukemia oncogenes.


Assuntos
Leucemia Mieloide Aguda , Proteína de Leucina Linfoide-Mieloide , Rearranjo Gênico , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Leucemia Mieloide Aguda/genética , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Oncogenes/genética
3.
Genes Dev ; 33(1-2): 61-74, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30573454

RESUMO

Chromosomal translocations of the Mixed-lineage leukemia 1 (MLL1) gene generate MLL chimeras that drive the pathogenesis of acute myeloid and lymphoid leukemia. The untranslocated MLL1 is a substrate for proteolytic cleavage by the endopeptidase threonine aspartase 1 (taspase1); however, the biological significance of MLL1 cleavage by this endopeptidase remains unclear. Here, we demonstrate that taspase1-dependent cleavage of MLL1 results in the destabilization of MLL. Upon loss of taspase1, MLL1 association with chromatin is markedly increased due to the stabilization of its unprocessed version, and this stabilization of the uncleaved MLL1 can result in the displacement of MLL chimeras from chromatin in leukemic cells. Casein kinase II (CKII) phosphorylates MLL1 proximal to the taspase1 cleavage site, facilitating its cleavage, and pharmacological inhibition of CKII blocks taspase1-dependent MLL1 processing, increases MLL1 stability, and results in the displacement of the MLL chimeras from chromatin. Accordingly, inhibition of CKII in a MLL-AF9 mouse model of leukemia delayed leukemic progression in vivo. This study provides insights into the direct regulation of the stability of MLL1 through its cleavage by taspase1, which can be harnessed for targeted therapeutic approaches for the treatment of aggressive leukemia as the result of MLL translocations.


Assuntos
Endopeptidases/metabolismo , Leucemia/terapia , Proteína de Leucina Linfoide-Mieloide/genética , Animais , Cromatina/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Endopeptidases/genética , Inibidores Enzimáticos/farmacologia , Técnicas de Inativação de Genes , Células HCT116 , Células HEK293 , Humanos , Leucemia/enzimologia , Leucemia/genética , Células MCF-7 , Camundongos , Proteína de Leucina Linfoide-Mieloide/metabolismo , Estabilidade Proteica , Análise de Sobrevida
4.
Proc Natl Acad Sci U S A ; 120(16): e2220134120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37036970

RESUMO

Bromo- and extra-terminal domain inhibitors (BETi) have exhibited therapeutic activities in many cancers. However, the mechanisms controlling BETi response and resistance are not well understood. We conducted genome-wide loss-of-function CRISPR screens using BETi-treated KMT2A-rearranged (KMT2A-r) cell lines. We revealed that Speckle-type POZ protein (SPOP) gene (Speckle Type BTB/POZ Protein) deficiency caused significant BETi resistance, which was further validated in cell lines and xenograft models. Proteomics analysis and a kinase-vulnerability CRISPR screen indicated that cells treated with BETi are sensitive to GSK3 perturbation. Pharmaceutical inhibition of GSK3 reversed the BETi-resistance phenotype. Based on this observation, a combination therapy regimen inhibiting both BET and GSK3 was developed to impede KMT2A-r leukemia progression in patient-derived xenografts in vivo. Our results revealed molecular mechanisms underlying BETi resistance and a promising combination treatment regimen of ABBV-744 and CHIR-98014 by utilizing unique ex vivo and in vivo KMT2A-r PDX models.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Leucemia , Humanos , Quinase 3 da Glicogênio Sintase/metabolismo , Linhagem Celular Tumoral , Leucemia/tratamento farmacológico , Leucemia/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo
5.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36585787

RESUMO

Chromosomal translocations in cancer genomes, key players in many types of cancers, generate chimeric proteins that drive oncogenesis. Genomes with chromosomal rearrangements can also produce fusion circular RNAs (f-circRNAs) by backsplicing of chimeric transcripts, as first shown in leukemias with PML::RARα and KMT2A::MLLT3 translocations and later in solid cancers. F-circRNAs contribute to the oncogenic processes and reinforce the oncogenic activity of chimeric proteins. In leukemia with KMT2A::AFF1 (MLL::AF4) fusions, we previously reported specific alterations of circRNA expression, but nothing was known about f-circRNAs. Due to the presence of two chimeric sequences, fusion and backsplice junctions, the identification of f-circRNAs with available tools is challenging, possibly resulting in the underestimation of this RNA species, especially when the breakpoint is not known. We developed CircFusion, a new software tool to detect linear fusion transcripts and f-circRNAs from RNA-seq data, both in samples for which the breakpoints are known and when the information about the joined exons is missing. CircFusion can detect linear and circular chimeric transcripts deriving from the main and reciprocal translocations also in the presence of multiple breakpoints, which are common in malignant cells. Benchmarking tests on simulated and real datasets of cancer samples with previously experimentally determined f-circRNAs showed that CircFusion provides reliable predictions and outperforms available methods for f-circRNA detection. We discovered and validated novel f-circRNAs in acute leukemia harboring KMT2A::AFF1 rearrangements, leading the way to future functional studies aimed to unveil their role in this malignancy.


Assuntos
Leucemia Mieloide Aguda , RNA Circular , Humanos , Proteínas de Ligação a DNA , Leucemia Mieloide Aguda/genética , Proteínas Recombinantes de Fusão , RNA , RNA Circular/genética , Software , Fatores de Elongação da Transcrição , Histona-Lisina N-Metiltransferase/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo
6.
FASEB J ; 38(12): e23735, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38860936

RESUMO

Identification of potential key targets of melanoma, a fatal skin malignancy, is critical to the development of new cancer therapies. Lysine methyltransferase 2A (KMT2A) promotes melanoma growth by activating the human telomerase reverse transcriptase (hTERT) signaling pathway; however, the exact mechanism remains elusive. This study aimed to reveal new molecular targets that regulate KMT2A expression and melanoma growth. Using biotin-streptavidin-agarose pull-down and proteomics, we identified Damage-specific DNA-binding protein 2 (DDB2) as a KMT2A promoter-binding protein in melanoma cells and validated its role as a regulator of KMT2A/hTERT signaling. DDB2 knockdown inhibited the expression of KMT2A and hTERT and inhibited the growth of melanoma cells in vitro. Conversely, overexpression of DDB2 activated the expression of KMT2A and promoted the growth of melanoma cells. Additionally, we demonstrated that DDB2 expression was higher in tumor tissues of patients with melanoma than in corresponding normal tissues and was positively correlated with KMT2A expression. Kaplan-Meier analysis showed a poor prognosis in patients with high levels of DDB2 and KMT2A. Overall, our data suggest that DDB2 promotes melanoma cell growth through the transcriptional regulation of KMT2A expression and predicts poor prognosis. Therefore, targeting DDB2 may regulate the effects of KMT2A on melanoma growth and progression, providing a new potential therapeutic strategy for melanoma.


Assuntos
Proliferação de Células , Proteínas de Ligação a DNA , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase , Melanoma , Proteína de Leucina Linfoide-Mieloide , Humanos , Melanoma/genética , Melanoma/patologia , Melanoma/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Prognóstico , Linhagem Celular Tumoral , Feminino , Masculino , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo
7.
J Cell Mol Med ; 28(11): e18365, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38818577

RESUMO

Traditional Chinese medicine, particularly Zhi-zi-chi decoction (ZZCD), is gaining recognition as a potential treatment for depression. This study aimed to uncover the molecular mechanisms behind ZZCD's antidepressant effects, focusing on lncRNA Six3os1 and histone H3K4 methylation at the BDNF promoter. Network pharmacology and in vivo experiments were conducted to identify ZZCD targets and evaluate its impact on depression-related behaviours and neuron injury. The role of Six3os1 in recruiting KMT2A to the BDNF promoter and its effects on oxidative stress and neuron injury were investigated. ZZCD reduced depression-like behaviours and neuron injury in mice subjected to chronic stress. It upregulated Six3os1, which facilitated KMT2A recruitment to the BDNF promoter, leading to increased histone H3K4 methylation and enhanced BDNF expression. ZZCD also inhibited CORT-induced neuron injury, inflammatory response and oxidative stress in vitro. ZZCD's antidepressant properties involve Six3os1 upregulation, which exerts neuroprotective effects by inhibiting oxidative stress and neuron injury, thereby alleviating depressive symptoms. Targeting Six3os1 upregulation may offer a potential therapeutic intervention for depression.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Depressão , Medicamentos de Ervas Chinesas , Histonas , Estresse Oxidativo , Regiões Promotoras Genéticas , RNA Longo não Codificante , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Histonas/metabolismo , Depressão/tratamento farmacológico , Depressão/genética , Depressão/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Camundongos , Medicamentos de Ervas Chinesas/farmacologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Metilação/efeitos dos fármacos , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Modelos Animais de Doenças
8.
Cancer Sci ; 115(3): 963-973, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38226414

RESUMO

Ectopic activation of rearranged during transfection (RET) has been reported to facilitate lineage differentiation and cell proliferation in different cytogenetic subtypes of acute myeloid leukemia (AML). Herein, we demonstrate that RET is significantly (p < 0.01) upregulated in AML subtypes containing rearrangements of the lysine methyltransferase 2A gene (KMT2A), commonly referred to as KMT2A-rearranged (KMT2A-r) AML. Integrating multi-epigenomics data, we show that the KMT2A-MLLT3 fusion induces the development of CCCTC-binding (CTCF)-guided de novo extrusion enhancer loop to upregulate RET expression in KMT2A-r AML. Based on the finding that RET expression is tightly correlated with the selective chromatin remodeler and mediator (MED) proteins, we used a small-molecule inhibitor having dual inhibition against RET and MED12-associated cyclin-dependent kinase 8 (CDK8) in KMT2A-r AML cells. Dual inhibition of RET and CDK8 restricted cell proliferation by producing multimodal oxidative stress responses in treated cells. Our data suggest that epigenetically enhanced RET protects KMT2A-r AML cells from oxidative stresses, which could be exploited as a potential therapeutic strategy.


Assuntos
Rearranjo Gênico , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proto-Oncogenes , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Estresse Oxidativo/genética , Proteínas Proto-Oncogênicas c-ret/genética
9.
Br J Haematol ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710595

RESUMO

The treatment of acute myeloid leukaemia (AML) has changed fundamentally in the last decade with many new targeted therapies entering clinics. Some of the most interesting agents under development are Menin inhibitors which interfere with the interaction of Menin with wild-type (wt) KMT2A or a KMT2A-fusion protein and thereby downregulate the leukaemic gene expression (MEIS1, PBX3, HOX) in NPM1 mutant or KMT2A-rearranged leukaemia. Other HOX and MEIS1 expressing leukaemias may also be sensitive to Menin inhibition. Following the encouraging results as monotherapy in refractory and relapsed AML, the combination of Menin inhibitors with chemotherapeutic agents and other targeted drugs is being investigated clinically.

10.
Mol Biol Rep ; 51(1): 561, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38643442

RESUMO

BACKGROUND: Lysine [K] methyltransferase 2A (KMT2A, previously known as MLL) gene rearrangements are common in acute leukemias of various lineages and are associated with features such as chemotherapy resistance and rapid relapse. KMT2A::CBL is a rare fusion of unknown pathogenesis generated by a unique interstitial deletion of chromosome 11 that has been reported across a wide age range in both acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) patients. The leukemogenic effect of the KMT2A::CBL rearrangement and its association with clinical prognosis have not been well clarified. METHODS AND RESULTS: We report the case of a 64-year-old female who was diagnosed with acute monoblastic leukemia (M5a) and who acquired the rare KMT2A::CBL fusion. The patient received multiple cycles of therapy but did not achieve remission and eventually succumbed to severe infection and disease progression. Additionally, we characterized the predicted KMT2A-CBL protein structure in this case to reveal the underlying leukemogenic mechanisms and summarized reported cases of hematological malignancies with KMT2A::CBL fusion to investigate the correlation of gene rearrangements with clinical outcomes. CONCLUSIONS: This report provides novel insights into the leukemogenic potential of the KMT2A::CBL rearrangement and the correlation between gene rearrangements and clinical outcomes.


Assuntos
Histona-Lisina N-Metiltransferase , Leucemia Monocítica Aguda , Proteína de Leucina Linfoide-Mieloide , Proteínas Proto-Oncogênicas c-cbl , Feminino , Humanos , Pessoa de Meia-Idade , Progressão da Doença , Rearranjo Gênico/genética , Leucemia Monocítica Aguda/genética , Leucemia Monocítica Aguda/patologia , Histona-Lisina N-Metiltransferase/genética , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas Proto-Oncogênicas c-cbl/genética
11.
Adv Exp Med Biol ; 1441: 505-534, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884729

RESUMO

Ventricular septal defects (VSDs) are recognized as one of the commonest congenital heart diseases (CHD), accounting for up to 40% of all cardiac malformations, and occur as isolated CHDs as well as together with other cardiac and extracardiac congenital malformations in individual patients and families. The genetic etiology of VSD is complex and extraordinarily heterogeneous. Chromosomal abnormalities such as aneuploidy and structural variations as well as rare point mutations in various genes have been reported to be associated with this cardiac defect. This includes both well-defined syndromes with known genetic cause (e.g., DiGeorge syndrome and Holt-Oram syndrome) and so far undefined syndromic forms characterized by unspecific symptoms. Mutations in genes encoding cardiac transcription factors (e.g., NKX2-5 and GATA4) and signaling molecules (e.g., CFC1) have been most frequently found in VSD cases. Moreover, new high-resolution methods such as comparative genomic hybridization enabled the discovery of a high number of different copy number variations, leading to gain or loss of chromosomal regions often containing multiple genes, in patients with VSD. In this chapter, we will describe the broad genetic heterogeneity observed in VSD patients considering recent advances in this field.


Assuntos
Comunicação Interventricular , Humanos , Aberrações Cromossômicas , Variações do Número de Cópias de DNA/genética , Predisposição Genética para Doença/genética , Comunicação Interventricular/genética , Mutação , Fatores de Transcrição/genética
12.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34039707

RESUMO

Specified intestinal epithelial cells reprogram and contribute to the regeneration and renewal of the epithelium upon injury. Mutations that deregulate such renewal processes may contribute to tumorigenesis. Using intestinal organoids, we show that concomitant activation of Notch signaling and ablation of p53 induce a highly proliferative and regenerative cell state, which is associated with increased levels of Yap and the histone methyltransferase Mll1. The induced signaling system orchestrates high proliferation, self-renewal, and niche-factor-independent growth, and elevates the trimethylation of histone 3 at lysine 4 (H3K4me3). We demonstrate that Yap and Mll1 are also elevated in patient-derived colorectal cancer (CRC) organoids and control growth and viability. Our data suggest that Notch activation and p53 ablation induce a signaling circuitry involving Yap and the epigenetic regulator Mll1, which locks cells in a proliferative and regenerative state that renders them susceptible for tumorigenesis.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Histona-Lisina N-Metiltransferase/fisiologia , Proteína de Leucina Linfoide-Mieloide/fisiologia , Receptores Notch/metabolismo , Transdução de Sinais , Fatores de Transcrição/fisiologia , Proteína Supressora de Tumor p53/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Humanos , Mutação , Organoides/metabolismo , Fatores de Transcrição/metabolismo
13.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892207

RESUMO

Pediatric acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) exhibit favorable survival rates. However, for AML and ALL patients carrying KMT2A gene translocations clinical outcome remains unsatisfactory. Key players in KMT2A-fusion-driven leukemogenesis include menin and DOT1L. Recently, menin inhibitors like revumenib have garnered attention for their potential therapeutic efficacy in treating KMT2A-rearranged acute leukemias. However, resistance to menin inhibition poses challenges, and identifying which patients would benefit from revumenib treatment is crucial. Here, we investigated the in vitro response to revumenib in KMT2A-rearranged ALL and AML. While ALL samples show rapid, dose-dependent induction of leukemic cell death, AML responses are much slower and promote myeloid differentiation. Furthermore, we reveal that acquired resistance to revumenib in KMT2A-rearranged ALL cells can occur either through the acquisition of MEN1 mutations or independently of mutations in MEN1. Finally, we demonstrate significant synergy between revumenib and the DOT1L inhibitor pinometostat in KMT2A-rearranged ALL, suggesting that such drug combinations represent a potent therapeutic strategy for these patients. Collectively, our findings underscore the complexity of resistance mechanisms and advocate for precise patient stratification to optimize the use of menin inhibitors in KMT2A-rearranged acute leukemia.


Assuntos
Histona-Lisina N-Metiltransferase , Leucemia Mieloide Aguda , Metiltransferases , Proteína de Leucina Linfoide-Mieloide , Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteínas Proto-Oncogênicas , Humanos , Histona-Lisina N-Metiltransferase/genética , Proteína de Leucina Linfoide-Mieloide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Metiltransferases/antagonistas & inibidores , Metiltransferases/genética , Metiltransferases/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Sinergismo Farmacológico , Rearranjo Gênico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Mutação
14.
Genes Chromosomes Cancer ; 62(11): 633-640, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37246732

RESUMO

Most neoplasia-associated gene fusions are formed through the fusion of the 5'-part of one gene with the 3'-part of another. We here describe a unique mechanism, by which a part of the KMT2A gene through an insertion replaces part of the YAP1 gene. The resulting YAP1::KMT2A::YAP1 (YKY) fusion was verified by RT-PCR in three cases of sarcoma morphologically resembling sclerosing epithelioid fibrosarcoma (SEF-like sarcoma). In all cases, a portion (exons 4/5-6) encoding the CXXC domain of KMT2A was inserted between exon 4/5 and exon 8/9 of YAP1. The inserted sequence from KMT2A thus replaced exons 5/6-8 of YAP1, which encode an important regulatory sequence of YAP1. To evaluate the cellular impact of the YKY fusion, global gene expression profiles from fresh frozen and formalin-fixed YKY-expressing sarcomas were compared with control tumors. The effects of the YKY fusion, as well as YAP1::KMT2A and KMT2A::YAP1 fusion constructs, were further studied in immortalized fibroblasts. Analysis of differentially upregulated genes revealed significant overlap between tumors and cell lines expressing YKY, as well as with previously reported YAP1 fusions. Pathway analysis of upregulated genes in cells and tumors expressing YKY revealed an enrichment of genes included in key oncogenic signaling pathways, such as Wnt and Hedgehog. As these pathways are known to interact with YAP1, it seems likely that the pathogenesis of sarcomas with the YKY fusion is linked to distorted YAP1 signaling.


Assuntos
Fibrossarcoma , Sarcoma , Neoplasias de Tecidos Moles , Humanos , Sarcoma/genética , Sarcoma/metabolismo , Fibrossarcoma/genética , Fusão Gênica , Éxons , Neoplasias de Tecidos Moles/genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo
15.
Genes Chromosomes Cancer ; 62(7): 405-411, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36959690

RESUMO

The recently described KMT2A-rearranged sarcomas are rare emerging entities where the KMT2A gene fuses with YAP1 and, less commonly, VIM, resulting in two distinct morphologies. Unlike the sclerosing epithelioid fibrosarcoma-like features that characterize tumors with KMT2A::YAP1 fusions, VIM::KMT2A-rearranged sarcomas are more uniformly cellular and lack the extensively sclerotic background seen in the former. Most tumors behave aggressively with metastases on presentation. Here, we describe the clinicopathologic and molecular findings in two additional cases of VIM::KMT2A rearranged sarcomas that arose in the deep soft tissues of adult males. Both tumors were composed of hypercellular fascicles of uniform spindle cells with pale eosinophilic cytoplasm and ovoid nuclei. The stroma had scant delicate collagen with occasional thin-walled ectatic blood vessels and perivascular hyalinization. Immunohistochemical studies showed an unspecific staining pattern with diffuse positivity for CD99 and BCL2 and variable staining for S100 protein. RNA-sequencing detected the presence of VIM::KMT2A gene fusion involving VIM exon 4 and KMT2A exon 2 in both cases. Sarcomas with VIM::KMT2A gene fusions seem to have sufficient morphologic features to warrant distinction from KMT2A-rearranged sarcomas with YAP1 partner. Without the benefit of molecular testing, these tumors pose a diagnostic challenge due to their lack of specific immunohistochemical profile and great morphologic overlap with other monomorphic spindle cell neoplasms.


Assuntos
Fibrossarcoma , Sarcoma , Neoplasias de Tecidos Moles , Adulto , Masculino , Humanos , Sarcoma/patologia , Fibrossarcoma/genética , Fusão Gênica , Neoplasias de Tecidos Moles/patologia , Biomarcadores Tumorais/genética , Rearranjo Gênico
16.
Cancer ; 129(12): 1856-1865, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36892949

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) with rearrangement of lysine methyltransferase 2a gene (KMT2Ar) is characterized by chemotherapy resistance and high rates of relapse. However, additional causes of treatment failure or early mortality have not been well-defined in this entity. METHODS: In a retrospective analysis, causes and rates of early mortality following induction treatment were compared between a cohort of adults with KMT2Ar AML (N = 172) and an age-matched cohort of patients with normal karyotype AML (N = 522). RESULTS: The 60-day mortality in patients with KMT2Ar AML was 15% compared with 7% with normal karyotype (p = .04). We found a significantly higher occurrence of major bleeding events (p = .005) and total bleeding events (p = .001) in KMT2Ar AML compared with diploid AML. Among evaluable patients with KMT2Ar AML, 93% exhibited overt disseminated intravascular coagulopathy compared with 54% of patients with a normal karyotype before death (p = .03). In a multivariate analysis, KMT2Ar and a monocytic phenotypic were the only independent predictors of any bleeding event in patients who died within 60 days (odds ratio, 3.5; 95% CI, 1.4-10.4; p = .03; odds ratio, 3.2; 95% CI, 1-1-9.4; p = .04, respectively). CONCLUSION: In conclusion, early recognition and aggressive management of disseminated intravascular coagulopathy and coagulopathy are important considerations that could mitigate the risk of death during induction treatment in KMT2Ar AML. PLAIN LANGUAGE SUMMARY: Acute myeloid leukemia (AML) with rearrangement of KMT2A is characterized by chemotherapy resistance and high rates of relapse. However, additional causes of treatment failure or early mortality have not been well-defined in this entity. In this article, that KMT2A-rearranged AML is demonstrably associated with higher early mortality and an increased risk of bleeding and coagulopathy, specifically, disseminated intravascular coagulation, compared with normal karyotype AML. These findings emphasize the importance of monitoring and mitigating coagulopathy in KMT2A-rearranged leukemia similar to what is done in acute promyelocytic leukemia.


Assuntos
Coagulação Intravascular Disseminada , Leucemia Mieloide Aguda , Adulto , Humanos , Coagulação Intravascular Disseminada/genética , Estudos Retrospectivos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Hemorragia/genética , Recidiva , Rearranjo Gênico
17.
Cancer Immunol Immunother ; 72(4): 957-968, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36214866

RESUMO

CD19-specific chimeric antigen receptor T (CAR T) immunotherapy is used to treat B-cell malignancies. However, antigen-escape mediated relapse following CAR T therapy has emerged as a major concern. In some relapsed cases, especially KMT2A rearrangement-positive B-acute lymphoblastic leukemia (KMT2A-r B-ALL), most of the B-cell antigens are lost via lineage conversion to the myeloid phenotype, rendering multi-B-cell-antigen-targeted CAR T cell therapy ineffective. Fms-related tyrosine kinase-3 (FLT3) is highly expressed in KMT2A-r B-ALL; therefore, in this study, we aimed to evaluate the antitumor efficacy of CAR T cells targeting both CD19 and FLT3 in KMT2A-r B-ALL cells. We developed piggyBac transposon-mediated CAR T cells targeting CD19, FLT3, or both (dual) and generated CD19-negative KMT2A-r B-ALL models through CRISPR-induced CD19 gene-knockout (KO). FLT3 CAR T cells showed antitumor efficacy against CD19-KO KMT2A-r B-ALL cells both in vitro and in vivo; dual-targeted CAR T cells showed cytotoxicity against wild-type (WT) and CD19-KO KMT2A-r B-ALL cells, whereas CD19 CAR T cells demonstrated cytotoxicity only against WT KMT2A-r B-ALL cells in vitro. Therefore, targeting FLT3-specific CAR T cells would be a promising strategy for KMT2A-r B-ALL cells even with CD19-negative relapsed cases.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Antígenos Quiméricos , Humanos , Antígenos CD19/genética , Tirosina Quinase 3 Semelhante a fms/genética , Imunoterapia , Imunoterapia Adotiva , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos Quiméricos/genética , Linfócitos T , Proteína de Leucina Linfoide-Mieloide/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo
18.
Am J Med Genet A ; 191(10): 2591-2601, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37470210

RESUMO

The aim of this study was to provide a descriptive overview of the social characteristics associated with Wiedemann-Steiner syndrome (WSS). A total of 24 parents of children/adults with WSS (11F, mean age = 12.94 years, SD = 8.00) completed the Social Responsiveness Scale 2nd Edition (SRS-2); Colorado Learning Difficulties Questionnaire (CLDQ) and Strengths and Difficulties Questionnaire (SDQ). Almost half our sample reported a diagnosis of autism spectrum disorder (ASD) and 70% had intellectual disability. On the SDQ, over 90% of participants were rated in borderline/clinical ranges in Peer Problems, yet the majority fell within normal limits in Prosocial Behaviors. Most fell in the moderate/severe difficulties ranges across SRS-2 Social Cognition, Communication, and Restricted/Repetitive Behaviors scales (all >70%); whereas substantially less participants met these ranges for deficits in Social Awareness (50%) and Social Motivation (33.33%). A pattern of relatively strong prosocial skills and social drive in the context of difficulties with inflexible behaviors, social cognition, and communication was observed, regardless of gender, ASD or intellectual disability diagnosis. The social phenotype associated with WSS is characterized by some autistic features paired with unusually high social motivation and prosocial tendencies.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Deficiência Intelectual , Criança , Adulto , Humanos , Adolescente , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/epidemiologia , Deficiência Intelectual/complicações , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/epidemiologia , Transtorno do Espectro Autista/complicações , Fenótipo
19.
Am J Med Genet A ; 191(2): 437-444, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36373844

RESUMO

This study examined anxiety in Wiedemann-Steiner syndrome (WSS). Eighteen caregivers and participants with WSS completed the parent- and self-report versions of the Screen for Child Anxiety Related Disorder or the adapted version of the Screen for Adult Anxiety Related Disorder. Approximately 33.33% of parents and 65% of participants with WSS rated in the clinical range for overall anxiety. Across anxiety subtypes, parents primarily indicated concerns with Separation Anxiety (72%), which was also endorsed by the majority of participants with WSS (82%). The emergent trend showed Total Anxiety increased with age based on parent-informant ratings. The behavioral phenotype of WSS includes elevated anxiety. Clinical management should include incorporating early behavioral interventions to bolster emotion regulation given the observed risk of anxiety with age.


Assuntos
Anormalidades Múltiplas , Deficiência Intelectual , Humanos , Deficiência Intelectual/genética , Anormalidades Múltiplas/genética , Ansiedade
20.
Pediatr Blood Cancer ; 70(4): e30204, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36715125

RESUMO

The aim of this study was to present the diagnostic and outcome characteristics of infants with germline status of KMT2A gene (KMT2A-g) B-cell precursor acute lymphoblastic leukemia (BCP-ALL) treated consistently according to the MLL-Baby protocol, a moderate-intensity protocol. Of the 139 patients enrolled in the MLL-Baby study, 100 (71.9%) carried different types of rearranged KMT2A (KMT2A-r), while the remaining 39 infants (28.1%) had KMT2A-g. KMT2A-g patients were generally older (77% older than 6 months), less likely to have a very high white blood cell count (greater than 100 × 109 /L), less likely to be central nervous system (CNS)-positive, and more likely to be CD10-positive. The 6-year event-free survival and overall survival rates for all 39 patients were 0.74 (standard error [SE] 0.07) and 0.80 (SE 0.07), respectively. Relapse was the most common adverse event (n = 5), with a cumulative incidence of relapse (CIR) of 0.13 (SE 0.06), while the incidence of a second malignancy (n = 1) and death in remission (n = 3) was 0.03 (SE 0.04) and 0.08 (SE 0.04), respectively. None of the initial parameters, including genetics and the presence of recently described fusions of NUTM1 and PAX5 genes, was able to distinguish patients with different outcomes. Only rapidity of response, measured as minimal residual disease (MRD) by flow cytometry, showed a statistically significant impact. Moderate-intensity therapy, as used in the MLL-Baby protocol in infants with KMT2A-g BCP-ALL, yields results comparable to other infant studies. Patients with a slow multicolor flow cytometry (MFC)-MRD response should be subjected to advanced therapies, such as targeted or immunotherapies.


Assuntos
Linfoma de Burkitt , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Lactente , Rearranjo Gênico , Resultado do Tratamento , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Proteína de Leucina Linfoide-Mieloide/genética , Recidiva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA