Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.812
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 184(14): 3689-3701.e22, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34139175

RESUMO

The cholesterol-sensing protein Scap induces cholesterol synthesis by transporting membrane-bound transcription factors called sterol regulatory element-binding proteins (SREBPs) from the endoplasmic reticulum (ER) to the Golgi apparatus for proteolytic activation. Transport requires interaction between Scap's two ER luminal loops (L1 and L7), which flank an intramembrane sterol-sensing domain (SSD). Cholesterol inhibits Scap transport by binding to L1, which triggers Scap's binding to Insig, an ER retention protein. Here we used cryoelectron microscopy (cryo-EM) to elucidate two structures of full-length chicken Scap: (1) a wild-type free of Insigs and (2) mutant Scap bound to chicken Insig without cholesterol. Strikingly, L1 and L7 intertwine tightly to form a globular domain that acts as a luminal platform connecting the SSD to the rest of Scap. In the presence of Insig, this platform undergoes a large rotation accompanied by rearrangement of Scap's transmembrane helices. We postulate that this conformational change halts Scap transport of SREBPs and inhibits cholesterol synthesis.


Assuntos
Colesterol/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos/metabolismo , Galinhas , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana/ultraestrutura , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
2.
Cell ; 179(1): 236-250.e18, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31495571

RESUMO

Immunotherapy has revolutionized cancer treatment, yet most patients do not respond. Here, we investigated mechanisms of response by profiling the proteome of clinical samples from advanced stage melanoma patients undergoing either tumor infiltrating lymphocyte (TIL)-based or anti- programmed death 1 (PD1) immunotherapy. Using high-resolution mass spectrometry, we quantified over 10,300 proteins in total and ∼4,500 proteins across most samples in each dataset. Statistical analyses revealed higher oxidative phosphorylation and lipid metabolism in responders than in non-responders in both treatments. To elucidate the effects of the metabolic state on the immune response, we examined melanoma cells upon metabolic perturbations or CRISPR-Cas9 knockouts. These experiments indicated lipid metabolism as a regulatory mechanism that increases melanoma immunogenicity by elevating antigen presentation, thereby increasing sensitivity to T cell mediated killing both in vitro and in vivo. Altogether, our proteomic analyses revealed association between the melanoma metabolic state and the response to immunotherapy, which can be the basis for future improvement of therapeutic response.


Assuntos
Imunoterapia/métodos , Melanoma/metabolismo , Melanoma/terapia , Mitocôndrias/metabolismo , Proteômica/métodos , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/terapia , Transferência Adotiva/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Estudos de Coortes , Feminino , Humanos , Metabolismo dos Lipídeos/imunologia , Linfócitos do Interstício Tumoral/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Linfócitos T/imunologia , Resultado do Tratamento , Adulto Jovem
3.
Cell ; 174(3): 700-715.e18, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-29937227

RESUMO

The inner nuclear membrane (INM) encases the genome and is fused with the outer nuclear membrane (ONM) to form the nuclear envelope. The ONM is contiguous with the endoplasmic reticulum (ER), the main site of phospholipid synthesis. In contrast to the ER and ONM, evidence for a metabolic activity of the INM has been lacking. Here, we show that the INM is an adaptable membrane territory capable of lipid metabolism. S. cerevisiae cells target enzymes to the INM that can promote lipid storage. Lipid storage involves the synthesis of nuclear lipid droplets from the INM and is characterized by lipid exchange through Seipin-dependent membrane bridges. We identify the genetic circuit for nuclear lipid droplet synthesis and a role of these organelles in regulating this circuit by sequestration of a transcription factor. Our findings suggest a link between INM metabolism and genome regulation and have potential relevance for human lipodystrophy.


Assuntos
Gotículas Lipídicas/metabolismo , Lipídeos de Membrana/metabolismo , Membrana Nuclear/metabolismo , Núcleo Celular , Diglicerídeos/metabolismo , Retículo Endoplasmático , Gotículas Lipídicas/fisiologia , Metabolismo dos Lipídeos/fisiologia , Lipídeos , Proteínas de Membrana , Ácidos Fosfatídicos/metabolismo , Saccharomyces cerevisiae/metabolismo
4.
Annu Rev Cell Dev Biol ; 35: 85-109, 2019 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-31590585

RESUMO

Phospholipids are synthesized primarily within the endoplasmic reticulum and are subsequently distributed to various subcellular membranes to maintain the unique lipid composition of specific organelles. As a result, in most cases, the steady-state localization of membrane phospholipids does not match their site of synthesis. This raises the question of how diverse lipid species reach their final membrane destinations and what molecular processes provide the energy to maintain the lipid gradients that exist between various membrane compartments. Recent studies have highlighted the role of inositol phospholipids in the nonvesicular transport of lipids at membrane contact sites. This review attempts to summarize our current understanding of these complex lipid dynamics and highlights their implications for defining future research directions.


Assuntos
Transporte Biológico , Retículo Endoplasmático/metabolismo , Metabolismo dos Lipídeos , Animais , Humanos , Lipídeos/biossíntese , Lipídeos/química , Organelas/química , Organelas/metabolismo
5.
Immunity ; 56(11): 2492-2507.e10, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37890481

RESUMO

Lipid metabolism has been associated with the cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS) stimulator of interferon genes (STING) DNA-sensing pathway, but our understanding of how these signals are integrated into a cohesive immunometabolic program is lacking. Here, we have identified liver X receptor (LXR) agonists as potent inhibitors of STING signaling. We show that stimulation of lipid metabolism by LXR agonists specifically suppressed cyclic GMP-AMP (cGAMP)-STING signaling. Moreover, we developed cyclic dinucleotide-conjugated beads to biochemically isolate host effectors for cGAMP inhibition, and we found that LXR ligands stimulated the expression of sphingomyelin phosphodiesterase acid-like 3A (SMPDL3A), which is a 2'3'-cGAMP-degrading enzyme. Results of crystal structures suggest that cGAMP analog induces dimerization of SMPDL3A, and the dimerization is critical for cGAMP degradation. Additionally, we have provided evidence that SMPDL3A cleaves cGAMP to restrict STING signaling in cell culture and mouse models. Our results reveal SMPDL3A as a cGAMP-specific nuclease and demonstrate a mechanism for how LXR-associated lipid metabolism modulates STING-mediated innate immunity.


Assuntos
Metabolismo dos Lipídeos , Nucleotidiltransferases , Animais , Camundongos , Receptores X do Fígado/metabolismo , Nucleotidiltransferases/metabolismo , DNA , Nucleotídeos Cíclicos/metabolismo , Imunidade Inata
6.
Cell ; 170(1): 199-212.e20, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28666119

RESUMO

Type 2 diabetes (T2D) affects Latinos at twice the rate seen in populations of European descent. We recently identified a risk haplotype spanning SLC16A11 that explains ∼20% of the increased T2D prevalence in Mexico. Here, through genetic fine-mapping, we define a set of tightly linked variants likely to contain the causal allele(s). We show that variants on the T2D-associated haplotype have two distinct effects: (1) decreasing SLC16A11 expression in liver and (2) disrupting a key interaction with basigin, thereby reducing cell-surface localization. Both independent mechanisms reduce SLC16A11 function and suggest SLC16A11 is the causal gene at this locus. To gain insight into how SLC16A11 disruption impacts T2D risk, we demonstrate that SLC16A11 is a proton-coupled monocarboxylate transporter and that genetic perturbation of SLC16A11 induces changes in fatty acid and lipid metabolism that are associated with increased T2D risk. Our findings suggest that increasing SLC16A11 function could be therapeutically beneficial for T2D. VIDEO ABSTRACT.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Basigina/metabolismo , Membrana Celular/metabolismo , Cromossomos Humanos Par 17/metabolismo , Técnicas de Silenciamento de Genes , Haplótipos , Hepatócitos/metabolismo , Heterozigoto , Código das Histonas , Humanos , Fígado/metabolismo , Modelos Moleculares , Transportadores de Ácidos Monocarboxílicos/química
7.
Physiol Rev ; 104(2): 727-764, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37882731

RESUMO

The multifunctional membrane glycoprotein CD36 is expressed in different types of cells and plays a key regulatory role in cellular lipid metabolism, especially in cardiac muscle. CD36 facilitates the cellular uptake of long-chain fatty acids, mediates lipid signaling, and regulates storage and oxidation of lipids in various tissues with active lipid metabolism. CD36 deficiency leads to marked impairments in peripheral lipid metabolism, which consequently impact on the cellular utilization of multiple different fuels because of the integrated nature of metabolism. The functional presence of CD36 at the plasma membrane is regulated by its reversible subcellular recycling from and to endosomes and is under the control of mechanical, hormonal, and nutritional factors. Aberrations in this dynamic role of CD36 are causally associated with various metabolic diseases, in particular insulin resistance, diabetic cardiomyopathy, and cardiac hypertrophy. Recent research in cardiac muscle has disclosed the endosomal proton pump vacuolar-type H+-ATPase (v-ATPase) as a key enzyme regulating subcellular CD36 recycling and being the site of interaction between various substrates to determine cellular substrate preference. In addition, evidence is accumulating that interventions targeting CD36 directly or modulating its subcellular recycling are effective for the treatment of metabolic diseases. In conclusion, subcellular CD36 localization is the major adaptive regulator of cellular uptake and metabolism of long-chain fatty acids and appears a suitable target for metabolic modulation therapy to mend failing hearts.


Assuntos
Resistência à Insulina , Metabolismo dos Lipídeos , Humanos , Miocárdio/metabolismo , Coração , Ácidos Graxos/metabolismo , Antígenos CD36/metabolismo
8.
Mol Cell ; 83(16): 3010-3026.e8, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37595559

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth that stimulates macromolecule synthesis through transcription, RNA processing, and post-translational modification of metabolic enzymes. However, the mechanisms of how mTORC1 orchestrates multiple steps of gene expression programs remain unclear. Here, we identify family with sequence similarity 120A (FAM120A) as a transcription co-activator that couples transcription and splicing of de novo lipid synthesis enzymes downstream of mTORC1-serine/arginine-rich protein kinase 2 (SRPK2) signaling. The mTORC1-activated SRPK2 phosphorylates splicing factor serine/arginine-rich splicing factor 1 (SRSF1), enhancing its binding to FAM120A. FAM120A directly interacts with a lipogenic transcription factor SREBP1 at active promoters, thereby bridging the newly transcribed lipogenic genes from RNA polymerase II to the SRSF1 and U1-70K-containing RNA-splicing machinery. This mTORC1-regulated, multi-protein complex promotes efficient splicing and stability of lipogenic transcripts, resulting in fatty acid synthesis and cancer cell proliferation. These results elucidate FAM120A as a critical transcription co-factor that connects mTORC1-dependent gene regulation programs for anabolic cell growth.


Assuntos
Arginina , Lipogênese , Proteína de Ligação a Elemento Regulador de Esterol 1 , Lipogênese/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Fatores de Processamento de RNA , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Humanos , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo
9.
Mol Cell ; 82(12): 2215-2227, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35390277

RESUMO

Ferroptosis, a newly emerged form of regulated necrotic cell death, has been demonstrated to play an important role in multiple diseases including cancer, neurodegeneration, and ischemic organ injury. Mounting evidence also suggests its potential physiological function in tumor suppression and immunity. The execution of ferroptosis is driven by iron-dependent phospholipid peroxidation. As such, the metabolism of biological lipids regulates ferroptosis via controlling phospholipid peroxidation, as well as various other cellular processes relevant to phospholipid peroxidation. In this review, we provide a comprehensive analysis by focusing on how lipid metabolism impacts the initiation, propagation, and termination of phospholipid peroxidation; how multiple signal transduction pathways communicate with ferroptosis via modulating lipid metabolism; and how such intimate cross talk of ferroptosis with lipid metabolism and related signaling pathways can be exploited for the development of rational therapeutic strategies.


Assuntos
Ferroptose , Ferroptose/genética , Ferro/metabolismo , Metabolismo dos Lipídeos , Peroxidação de Lipídeos , Fosfolipídeos
10.
Genes Dev ; 36(21-24): 1129-1144, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36522129

RESUMO

GATA4 is a transcription factor known for its crucial role in the development of many tissues, including the liver; however, its role in adult liver metabolism is unknown. Here, using high-throughput sequencing technologies, we identified GATA4 as a transcriptional regulator of metabolism in the liver. GATA4 expression is elevated in response to refeeding, and its occupancy is increased at enhancers of genes linked to fatty acid and lipoprotein metabolism. Knocking out GATA4 in the adult liver (Gata4LKO) decreased transcriptional activity at GATA4 binding sites, especially during feeding. Gata4LKO mice have reduced plasma HDL cholesterol and increased liver triglyceride levels. The expression of a panel of GATA4 binding genes involved in hepatic cholesterol export and triglyceride hydrolysis was down-regulated in Gata4LKO mice. We further demonstrate that GATA4 collaborates with LXR nuclear receptors in the liver. GATA4 and LXRs share a number of binding sites, and GATA4 was required for the full transcriptional response to LXR activation. Collectively, these results show that hepatic GATA4 contributes to the transcriptional control of hepatic and systemic lipid homeostasis.


Assuntos
Fígado , Receptores Nucleares Órfãos , Camundongos , Animais , Receptores Nucleares Órfãos/metabolismo , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Fígado/metabolismo , Homeostase/genética , Colesterol , Triglicerídeos/metabolismo , Metabolismo dos Lipídeos , Camundongos Endogâmicos C57BL , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo
11.
Mol Cell ; 81(18): 3708-3730, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34547235

RESUMO

Lipids play crucial roles in signal transduction, contribute to the structural integrity of cellular membranes, and regulate energy metabolism. Questions remain as to which lipid species maintain metabolic homeostasis and which disrupt essential cellular functions, leading to metabolic disorders. Here, we discuss recent advances in understanding lipid metabolism with a focus on catabolism, synthesis, and signaling. Technical advances, including functional genomics, metabolomics, lipidomics, lipid-protein interaction maps, and advances in mass spectrometry, have uncovered new ways to prioritize molecular mechanisms mediating lipid function. By reviewing what is known about the distinct effects of specific lipid species in physiological pathways, we provide a framework for understanding newly identified targets regulating lipid homeostasis with implications for ameliorating metabolic diseases.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Doenças Metabólicas/metabolismo , Transdução de Sinais/fisiologia , Animais , Cromatina/metabolismo , Doença , Metabolismo Energético/fisiologia , Saúde , Homeostase/fisiologia , Humanos , Imunidade/fisiologia , Lipidômica/métodos , Lipídeos/fisiologia , Doenças Metabólicas/fisiopatologia , Metabolômica/métodos , Microbiota/fisiologia
12.
Genes Dev ; 35(7-8): 449-469, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33861720

RESUMO

Our cells are comprised of billions of proteins, lipids, and other small molecules packed into their respective subcellular organelles, with the daunting task of maintaining cellular homeostasis over a lifetime. However, it is becoming increasingly evident that organelles do not act as autonomous discrete units but rather as interconnected hubs that engage in extensive communication through membrane contacts. In the last few years, our understanding of how these contacts coordinate organelle function has redefined our view of the cell. This review aims to present novel findings on the cellular interorganelle communication network and how its dysfunction may contribute to aging and neurodegeneration. The consequences of disturbed interorganellar communication are intimately linked with age-related pathologies. Given that both aging and neurodegenerative diseases are characterized by the concomitant failure of multiple cellular pathways, coordination of organelle communication and function could represent an emerging regulatory mechanism critical for long-term cellular homeostasis. We anticipate that defining the relationships between interorganelle communication, aging, and neurodegeneration will open new avenues for therapeutics.


Assuntos
Senescência Celular , Doenças Neurodegenerativas/fisiopatologia , Organelas/patologia , Animais , Humanos , Doenças Neurodegenerativas/terapia , Organelas/fisiologia , Transdução de Sinais
13.
Physiol Rev ; 101(3): 1371-1426, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33599151

RESUMO

Cells metabolize nutrients for biosynthetic and bioenergetic needs to fuel growth and proliferation. The uptake of nutrients from the environment and their intracellular metabolism is a highly controlled process that involves cross talk between growth signaling and metabolic pathways. Despite constant fluctuations in nutrient availability and environmental signals, normal cells restore metabolic homeostasis to maintain cellular functions and prevent disease. A central signaling molecule that integrates growth with metabolism is the mechanistic target of rapamycin (mTOR). mTOR is a protein kinase that responds to levels of nutrients and growth signals. mTOR forms two protein complexes, mTORC1, which is sensitive to rapamycin, and mTORC2, which is not directly inhibited by this drug. Rapamycin has facilitated the discovery of the various functions of mTORC1 in metabolism. Genetic models that disrupt either mTORC1 or mTORC2 have expanded our knowledge of their cellular, tissue, as well as systemic functions in metabolism. Nevertheless, our knowledge of the regulation and functions of mTORC2, particularly in metabolism, has lagged behind. Since mTOR is an important target for cancer, aging, and other metabolism-related pathologies, understanding the distinct and overlapping regulation and functions of the two mTOR complexes is vital for the development of more effective therapeutic strategies. This review discusses the key discoveries and recent findings on the regulation and metabolic functions of the mTOR complexes. We highlight findings from cancer models but also discuss other examples of the mTOR-mediated metabolic reprogramming occurring in stem and immune cells, type 2 diabetes/obesity, neurodegenerative disorders, and aging.


Assuntos
Glicólise/fisiologia , Metabolismo dos Lipídeos/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Animais , Humanos , Transdução de Sinais/fisiologia
14.
EMBO J ; 43(7): 1187-1213, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38383863

RESUMO

Histone modifications commonly integrate environmental cues with cellular metabolic outputs by affecting gene expression. However, chromatin modifications such as acetylation do not always correlate with transcription, pointing towards an alternative role of histone modifications in cellular metabolism. Using an approach that integrates mass spectrometry-based histone modification mapping and metabolomics with stable isotope tracers, we demonstrate that elevated lipids in acetyltransferase-depleted hepatocytes result from carbon atoms derived from deacetylation of hyperacetylated histone H4 flowing towards fatty acids. Consistently, enhanced lipid synthesis in acetyltransferase-depleted hepatocytes is dependent on histone deacetylases and acetyl-CoA synthetase ACSS2, but not on the substrate specificity of the acetyltransferases. Furthermore, we show that during diet-induced lipid synthesis the levels of hyperacetylated histone H4 decrease in hepatocytes and in mouse liver. In addition, overexpression of acetyltransferases can reverse diet-induced lipogenesis by blocking lipid droplet accumulation and maintaining the levels of hyperacetylated histone H4. Overall, these findings highlight hyperacetylated histones as a metabolite reservoir that can directly contribute carbon to lipid synthesis, constituting a novel function of chromatin in cellular metabolism.


Assuntos
Carbono , Histonas , Animais , Camundongos , Histonas/metabolismo , Carbono/metabolismo , Lipogênese , Cromatina , Acetiltransferases/metabolismo , Lipídeos , Acetilação , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo
15.
Immunity ; 50(2): 446-461.e9, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30709742

RESUMO

Production of interleukin-17 (IL-17) and IL-22 by T helper 17 (Th17) cells and group 3 innate lymphoid cells (ILC3s) in response to the gut microbiota ensures maintenance of intestinal barrier function. Here, we examined the mechanisms whereby the immune system detects microbiota in the steady state. A Syk-kinase-coupled signaling pathway in dendritic cells (DCs) was critical for commensal-dependent production of IL-17 and IL-22 by CD4+ T cells. The Syk-coupled C-type lectin receptor Mincle detected mucosal-resident commensals in the Peyer's patches (PPs), triggered IL-6 and IL-23p19 expression, and thereby regulated function of intestinal Th17- and IL-17-secreting ILCs. Mice deficient in Mincle or with selective depletion of Syk in CD11c+ cells had impaired production of intestinal RegIIIγ and IgA and increased systemic translocation of gut microbiota. Consequently, Mincle deficiency led to liver inflammation and deregulated lipid metabolism. Thus, sensing of commensals by Mincle and Syk signaling in CD11c+ cells reinforces intestinal immune barrier and promotes host-microbiota mutualism, preventing systemic inflammation.


Assuntos
Células Dendríticas/imunologia , Microbioma Gastrointestinal/imunologia , Interleucina-17/imunologia , Interleucinas/imunologia , Lectinas Tipo C/imunologia , Proteínas de Membrana/imunologia , Quinase Syk/imunologia , Animais , Células Dendríticas/metabolismo , Microbioma Gastrointestinal/fisiologia , Humanos , Interleucina-17/metabolismo , Interleucinas/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/metabolismo , Nódulos Linfáticos Agregados/microbiologia , Transdução de Sinais/imunologia , Quinase Syk/genética , Quinase Syk/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Interleucina 22
16.
Mol Cell ; 79(1): 30-42.e4, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32473093

RESUMO

Autophagy is activated by prolonged fasting but cannot overcome the ensuing hepatic lipid overload, resulting in fatty liver. Here, we describe a peroxisome-lysosome metabolic link that restricts autophagic degradation of lipids. Acyl-CoA oxidase 1 (Acox1), the enzyme that catalyzes the first step in peroxisomal ß-oxidation, is enriched in liver and further increases with fasting or high-fat diet (HFD). Liver-specific Acox1 knockout (Acox1-LKO) protected mice against hepatic steatosis caused by starvation or HFD due to induction of autophagic degradation of lipid droplets. Hepatic Acox1 deficiency markedly lowered total cytosolic acetyl-CoA levels, which led to decreased Raptor acetylation and reduced lysosomal localization of mTOR, resulting in impaired activation of mTORC1, a central regulator of autophagy. Dichloroacetic acid treatment elevated acetyl-CoA levels, restored mTORC1 activation, inhibited autophagy, and increased hepatic triglycerides in Acox1-LKO mice. These results identify peroxisome-derived acetyl-CoA as a key metabolic regulator of autophagy that controls hepatic lipid homeostasis.


Assuntos
Acetilcoenzima A/metabolismo , Acil-CoA Oxidase/fisiologia , Autofagia , Ácidos Graxos/química , Fígado Gorduroso/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Peroxissomos/química , Acetilação , Animais , Proteína 5 Relacionada à Autofagia/fisiologia , Dieta Hiperlipídica/efeitos adversos , Jejum , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Feminino , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Oxirredução , Peroxissomos/metabolismo , Proteína Regulatória Associada a mTOR/genética , Proteína Regulatória Associada a mTOR/metabolismo
17.
Genes Dev ; 34(11-12): 751-766, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32273287

RESUMO

Human cancers with activating RAS mutations are typically highly aggressive and treatment-refractory, yet RAS mutation itself is insufficient for tumorigenesis, due in part to profound metabolic stress induced by RAS activation. Here we show that loss of REDD1, a stress-induced metabolic regulator, is sufficient to reprogram lipid metabolism and drive progression of RAS mutant cancers. Redd1 deletion in genetically engineered mouse models (GEMMs) of KRAS-dependent pancreatic and lung adenocarcinomas converts preneoplastic lesions into invasive and metastatic carcinomas. Metabolic profiling reveals that REDD1-deficient/RAS mutant cells exhibit enhanced uptake of lysophospholipids and lipid storage, coupled to augmented fatty acid oxidation that sustains both ATP levels and ROS-detoxifying NADPH. Mechanistically, REDD1 loss triggers HIF-dependent activation of a lipid storage pathway involving PPARγ and the prometastatic factor CD36. Correspondingly, decreased REDD1 expression and a signature of REDD1 loss predict poor outcomes selectively in RAS mutant but not RAS wild-type human lung and pancreas carcinomas. Collectively, our findings reveal the REDD1-mediated stress response as a novel tumor suppressor whose loss defines a RAS mutant tumor subset characterized by reprogramming of lipid metabolism, invasive and metastatic progression, and poor prognosis. This work thus provides new mechanistic and clinically relevant insights into the phenotypic heterogeneity and metabolic rewiring that underlies these common cancers.


Assuntos
Metabolismo dos Lipídeos/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas ras/genética , Animais , Linhagem Celular Tumoral , Progressão da Doença , Ácidos Graxos/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos SCID , Mutação , Oxirredução
18.
Genes Dev ; 34(7-8): 526-543, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32079652

RESUMO

MDM2 and MDMX, negative regulators of the tumor suppressor p53, can work separately and as a heteromeric complex to restrain p53's functions. MDM2 also has pro-oncogenic roles in cells, tissues, and animals that are independent of p53. There is less information available about p53-independent roles of MDMX or the MDM2-MDMX complex. We found that MDM2 and MDMX facilitate ferroptosis in cells with or without p53. Using small molecules, RNA interference reagents, and mutant forms of MDMX, we found that MDM2 and MDMX, likely working in part as a complex, normally facilitate ferroptotic death. We observed that MDM2 and MDMX alter the lipid profile of cells to favor ferroptosis. Inhibition of MDM2 or MDMX leads to increased levels of FSP1 protein and a consequent increase in the levels of coenzyme Q10, an endogenous lipophilic antioxidant. This suggests that MDM2 and MDMX normally prevent cells from mounting an adequate defense against lipid peroxidation and thereby promote ferroptosis. Moreover, we found that PPARα activity is essential for MDM2 and MDMX to promote ferroptosis, suggesting that the MDM2-MDMX complex regulates lipids through altering PPARα activity. These findings reveal the complexity of cellular responses to MDM2 and MDMX and suggest that MDM2-MDMX inhibition might be useful for preventing degenerative diseases involving ferroptosis. Furthermore, they suggest that MDM2/MDMX amplification may predict sensitivity of some cancers to ferroptosis inducers.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ferroptose/genética , Metabolismo dos Lipídeos/genética , PPAR alfa/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Proteínas de Ciclo Celular/genética , Glioblastoma/fisiopatologia , Células HCT116 , Humanos , Mutação , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/genética , Interferência de RNA , Ratos , Proteína Supressora de Tumor p53/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo
19.
Mol Cell ; 73(4): 788-802.e7, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30704899

RESUMO

mTORC1 and GSK3 play critical roles in early stages of (macro)autophagy, but how they regulate late steps of autophagy remains poorly understood. Here we show that mTORC1 and GSK3-TIP60 signaling converge to modulate autophagosome maturation through Pacer, an autophagy regulator that was identified in our recent study. Hepatocyte-specific Pacer knockout in mice results in impaired autophagy flux, glycogen and lipid accumulation, and liver fibrosis. Under nutrient-rich conditions, mTORC1 phosphorylates Pacer at serine157 to disrupt the association of Pacer with Stx17 and the HOPS complex and thus abolishes Pacer-mediated autophagosome maturation. Importantly, dephosphorylation of Pacer under nutrient-deprived conditions promotes TIP60-mediated Pacer acetylation, which facilitates HOPS complex recruitment and is required for autophagosome maturation and lipid droplet clearance. This work not only identifies Pacer as a regulator in hepatic autophagy and liver homeostasis in vivo but also reveals a signal integration mechanism involved in late stages of autophagy and lipid metabolism.


Assuntos
Autofagossomos/enzimologia , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Quinase 3 da Glicogênio Sintase/metabolismo , Metabolismo dos Lipídeos , Fígado/enzimologia , Lisina Acetiltransferase 5/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Transativadores/metabolismo , Acetilação , Animais , Autofagossomos/patologia , Proteínas Relacionadas à Autofagia/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Quinase 3 da Glicogênio Sintase/genética , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Gotículas Lipídicas/metabolismo , Fígado/patologia , Lisina Acetiltransferase 5/genética , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Proteínas de Membrana , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a Fosfato/genética , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Transdução de Sinais , Transativadores/genética , Proteínas Supressoras de Tumor
20.
Mol Cell ; 76(4): 531-545.e5, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31706703

RESUMO

The glucocorticoid receptor (GR) is a potent metabolic regulator and a major drug target. While GR is known to play integral roles in circadian biology, its rhythmic genomic actions have never been characterized. Here we mapped GR's chromatin occupancy in mouse livers throughout the day and night cycle. We show how GR partitions metabolic processes by time-dependent target gene regulation and controls circulating glucose and triglycerides differentially during feeding and fasting. Highlighting the dominant role GR plays in synchronizing circadian amplitudes, we find that the majority of oscillating genes are bound by and depend on GR. This rhythmic pattern is altered by high-fat diet in a ligand-independent manner. We find that the remodeling of oscillatory gene expression and postprandial GR binding results from a concomitant increase of STAT5 co-occupancy in obese mice. Altogether, our findings highlight GR's fundamental role in the rhythmic orchestration of hepatic metabolism.


Assuntos
Cromatina/metabolismo , Relógios Circadianos , Ritmo Circadiano , Dieta Hiperlipídica , Gorduras na Dieta/metabolismo , Metabolismo Energético , Fígado/metabolismo , Obesidade/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Glicemia/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/sangue , Modelos Animais de Doenças , Metabolismo Energético/genética , Jejum/metabolismo , Regulação da Expressão Gênica , Glucocorticoides/metabolismo , Gluconeogênese , Ligantes , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/sangue , Obesidade/genética , PPAR alfa/genética , PPAR alfa/metabolismo , Período Pós-Prandial , Receptores de Glucocorticoides/deficiência , Receptores de Glucocorticoides/genética , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Via Secretória , Transdução de Sinais , Fatores de Tempo , Transcrição Gênica , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA