Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microb Pathog ; 112: 148-155, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28916316

RESUMO

Brucellosis is a globally distributed zoonotic disease that causes animal and human diseases. Although effective, the current Brucella vaccines (strain M5-90 or others) have several drawbacks. The first is their residual virulence for animals and humans and the second is their inability to differentiate natural infection from that caused by vaccination. In the present study, Brucella melitensis M5-90 manB mutant (M5-90ΔmanB) was generated to overcome these drawbacks. M5-90ΔmanB showed significantly reduced survival in macrophages and mice, and induced strong protective immunity in BALB/c mice. It elicited anti-Brucella-specific IgG1 and IgG2a subtype responses and induced the secretion of gamma interferon (IFN-γ) and interleukin-4(IL-4). Results of immune assays showed, M5-90ΔmanB immunization induced the secretion of IFN-γ in goats, and serum samples from goats inoculated with M5-90ΔmanB were negative by Bengal Plate Test (RBPT) and Standard Tube Agglutination Test (STAT). Further, the ManB antigen also allows serological assays differentiate infections caused by wild strains from infections by vaccination. These results show that M5-90ΔmanB is a suitable attenuated vaccine candidate against virulent Brucella melitensis 16 M (16 M) infection.


Assuntos
Vacina contra Brucelose/imunologia , Brucella melitensis/imunologia , Brucelose/imunologia , Brucelose/prevenção & controle , Imunização , Vacinas Atenuadas/imunologia , Animais , Anticorpos Antibacterianos/sangue , Proteínas de Bactérias/sangue , Proteínas de Bactérias/imunologia , Sequência de Bases , Vacina contra Brucelose/genética , Brucella melitensis/enzimologia , Brucella melitensis/genética , Brucella melitensis/crescimento & desenvolvimento , Brucelose/microbiologia , DNA Bacteriano/genética , Modelos Animais de Doenças , Feminino , Deleção de Genes , Imunoglobulina G/sangue , Interferon gama/metabolismo , Interleucina-4/metabolismo , Macrófagos/imunologia , Macrófagos/microbiologia , Manose-6-Fosfato Isomerase/sangue , Manose-6-Fosfato Isomerase/imunologia , Camundongos Endogâmicos BALB C , Complexos Multienzimáticos/sangue , Complexos Multienzimáticos/imunologia , Nucleotidiltransferases/sangue , Nucleotidiltransferases/imunologia , Vacinação , Vacinas Atenuadas/genética
2.
Molecules ; 21(12)2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27941630

RESUMO

A new pair of plladium complexes (Pd4 and Pd5) ligated with constrained N-(5,6,7-trihydroquinolin-8-ylidene)arylamine ligands have been prepared and well characterized by ¹H-, 13C-NMR and FTIR spectroscopies as well as elemental analysis. The molecular structure of Pd4 and Pd5 in solid state have also been determined by X-ray diffraction, showing slightly distorted square planar geometry around the palladium metal center. All complexes Pd1-Pd5 are revealed highly efficient catalyst in methyl acrylate (MA) polymerization as well as methyl acrylate/norbornene (MA/NB) copolymerization. In the case of MA polymerization, as high as 98.4% conversion with high molecular weight up to 6282 kg·mol-1 was achieved. Likewise, Pd3 complex has good capability to incorporate about 18% NB content into MA polymer chains. Furthermore, low catalyst loadings (0.002 mol %) of Pd4 or Pd5 are able to efficiently mediate the coupling of haloarenes with styrene affording up to 98% conversion.


Assuntos
Acrilatos/química , Norbornanos/química , Paládio/química , Polímeros/química , Catálise , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Estereoisomerismo , Difração de Raios X
3.
Res Microbiol ; 173(1-2): 103884, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34644596

RESUMO

Mycobacterium tuberculosis cell wall consist variety of mannose containing glycoconjugates including lipomannan (LM) and lipoarabinomannan (LAM). These lipoglycans are involved in cell wall integrity and play role in virulence of M. tuberculosis by modulating host immune response. GDP-mannose, required for the synthesis of lipoglycans, is catalyzed by enzyme Mannose-1-phosphate guanylyl transferase (ManB). The enzyme with similar function has been studied in variety of species of prokaryotes and eukaryotes. However, biological role of ManB and its enzymatic activity remains uncharacterized in M. tuberculosis. In present study, we elucidated the role of enzyme by constructing manB knockdown strain of M. tuberculosis H37Ra. The manB knockdown decreased the cell growth and also effected the morphology of M. tuberculosis by altering the permeability of cell membrane. These findings provide the understanding on ManB function and suggesting that ManB could be the potential target for novel anti-tuberculosis drug. Furthermore, we also characterized ManB enzyme by establishing 96 well plate colorimetric assay and determined the kinetic properties including initial velocity, optimum temperature, optimum pH and other kinetic parameters. Our established assay will be helpful for further high throughput screening of potential inhibitors against ManB.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis , Nucleotidiltransferases/metabolismo , Parede Celular/metabolismo , Lipopolissacarídeos/metabolismo , Manose/metabolismo , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Fosfatos/metabolismo , Transferases/análise , Transferases/metabolismo
4.
Biotechnol Biofuels ; 10: 163, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28652864

RESUMO

BACKGROUND: Clostridium thermocellum utilizes a wide variety of free and cellulosomal cellulases and accessory enzymes to hydrolyze polysaccharides present in complex substrates. To date only a few studies have unveiled the details by which the expression of these cellulases are regulated. Recent studies have described the auto regulation of the celC operon and determined that the celC-glyR3-licA gene cluster and nearby manB-celT gene cluster are co-transcribed as polycistronic mRNA. RESULTS: In this paper, we demonstrate that the GlyR3 protein mediates the regulation of manB. We first identify putative GlyR3 binding sites within or just upstream of the coding regions of manB and celT. Using an electrophoretic mobility shift assay (EMSA), we determined that a higher concentration of GlyR3 is required to effectively bind to the putative manB site in comparison to the celC site. Neither the putative celT site nor random DNA significantly binds GlyR3. While laminaribiose interfered with GlyR3 binding to the celC binding site, binding to the manB site was unaffected. In the presence of laminaribiose, in vivo transcription of the celC-glyR3-licA gene cluster increases, while manB expression is repressed, compared to in the absence of laminaribiose, consistent with the results from the EMSA. An in vitro transcription assay demonstrated that GlyR3 and laminaribiose interactions were responsible for the observed patters of in vivo transcription. CONCLUSIONS: Together these results reveal a mechanism by which manB is expressed at low concentrations of GlyR3 but repressed at high concentrations. In this way, C. thermocellum is able to co-regulate both the celC and manB gene clusters in response to the availability of ß-1,3-polysaccharides in its environment.

5.
Vaccine ; 35(21): 2862-2869, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28412074

RESUMO

Colanic Acid (CA) and lipopolysaccharide (LPS) are two major mannose-containing extracellular polysaccharides of Salmonella. Their presence on the bacterial surface can mask conserved protective outer membrane proteins (OMPs) from the host immune system. The mannose moiety in these molecules is derived from GDP-mannose, which is synthesized in several steps. The first two steps require the action of phosphomannose isomerase, encoded by pmi (manA), followed by phosphomannomutase, encoded by manB. There are two copies of manB present in the Salmonella chromosome, one located in the cps gene cluster (cpsG) responsible for CA synthesis, and the other in the rfb gene cluster (rfbK) involved in LPS O-antigen synthesis. In this study, it was demonstrated that the products of cpsG and rfbK are isozymes. To evaluate the impact of these genes on O-antigen synthesis, virulence and immunogenicity, single mutations (Δpmi, ΔrfbK or ΔcpsG) and a double mutation (ΔrfbK ΔcpsG) were introduced into both wild-type Salmonella enterica and an attenuated Δcya Δcrp vaccine strain. The Δpmi, ΔrfbK and ΔcpsG ΔrfbK mutants were defective in LPS synthesis and attenuated for virulence. In orally inoculated mice, strain S122 (Δcrp Δcya ΔcpsG ΔrfbK) and its parent S738 (Δcrp Δcya) were both avirulent and colonized internal tissues. Strain S122 elicited higher levels of anti-S. Typhimurium OMP serum IgG than its parent strain. Mice immunized with S122 were completely protected against challenge with wild-type virulent S. Typhimurium and partially protected against challenge with either wild-type virulent S. Choleraesuis or S. Enteritidis. These data indicate that deletions in rfbK and cpsG are useful mutations for inclusion in future attenuated Salmonella vaccine strains to induce cross-protective immunity.


Assuntos
Reações Cruzadas , Imunidade Heteróloga , Antígenos O/biossíntese , Polissacarídeos/biossíntese , Vacinas contra Salmonella/imunologia , Salmonella typhimurium/imunologia , Salmonella typhimurium/metabolismo , Animais , Anticorpos Antibacterianos/sangue , Proteínas da Membrana Bacteriana Externa/imunologia , Feminino , Humanos , Manose-6-Fosfato Isomerase/deficiência , Manose-6-Fosfato Isomerase/metabolismo , Camundongos Endogâmicos BALB C , Antígenos O/imunologia , Fosfotransferases (Fosfomutases)/deficiência , Fosfotransferases (Fosfomutases)/metabolismo , Polissacarídeos/imunologia , Vacinas contra Salmonella/administração & dosagem , Salmonella typhimurium/enzimologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA