Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(22): e2303480120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216519

RESUMO

Metacaspases are part of an evolutionarily broad family of multifunctional cysteine proteases, involved in disease and normal development. As the structure-function relationship of metacaspases remains poorly understood, we solved the X-ray crystal structure of an Arabidopsis thaliana type II metacaspase (AtMCA-IIf) belonging to a particular subgroup not requiring calcium ions for activation. To study metacaspase activity in plants, we developed an in vitro chemical screen to identify small molecule metacaspase inhibitors and found several hits with a minimal thioxodihydropyrimidine-dione structure, of which some are specific AtMCA-IIf inhibitors. We provide mechanistic insight into the basis of inhibition by the TDP-containing compounds through molecular docking onto the AtMCA-IIf crystal structure. Finally, a TDP-containing compound (TDP6) effectively hampered lateral root emergence in vivo, probably through inhibition of metacaspases specifically expressed in the endodermal cells overlying developing lateral root primordia. In the future, the small compound inhibitors and crystal structure of AtMCA-IIf can be used to study metacaspases in other species, such as important human pathogens, including those causing neglected diseases.


Assuntos
Arabidopsis , Caspases , Humanos , Caspases/química , Simulação de Acoplamento Molecular , Apoptose , Proteínas de Ligação a DNA
2.
Biochem Biophys Res Commun ; 735: 150657, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39265363

RESUMO

Metacaspases are a distinct class of cysteine proteases predominantly found in plants, fungi, and protozoa, crucial for regulating programmed cell death (PCD). They possess unique structural features and differ markedly from caspases in their activation mechanisms and substrate specificities, with a notable preference for binding basic residues in substrates. In this study, we introduced vanillin-derived oximic compounds to explore their pharmaceutical potential. We evaluated these compounds for their inhibitory effects on TbMCA2, a metacaspase in Trypanosoma brucei, identifying AO-7, AO-12, and EO-20 as promising inhibitors. AO-12 showed significant potential as a non-competitive inhibitor with notable IC50 values. Molecular docking studies were also conducted to evaluate the binding affinity of these compounds for TbMCA2. This research is particularly relevant given the urgent need for more effective and less toxic treatments for trypanosomiasis, a parasitic disease caused by trypanosomes. The absence of available vaccines and the limitations imposed by drug toxicity underscore the importance of these findings. Our study represents a significant advancement in developing therapeutic agents targeting metacaspases in trypanosomatids and highlights the necessity of understanding metacaspase regulation across various species. It provides valuable insights into inhibitor sensitivity and potential species-specific therapeutic strategies. In conclusion, this research opens promising avenues for novel therapeutic agents targeting metacaspases in trypanosomatids, addressing a critical gap in combating neglected diseases associated with these pathogens. Further research is essential to refine the efficacy and safety profiles of these compounds, aiming to deliver more accessible and effective therapeutic solutions to populations afflicted by these debilitating diseases.

3.
New Phytol ; 241(1): 430-443, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37920109

RESUMO

Metacaspases (MCs) are structural homologs of mammalian caspases found in plants, fungi, and protozoa. Type-I MCs carry an N-terminal prodomain, the function of which is unclear. Through genetic analysis of Arabidopsis mc2-1, a T-DNA insertion mutant of MC2, we demonstrated that the prodomain of metacaspase 2 (MC2) promotes immune signaling mediated by pattern-recognition receptors (PRRs). In mc2-1, immune responses are constitutively activated. The receptor-like kinases (RLKs) BAK1/BKK1 and SOBIR1 are required for the autoimmune phenotype of mc2-1, suggesting that immune signaling mediated by the receptor-like protein (RLP)-type PRRs is activated in mc2-1. A suppressor screen identified multiple mutations in the first exon of MC2, which suppress the autoimmunity in mc2-1. Further analysis revealed that the T-DNA insertion at the end of exon 1 of MC2 causes elevated expression of the MC2 prodomain, and overexpression of the MC2 prodomain in wild-type (WT) plants results in the activation of immune responses. The MC2 prodomain interacts with BIR1, which inhibits RLP-mediated immune signaling by interacting with BAK1, suggesting that the MC2 prodomain promotes plant defense responses by interfering with the function of BIR1. Our study uncovers an unexpected function of the prodomain of a MC in plant immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Imunidade Vegetal/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais
4.
J Exp Bot ; 75(7): 2113-2126, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38069635

RESUMO

The toxicity of aluminum (Al) in acidic soil inhibits plant root development and reduces crop yields. In the plant response to Al toxicity, the initiation of programmed cell death (PCD) appears to be an important mechanism for the elimination of Al-damaged cells to ensure plant survival. In a previous study, the type I metacaspase AhMC1 was found to regulate the Al stress response and to be essential for Al-induced PCD. However, the mechanism by which AhMC1 is altered in the peanut response to Al stress remained unclear. Here, we show that a nuclear protein, mutator-like transposable element 9A (AhMULE9A), directly interacts with AhMC1 in vitro and in vivo. This interaction occurs in the nucleus in peanut and is weakened during Al stress. Furthermore, a conserved C2HC zinc finger domain of AhMULE9A (residues 735-751) was shown to be required for its interaction with AhMC1. Overexpression of AhMULE9A in Arabidopsis and peanut strongly inhibited root growth with a loss of root cell viability under Al treatment. Conversely, knock down of AhMULE9A in peanut significantly reduced Al uptake and Al inhibition of root growth, and alleviated the occurrence of typical hallmarks of Al-induced PCD. These findings provide novel insight into the regulation of Al-induced PCD.


Assuntos
Arabidopsis , Arachis , Arachis/genética , Elementos de DNA Transponíveis , Alumínio/metabolismo , Incidência , Raízes de Plantas/metabolismo , Apoptose
5.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474190

RESUMO

Anthracnose, induced by Colletotrichum gloeosporioides, poses a substantial economic threat to rubber tree yields and various other tropical crops. Ede1, an endocytic scaffolding protein, plays a crucial role in endocytic site initiation and maturation in yeast. Metacaspases, sharing structural similarities with caspase family proteases, are essential for maintaining cell fitness. To enhance our understanding of the growth and virulence of C. gloeosporioides, we identified a homologue of Ede1 (CgEde1) in C. gloeosporioides. The knockout of CgEde1 led to impairments in vegetative growth, conidiation, and pathogenicity. Furthermore, we characterized a weakly interacted partner of CgEde1 and CgMca (orthologue of metacaspase). Notably, both the single mutant ΔCgMca and the double mutant ΔCgEde1/ΔCgMca exhibited severe defects in conidiation and germination. Polarity establishment and pathogenicity were also disrupted in these mutants. Moreover, a significantly insoluble protein accumulation was observed in ΔCgMca and ΔCgEde1/ΔCgMca strains. These findings elucidate the mechanism by which CgEde1 and CgMca regulates the growth and pathogenicity of C. gloeosporioides. Their regulation involves influencing conidiation, polarity establishment, and maintaining cell fitness, providing valuable insights into the intricate interplay between CgEde1 and CgMca in C. gloeosporioides.


Assuntos
Colletotrichum , Proteínas Fúngicas , Virulência , Proteínas Fúngicas/metabolismo , Doenças das Plantas
6.
Biochem Biophys Res Commun ; 687: 149185, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37951047

RESUMO

Metacaspases are cysteine proteases belonging to the CD clan of the C14 family. They possess important characteristics, such as specificity for cleavage after basic residues (Arg/Lys) and dependence on calcium ions to exert their catalytic activity. They are defined by the presence of a large subunit (p20) and a small subunit (p10) and are classified into types I, II, and III. Type I metacaspases have a characteristic pro-domain at the N-terminal of the enzyme, preceding a region rich in glutamine and asparagine. In the yeast Saccharomyces cerevisiae, a type I metacaspase is found. This organism encodes a single metacaspase that participates in the process of programmed cell death by apoptosis. The study focuses on cloning, expressing, and mutating Saccharomyces cerevisiae metacaspase (ScMCA-Ia). Mutations in Cys155 and Cys276 were introduced to investigate autoprocessing mechanisms. Results revealed that Cys155 plays a crucial role in autoprocessing, initiating a conformational change that activates ScMCA-Ia. Comparative analysis with TbMCA-IIa highlighted the significance of the N-terminal region in substrate access to the active site. The study proposes a two-step processing mechanism for type I metacaspases, where an initial processing step generates the active form, followed by a distinct intermolecular processing step. This provides new insights into ScMCA-Ia's activation and function. The findings hold potential implications for understanding cellular processes regulated by metacaspases. Overall, this research significantly advances knowledge in metacaspase biology.


Assuntos
Caspases , Saccharomyces cerevisiae , Caspases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cisteína/genética , Apoptose , Domínio Catalítico
7.
FEMS Yeast Res ; 232023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37002543

RESUMO

The Yca1 metacaspase was discovered due to its role in the regulation of apoptosis in Saccharomyces cerevisiae. However, the mechanisms that drive apoptosis in yeast remain poorly understood. Additionally, Yca1 and other metacaspase proteins have recently been recognized for their involvement in other cellular processes, including cellular proteostasis and cell cycle regulation. In this minireview, we outline recent findings on Yca1 that will enable the further study of metacaspase multifunctionality and novel apoptosis pathways in yeast and other nonmetazoans. In addition, we discuss advancements in high-throughput screening technologies that can be applied to answer complex questions surrounding the apoptotic and nonapoptotic functions of metacaspase proteins across a diverse range of species.


Assuntos
Caspases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Apoptose , Caspases/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Plant J ; 105(1): 151-166, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33107667

RESUMO

Plants usually employ resistance (R) genes to defend against the infection of pathogens, and most R genes encode intracellular nucleotide-binding, leucine-rich repeat (NLR) proteins. The recognition between R proteins and their cognate pathogens often triggers a rapid localized cell death at the pathogen infection sites, termed the hypersensitive response (HR). Metacaspases (MCs) belong to a cysteine protease family, structurally related to metazoan caspases. MCs play crucial roles in plant immunity. However, the underlying molecular mechanism and the link between MCs and NLR-mediated HR are not clear. In this study, we systematically investigated the MC gene family in maize and identified 11 ZmMCs belonging to two types. Further functional analysis showed that the type I ZmMC1 and ZmMC2, but not the type II ZmMC9, suppress the HR-inducing activity of the autoactive NLR protein Rp1-D21 and of its N-terminal coiled-coil (CCD21 ) signaling domain when transiently expressed in Nicotiana benthamiana. ZmMC1 and ZmMC2 physically associate with CCD21 in vivo. We further showed that ZmMC1 and ZmMC2, but not ZmMC9, are predominantly localized in a punctate distribution in both N. benthamiana and maize (Zea mays) protoplasts. Furthermore, the co-expression of ZmMC1 and ZmMC2 with Rp1-D21 and CCD21 causes their re-distribution from being uniformly distributed in the nucleocytoplasm to a punctate distribution co-localizing with ZmMC1 and ZmMC2. We reveal a novel role of plant MCs in modulating the NLR-mediated defense response and derive a model to explain it.


Assuntos
Caspases/metabolismo , Resistência à Doença , Proteínas NLR/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/enzimologia , Caspases/genética , Caspases/fisiologia , Morte Celular , Proteínas NLR/fisiologia , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Frações Subcelulares/metabolismo , Nicotiana , Zea mays/genética , Zea mays/metabolismo , Zea mays/fisiologia
9.
Protein Expr Purif ; 191: 106007, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34728367

RESUMO

Metacaspases are known to have a fundamental role in apoptosis-like, a programmed cellular death (PCD) in plants, fungi, and protozoans. The last includes several parasites that cause diseases of great interest to public health, mostly without adequate treatment and included in the neglected tropical diseases category. One of them is Trypanosoma cruzi which causes Chagas disease and has two metacaspases involved in its PCD: TcMCA3 and TcMCA5. Their roles seemed different in PCD, TcMCA5 appears as a proapoptotic protein negatively regulated by its C-terminal sequence, while TcMCA3 is described as a cell cycle regulator. Despite this, the precise role of TcMCA3 and TcMCA5 and their atomic structures remain elusive. Therefore, developing methodologies to allow investigations of those metacaspases is relevant. Herein, we produced full-length and truncated versions of TcMCA5 and applied different strategies for their folded recombinant production from E. coli inclusion bodies. Biophysical assays probed the efficacy of the production method in providing a high yield of folded recombinant TcMCA5. Moreover, we modeled the TcMCA5 protein structure using experimental restraints obtained by XLMS. The experimental design for novel methods and the final protocol provided here can guide studies with other metacaspases. The production of TcMCA5 allows further investigations as protein crystallography, HTS drug discovery to create potential therapeutic in the treatment of Chagas' disease and in the way to clarify how the PCD works in the parasite.


Assuntos
Caspases/química , Redobramento de Proteína , Proteínas de Protozoários/química , Trypanosoma cruzi/enzimologia , Caspases/genética , Domínios Proteicos , Proteínas de Protozoários/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Trypanosoma cruzi/genética
10.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35562978

RESUMO

Caspase is a well-studied metazoan protease involved in programmed cell death and immunity in animals. Obviously, homologues of caspases with evolutionarily similar sequences and functions should exist in plants, and yet, they do not exist in plants. Plants contain structural homologues of caspases called metacaspases, which differ from animal caspases in a rather distinct way. Metacaspases, a family of cysteine proteases, play critical roles in programmed cell death during plant development and defense responses. Plant metacaspases are further subdivided into types I, II, and III. In the type I Arabidopsis MCs, AtMC1 and AtMC2 have similar structures, but antagonistically regulate hypersensitive response cell death upon immune receptor activation. This regulatory action is similar to caspase-1 inhibition by caspase-12 in animals. However, so far very little is known about the biological function of the other plant metacaspases. From the increased availability of genomic data, the number of metacaspases in the genomes of various plant species varies from 1 in green algae to 15 in Glycine max. It is implied that the functions of plant metacaspases will vary due to these diverse evolutions. This review is presented to comparatively analyze the evolution and function of plant metacaspases compared to caspases.


Assuntos
Arabidopsis , Caspases , Animais , Apoptose , Arabidopsis/metabolismo , Caspases/metabolismo , Morte Celular , Plantas/genética , Plantas/metabolismo
11.
Plant Cell Physiol ; 61(12): 2097-2110, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33057654

RESUMO

Microspore embryogenesis is a biotechnological process that allows us to rapidly obtain doubled-haploid plants for breeding programs. The process is initiated by the application of stress treatment, which reprograms microspores to embark on embryonic development. Typically, a part of the microspores undergoes cell death that reduces the efficiency of the process. Metacaspases (MCAs), a phylogenetically broad group of cysteine proteases, and autophagy, the major catabolic process in eukaryotes, are critical regulators of the balance between cell death and survival in various organisms. In this study, we analyzed the role of MCAs and autophagy in cell death during stress-induced microspore embryogenesis in Brassica napus. We demonstrate that this cell death is accompanied by the transcriptional upregulation of three BnMCA genes (BnMCA-Ia, BnMCA-IIa and BnMCA-IIi), an increase in MCA proteolytic activity and the activation of autophagy. Accordingly, inhibition of autophagy and MCA activity, either individually or in combination, suppressed cell death and increased the number of proembryos, indicating that both components play a pro-cell death role and account for decreased efficiency of early embryonic development. Therefore, MCAs and/or autophagy can be used as new biotechnological targets to improve in vitro embryogenesis in Brassica species and doubled-haploid plant production in crop breeding and propagation programs.


Assuntos
Morte Celular Autofágica , Brassica napus/crescimento & desenvolvimento , Caspases/metabolismo , Proteínas de Plantas/metabolismo , Pólen/fisiologia , Sementes/crescimento & desenvolvimento , Brassica napus/fisiologia , Regulação da Expressão Gênica de Plantas , Sementes/fisiologia , Estresse Fisiológico
12.
Fungal Genet Biol ; 154: 103600, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34197920

RESUMO

CaMca1 is the only metacaspase in Candida albicans, which shows structural homology to the mammalian caspases. CaMca1 consists of the caspase domain, the P20 and P10 regions, and the conserved catalytic histidine-cysteine dyad that is required for executing apoptosis in C. albicans. However, little is known about the proteolytic processing of CaMca1 or its activation under apoptosis-inducing conditions. To understand the regulation of this process, we characterized CaBir1 which is the single IAP (inhibitor-of-apoptosis protein) in C. albicans. IAPs are a family of proteins whose members all harbor a BIR (baculovirus IAP repeat) domain and negatively regulate apoptosis by inhibiting caspases. We found that the Cabir1/Cabir1 deletion mutant exhibited increased apoptotic phenotypes, such as ROS accumulation, nuclear segmentation, and cell survival, under apoptosis-inducing conditions. Examination of CaMca1 cleavage patterns in response to various apoptotic stresses revealed that these cleavages were stress-specific and dependent on the catalytic histidine-cysteine residues of CaMca1. The Cabir1/Cabir1 mutation was not associated with altered CaMca1 processing with or without apoptotic stimuli, but the Cabir1/Cabir1 mutant exhibited significantly increased caspase-like activities. These results suggest that CaBir1 acts as an apoptosis inhibitor by regulating caspase-like activity, but not CaMca1 processing.


Assuntos
Candida albicans/enzimologia , Caspases/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo
13.
J Exp Bot ; 72(7): 2514-2524, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33315117

RESUMO

Phosphoenolpyruvate carboxykinase (PEPCK) plays a crucial role in gluconeogenesis. In this work, we analyze the proteolysis of Arabidopsis thaliana PEPCK1 (AthPEPCK1) in germinating seedlings. We found that the amount of AthPEPCK1 protein peaks at 24-48 h post-imbibition. Concomitantly, we observed shorter versions of AthPEPCK1, putatively generated by metacaspase-9 (AthMC9). To study the impact of AthMC9 cleavage on the kinetic and regulatory properties of AthPEPCK1, we produced truncated mutants based on the reported AthMC9 cleavage sites. The Δ19 and Δ101 truncated mutants of AthPEPCK1 showed similar kinetic parameters and the same quaternary structure as the wild type. However, activation by malate and inhibition by glucose 6-phosphate were abolished in the Δ101 mutant. We propose that proteolysis of AthPEPCK1 in germinating seedlings operates as a mechanism to adapt the sensitivity to allosteric regulation during the sink-to-source transition.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fosfoenolpiruvato Carboxiquinase (ATP) , Regulação Alostérica , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Gluconeogênese , Fosfoenolpiruvato , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Proteólise
14.
Biochem J ; 477(7): 1323-1344, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32202613

RESUMO

Metacaspases are novel cysteine proteases found in apicomplexan whose function is poorly understood. Our earlier studies on Plasmodium falciparum metacaspase-2 (PfMCA-2) revealed that the caspase inhibitor, Z-FA-FMK efficiently inhibited PfMCA-2 activity and, expression, and significantly blocked in vitro progression of the parasite developmental cycle via apoptosis-like parasite death. Building on these findings, we synthesized a set of novel inhibitors based on structural modification of Z-FA-FMK with the amides of piperic acid and investigated their effect on PfMCA-2. One of these analogs, SS-5, specifically inhibited the activity and expression of PfMCA-2. The activities of some other known malarial proteases (falcipains, plasmepsins and vivapain), and human cathepsins-B, D and L, and caspase-3 and -7 were not inhibited by SS-5. SS-5 blocked the development of P. falciparum in vitro (IC50 1 µM) and caused prominent morphological distortions. Incubation with SS-5 led to persistent parasite oxidative stress accompanied by depolarization of mitochondrial potential and accumulation of intracellular Ca2+. SS-5 also inhibited the development of P. berghei in a murine model. Our results suggest that the inhibition of PfMCA-2 results in oxidative stress, leading to apoptosis-like parasite death. Thus, SS-5 offers a starting point for the optimization of new antimalarials, and PfMCA-2 could be a novel target for antimalarial drug discovery.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Dipeptídeos/farmacologia , Cetonas/farmacologia , Plasmodium falciparum/enzimologia , Amidas/química , Animais , Antimaláricos/química , Antimaláricos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Sobrevivência Celular/efeitos dos fármacos , Dipeptídeos/química , Descoberta de Drogas/métodos , Ácidos Graxos Insaturados/química , Feminino , Células Hep G2 , Humanos , Cetonas/química , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo/efeitos dos fármacos
15.
Cell Microbiol ; 21(12): e13103, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31424154

RESUMO

Deletion of DNA polymerase eta (Rad30/Polη) in pathogenic yeast Candida albicans is known to reduce filamentation induced by serum, ultraviolet, and cisplatin. Because nonfilamentous C. albicans is widely accepted as avirulent form, here we explored the virulence and pathogenicity of a rad30Δ strain of C. albicans in cell-based and animal systems. Flow cytometry of cocultured fungal and differentiated macrophage cells revealed that comparatively higher percentage of macrophages was associated with the wild-type than rad30Δ cells. In contrast, higher number of Polη-deficient C. albicans adhered per macrophage membrane. Imaging flow cytometry showed that the wild-type C. albicans developed hyphae after phagocytosis that caused necrotic death of macrophages to evade their clearance. Conversely, phagosomes kill the fungal cells as estimated by increased metacaspase activity in wild-type C. albicans. Despite the morphological differences, both wild-type and rad30∆ C. albicans were virulent with a varying degree of pathogenicity in mice models. Notably, mice with Th1 immunity were comparatively less susceptible to systemic fungal infection than Th2 type. Thus, our study clearly suggests that the modes of interaction of morphologically different C. albicans strains with the host immune cells are diverged, and host genetic background and several other attributing factors of the fungus could additionally determine their virulence.


Assuntos
Candida albicans/genética , Candida albicans/patogenicidade , Virulência/genética , Animais , Candidíase/microbiologia , Linhagem Celular , DNA Polimerase Dirigida por DNA/genética , Proteínas Fúngicas/genética , Genes Fúngicos/genética , Humanos , Hifas/genética , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fagocitose/genética , Fagossomos/genética
16.
Parasitol Res ; 119(7): 2287-2298, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32468190

RESUMO

Toxoplasma gondii is an important zoonotic protozoan of the phylum Apicomplexa that can infect nearly all warm-blooded animals. The parasite can exist as the interconvertible tachyzoite or bradyzoite forms, leading to acute or latent infection, respectively. No drug has been reported to penetrate the cyst wall and reduce bradyzoite survival and proliferation till now. The transcriptional level of metacaspases 2 (TgMCA2) in T. gondii is significantly upregulated during the formation of bradyzoites in the Pru strain, indicating that it may play an important role in the formation of bradyzoites. To further explore the function of TgMCA2, we constructed a TgMCA2 gene-knockout variant of the Pru strain (Δmca2). Comparative analysis revealed that the proliferative capacity of Pru Δmca2 increased, while the invasion and egressing properties were not affected by the knockout. Further data shows that the tachyzoites of Δmca2 failed to induce differentiation and form bradyzoites in vitro, and the transcriptional levels of some of the bradyzoite-specific genes (such as BAG1, LDH2, and SAG4A) in Δmca2 were significantly lower compared with that in the Pru strain at the bradyzoite stage. In vivo, no cysts were detected in Δmca2-infected mice. Further determination of parasite burden in Δmca2- and Pru-infected mice brain tissue at the genetic level showed that the gene load was significantly lower than that in Pru. In summary, we confirmed that TgMCA2 contributes to the formation of bradyzoites, and could provide an important foundation for the development of attenuated vaccines for the prevention of T. gondii infection.


Assuntos
Estágios do Ciclo de Vida , Proteínas de Protozoários/metabolismo , Toxoplasma/enzimologia , Toxoplasma/crescimento & desenvolvimento , Animais , Encéfalo/parasitologia , Regulação da Expressão Gênica no Desenvolvimento , Estágios do Ciclo de Vida/genética , Camundongos , Encistamento de Parasitas/genética , Carga Parasitária , Proteínas de Protozoários/genética , Toxoplasma/genética , Toxoplasmose Animal/parasitologia
17.
J Exp Bot ; 70(7): 2039-2047, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30921456

RESUMO

Caspases are metazoan proteases, best known for their involvement in programmed cell death in animals. In higher plants genetically controlled mechanisms leading to the selective death of individual cells also involve the regulated interplay of various types of proteases. Some of these enzymes are structurally homologous to caspases and have therefore been termed metacaspases. In addition to the two well-studied metacaspase variants found in higher plants, type I and type II, biochemical data have recently become available for metacaspases of type III and metacaspase-like proteases, which are present only in certain algae. Although increasing in vitro and in vivo data suggest the existence of further sub-types, a lack of structural information hampers the interpretation of their distinct functional properties. However, the identification of key amino acid residues involved in the proteolytic mechanism of metacaspases, as well as the increased availability of plant genomic and transcriptomic data, is increasingly enabling in-depth analysis of all metacaspase types found in plastid-containing organisms. Here, we review the structural distribution and diversification of metacaspases and in doing so try to provide comprehensive guidelines for further analyses of this versatile family of proteases in organisms ranging from simple unicellular species to flowering plants.


Assuntos
Caspases/análise , Evolução Molecular , Proteínas de Plantas/análise , Plantas/química
18.
Protein Expr Purif ; 164: 105465, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31377239

RESUMO

The metacaspases (MCAs) are attractive drug targets for the treatment of African trypanosomiasis as they are not found in the metazoan kingdom and their action has been implicated in cell cycle and cell death pathways in kinetoplastid parasites. Here we report the biochemical characterisation of MCA5 from T. congolense. Upon recombinant expression in E. coli, autoprocessing is evident, and MCA5 further autoprocesses when purified using nickel affinity chromatography, which we term nickel-induced over autoprocessing. When both the catalytic His and Cys residues were mutated (TcoMCA5H147A/C202G), no nickel-induced over autoprocessing was observed and was enzymatically active, suggesting the existence of a secondary catalytic Cys residue, Cys81. Immunoaffinity purification of native TcoMCA5 from the total parasite proteins was achieved using chicken anti-TcoMCA5 IgY antibodies. The full length native TcoMCA5 and the autoprocessed products of recombinant TcoMCA5H147A/C202G were shown to possess gelatinolytic activity, the first report for that of a MCA. Both the native and recombinant enzyme were calcium independent, had a preference for Arg over Lys at the P1 site and were active over a pH range between 6.5 and 9. Partial inhibition (23%) of enzymatic activity was only achieved with leupeptin and antipain. These findings are the first step in the biochemical characterisation of the single copy MCAs from animal infective trypanosomes towards the design of novel trypanocides.


Assuntos
Trypanosoma congolense/enzimologia , Tripanossomíase Africana/parasitologia , Animais , Clonagem Molecular , Gelatinases/genética , Gelatinases/isolamento & purificação , Gelatinases/metabolismo , Humanos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Trypanosoma congolense/genética , Trypanosoma congolense/metabolismo , Tripanossomíase Africana/tratamento farmacológico
19.
Biochem J ; 475(7): 1385-1396, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29559502

RESUMO

CGA-N12 (the amino acid sequence from the 65th to the 76th residue of the N-terminus of chromagranin A) is an antifungal peptide derived from human chromogranin A (CGA). In our previous investigation, CGA-N12 was found to have specific anti-candidal activity, though the mechanism of action remained unclear. Here, we investigated the effects of CGA-N12 on mitochondria. We found that CGA-N12 induced an over-generation of intracellular reactive oxygen species and dissipation in mitochondrial membrane potential, in which the former plays key roles in the initiation of apoptosis and the latter is a sign of the cell apoptosis. Accordingly, we assessed the apoptosis features of Candida tropicalis cells after treatment with CGA-N12 and found the following: leakage of cytochrome c and uptake of calcium ions into mitochondria and the cytosol; metacaspase activation; and apoptotic phenotypes, such as chromatin condensation and DNA degradation. In conclusion, CGA-N12 is capable of inducing apoptosis in C. tropicalis cells through mitochondrial dysfunction and metacaspase activation. Antifungal peptide CGA-N12 from human CGA exhibits a novel apoptotic mechanism as an antifungal agent.


Assuntos
Apoptose/efeitos dos fármacos , Candida tropicalis/efeitos dos fármacos , Cromogranina A/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/patologia , Fragmentos de Peptídeos/farmacologia , Cálcio/metabolismo , Candida tropicalis/crescimento & desenvolvimento , Candida tropicalis/metabolismo , Citocromos c/metabolismo , Citosol/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
20.
New Phytol ; 217(4): 1551-1565, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29243818

RESUMO

Metacaspases (MCs) are cysteine proteases that are implicated in programmed cell death of plants. AtMC9 (Arabidopsis thaliana Metacaspase9) is a member of the Arabidopsis MC family that controls the rapid autolysis of the xylem vessel elements, but its downstream targets in xylem remain uncharacterized. PttMC13 and PttMC14 were identified as AtMC9 homologs in hybrid aspen (Populus tremula × tremuloides). A proteomic analysis was conducted in xylem tissues of transgenic hybrid aspen trees which carried either an overexpression or an RNA interference construct for PttMC13 and PttMC14. The proteomic analysis revealed modulation of levels of both previously known targets of metacaspases, such as Tudor staphylococcal nuclease, heat shock proteins and 14-3-3 proteins, as well as novel proteins, such as homologs of the PUTATIVE ASPARTIC PROTEASE3 (PASPA3) and the cysteine protease RD21 by PttMC13 and PttMC14. We identified here the pathways and processes that are modulated by PttMC13 and PttMC14 in xylem tissues. In particular, the results indicate involvement of PttMC13 and/or PttMC14 in downstream proteolytic processes and cell death of xylem elements. This work provides a valuable reference dataset on xylem-specific metacaspase functions for future functional and biochemical analyses.


Assuntos
Caspases/metabolismo , Populus/enzimologia , Árvores/enzimologia , Madeira/enzimologia , Sequência de Aminoácidos , Caspases/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Família Multigênica , Peptídeos/química , Peptídeos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/genética , Proteômica , Xilema/citologia , Xilema/genética , Xilema/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA