Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 379
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(40): e2305195120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37751557

RESUMO

Polymicrobial infections threaten the health of humans and animals but remain understudied in natural systems. We recently described the Pacific Oyster Mortality Syndrome (POMS), a polymicrobial disease affecting oyster production worldwide. In the French Atlantic coast, the disease involves coinfection with ostreid herpesvirus 1 (OsHV-1) and virulent Vibrio. However, it is unknown whether consistent Vibrio populations are associated with POMS in different regions, how Vibrio contribute to POMS, and how they interact with OsHV-1 during pathogenesis. By connecting field-based approaches in a Mediterranean ecosystem, laboratory infection assays and functional genomics, we uncovered a web of interdependencies that shape the structure and function of the POMS pathobiota. We show that Vibrio harveyi and Vibrio rotiferianus are predominant in OsHV-1-diseased oysters and that OsHV-1 drives the partition of the Vibrio community observed in the field. However only V. harveyi synergizes with OsHV-1 by promoting mutual growth and accelerating oyster death. V. harveyi shows high-virulence potential and dampens oyster cellular defenses through a type 3 secretion system, making oysters a more favorable niche for microbe colonization. In addition, V. harveyi produces a key siderophore called vibrioferrin. This important resource promotes the growth of V. rotiferianus, which cooccurs with V. harveyi in diseased oysters, and behaves as a cheater by benefiting from V. harveyi metabolite sharing. Our data show that cooperative behaviors contribute to synergy between bacterial and viral coinfecting partners. Additional cheating behaviors further shape the polymicrobial consortium. Controlling cooperative behaviors or countering their effects opens avenues for mitigating polymicrobial diseases.


Assuntos
Coinfecção , Ostreidae , Animais , Humanos , Ecossistema , Bioensaio , Comportamento Cooperativo
2.
Bioessays ; 45(6): e2200234, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37026407

RESUMO

We use genomic information to tell us stories of evolutionary origins. But what does it mean when different genomes report wildly different accounts of lineage history? This genomic "discordance" can be a consequence of a fascinating suite of natural history and evolutionary phenomena, from the different inheritance mechanisms of nuclear versus cytoplasmic (mitochondrial and plastid) genomes to hybridization and introgression to horizontal transfer. Here, we explore how we can use these distinct genomic stories to provide new insights into the maintenance of sexual reproduction, one of the most important unanswered questions in biology. We focus on the strikingly distinct nuclear versus mitochondrial versions of the story surrounding the origin and maintenance of asexual lineages in Potamopyrgus antipodarum, a New Zealand freshwater snail. While key questions remain unresolved, these data inspire multiple testable hypotheses that can be powerfully applied across a broad range of taxa toward a deeper understanding of the causes and consequences of mitonuclear discordance, the maintenance of sex, and the origin of new asexual lineages.


Assuntos
Reprodução Assexuada , Caramujos , Animais , Reprodução Assexuada/genética , Caramujos/genética , Genoma/genética , Reprodução , Água Doce , Filogenia
3.
J Neurophysiol ; 131(5): 903-913, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38478883

RESUMO

Neuronal signals mediated by the biogenic amine serotonin (5-HT) underlie critical survival strategies across the animal kingdom. This investigation examined serotonin-like immunoreactive neurons in the cerebral ganglion of the panpulmonate snail Biomphalaria glabrata, a major intermediate host for the trematode parasite Schistosoma mansoni. Five neurons comprising the cerebral serotonergic F (CeSF) cluster of B. glabrata shared morphological characteristics with neurons that contribute to withdrawal behaviors in numerous heterobranch species. The largest member of this group, designated CeSF-1, projected an axon to the tentacle, a major site of threat detection. Intracellular recordings demonstrated repetitive activity and electrical coupling between the bilateral CeSF-1 cells. In semi-intact preparations, the CeSF-1 cells were not responsive to cutaneous stimuli but did respond to photic stimuli. A large FMRF-NH2-like immunoreactive neuron, termed C2, was also located on the dorsal surface of each cerebral hemiganglion near the origin of the tentacular nerve. C2 and CeSF-1 received coincident bouts of inhibitory synaptic input. Moreover, in the presence of 5-HT they both fired rhythmically and in phase. As the CeSF and C2 cells of Biomphalaria share fundamental properties with neurons that participate in withdrawal responses in Nudipleura and Euopisthobranchia, our observations support the proposal that features of this circuit are conserved in the Panpulmonata.NEW & NOTEWORTHY Neuronal signals mediated by the biogenic amine serotonin underlie critical survival strategies across the animal kingdom. This investigation identified a group of serotonergic cells in the panpulmonate snail Biomphalaria glabrata that appear to be homologous to neurons that mediate withdrawal responses in other gastropod taxa. It is proposed that an ancient withdrawal circuit has been highly conserved in three major gastropod lineages.


Assuntos
Biomphalaria , Neurônios Serotoninérgicos , Serotonina , Animais , Biomphalaria/fisiologia , Biomphalaria/parasitologia , Serotonina/metabolismo , Neurônios Serotoninérgicos/fisiologia , Gânglios dos Invertebrados/fisiologia , Gânglios dos Invertebrados/citologia
4.
Fish Shellfish Immunol ; 153: 109800, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39096981

RESUMO

Tissue clearing is an old-fashioned method developed in the 1900's and used to turn an opaque biological object into a 3D visualizable transparent structure. Developed and diversified over the last decade, this method is most of the time applied to mammals' tissues, and especially mouse and human tissues for cytological, histological and pathophysiological studies. Through autofluorescence, immunofluorescence, in situ hybridization, intercalating agents, fluorescent transfection markers or fluorescent particle uptake, optically cleared samples can be monitored to discover new biological structures and cellular interactions through 3D-visualization, which can be more challenging in some extend through classical histological methods. Most of the tissue clearing procedures have been developed for specific applications like endogenous fluorescence visualization, immunolabeling or for revealing specific organs. Thus, choosing the adapted protocol may be empirical for non-model species, especially for mollusks for which very little related literature is available. Herein, we suggest an effective optical tissue clearing procedure for the freshwater snail Biomphalaria glabrata, known as the intermediate host of the human parasite Schistosoma mansoni. This clearing procedure involves solvents with a minimal toxicity, preserves the endogenous fluorescence of labeled parasites inside snail tissues and is compatible with an immunolabeling procedure.

5.
Oecologia ; 204(2): 413-425, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38194087

RESUMO

Microplastics (MPs) and nanoplastics (NPs) are now widely recognized as a ubiquitous and pervasive environmental pollutant with important consequences for aquatic fauna in particular; however, little is known regarding their potential effects on interactions between hosts and their parasites or pathogens. We conducted a literature survey of published studies that have conducted empirical investigations of MP and NP influences on infectious disease dynamics to summarize the current state of knowledge. In addition, we examined the effects of microbead (MB) ingestion on the longevity of freshwater snails (Stagnicola elodes) infected by the trematode Plagiorchis sp., along with their production of infectious stages (cercariae), with a 3-week lab study during which snails were fed food cubes containing either 0, 10 or 100 polyethylene MBs sized 106-125 µm. We found 22 studies that considered MP and NP influences on host resistance or tolerance-20 of these focused on aquatic systems, but there was no clear pattern in terms of host effects. In our lab study, MB diet had marginal or few effects on snail growth and mortality, but snails exhibited a significant non-monotonic response with respect to cercariae production as this was greatest in those fed the high-MB diet. Both our literature summary and experimental study indicate that MPs and NPs can have complex and unpredictable effects on infectious disease dynamics, with an urgent need for more investigations that examine how plastics can affect aquatic fauna through direct and indirect means.


Assuntos
Doenças Transmissíveis , Microplásticos , Humanos , Interações Hospedeiro-Parasita , Plásticos , Polietileno
6.
Gen Comp Endocrinol ; 357: 114594, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39047798

RESUMO

In recent years, new concepts have emerged regarding the nomenclature, functions, and relationships of different peptide families of the gonadotropin-releasing hormone (GnRH) superfamily. One of the main driving forces for this originated from the emerging evidence that neuropeptides previously called molluscan GnRH are multifunctional and should be classified as corazonin (CRZ). However, research articles still appear that use incorrect nomenclature and attribute the same function to molluscan CRZs as vertebrate GnRHs. The aim of the present study was to further support the recent interpretation of the origin and function of the GnRH superfamily. Towards this goal, we report the characterization of CRZ signaling system in the molluscan model species, the great pond snail (Lymnaea stagnalis). We detected a CRZ-receptor-like sequence (Lym-CRZR) by homology-searching in the Lymnaea transcriptomes and the deduced amino acid sequence showed high sequence similarity to GnRH receptors and CRZ receptors. Molecular phylogenetic tree analysis demonstrated that Lym-CRZR is included in the cluster of molluscan CRZRs. Lym-CRZR transiently transfected into HEK293 cells was found to be localized at the plasma membrane, confirming that it functions as a membrane receptor, like other G protein-coupled receptors. The signaling assays revealed that the previously identified Lym-CRZ neuropeptide stimulated intracellular Ca2+ mobilization in a dose-dependent manner, but not cyclic AMP production, in HEK293 cells transfected with Lym-CRZR. Finally, we demonstrated a wide tissue distribution of Lym-CRZR. These results suggest that Lym-CRZ is a multifunctional peptide and provide further insights into the evolution of the GnRH neuropeptide superfamily. The present study also supports the notion that previously termed molluscan "GnRH" should be classified as "CRZ".

7.
Gen Comp Endocrinol ; 353: 114521, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38621462

RESUMO

Myoinhibitory peptides (MIPs) affect various physiological functions, including juvenile hormone signaling, muscle contraction, larval development, and reproduction in invertebrates. Although MIPs are ligands for MIP and/or sex peptide receptors (MIP/SPRs) in diverse arthropods and model organisms belonging to Lophotrochozoa, the MIP signaling system has not yet been fully investigated in mollusks. In this study, we identified the MIP signaling system in the Pacific abalone Haliotis discus hannai (Hdh). Similar to the invertebrate MIPs, a total of eight paracopies of MIPs (named Hdh-MIP1 to Hdh-MIP8), harboring a WX5-7Wamide motif, except for Hdh-MIP2, were found in the Hdh-MIP precursor. Furthermore, we characterized a functional Hdh-MIPR, which responded to the Hdh-MIPs, except for Hdh-MIP2, possibly linked with the PKC/Ca2+ and PKA/cAMP signaling pathways. Hdh-MIPs delayed larval metamorphosis but increased the spawning behavior. These results suggest that the Hdh-MIP signaling system provides insights into the unique function of MIP in invertebrates.


Assuntos
Gastrópodes , Larva , Metamorfose Biológica , Transdução de Sinais , Animais , Metamorfose Biológica/fisiologia , Larva/crescimento & desenvolvimento , Larva/metabolismo , Transdução de Sinais/fisiologia , Gastrópodes/crescimento & desenvolvimento , Gastrópodes/metabolismo , Gastrópodes/fisiologia , Peptídeos , Reprodução/fisiologia
8.
Gen Comp Endocrinol ; 345: 114393, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37865149

RESUMO

Gonadotropin-releasing hormone (GnRH) superfamily comprises multiple families of signaling peptides in both protostomes and deuterostomes. Among this superfamily, vertebrate GnRH stimulates reproduction, but other GnRH superfamily members elicit diverse pleiotropic effects. Within the GnRH superfamily members, adipokinetic hormone (AKH) and its receptor are well described in ecdysozoans but understudied in other lineages. To fill this knowledge gap, we deorphanized a putative receptor for a lophotrochozoan AKH in a gastropod mollusk, Aplysia californica, and named it Aplca-AKHR. Phylogenetic analysis revealed an orthologous relationship of Aplca-AKHR with ecdysozoan AKHRs and other putative lophotrochozoan AKHRs. Aplca-AKHR bound specifically to the previously identified Aplca-AKH with high affinity and activated the inositol phosphate pathway. Aplca-AKHR was expressed widely among central and peripheral tissues, but most prominently in several central ganglia and the heart. The expression of Aplca-AKHR was downregulated by a hyposaline challenge, consistent with a role in volume and fluid regulation previously described for its ligand, Aplca-AKH. In summary, this is the first pairing of a lophotrochozoan AKH with its cognate receptor. Expression data further support diverse central and peripheral roles, including volume and fluid control, of this ligand/receptor pair.


Assuntos
Gastrópodes , Hormônios de Inseto , Animais , Aplysia/genética , Aplysia/metabolismo , Sequência de Aminoácidos , Gastrópodes/metabolismo , Filogenia , Ligantes , Hormônio Liberador de Gonadotropina/metabolismo , Hormônios de Inseto/metabolismo , Ácido Pirrolidonocarboxílico/metabolismo
9.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34810260

RESUMO

Snails are model organisms for studying the genetic, molecular, and developmental bases of left-right asymmetry in Bilateria. However, the development of their typical helicospiral shell, present for the last 540 million years in environments as different as the abyss or our gardens, remains poorly understood. Conversely, ammonites typically have a bilaterally symmetric, planispiraly coiled shell, with only 1% of 3,000 genera displaying either a helicospiral or a meandering asymmetric shell. A comparative analysis suggests that the development of chiral shells in these mollusks is different and that, unlike snails, ammonites with asymmetric shells probably had a bilaterally symmetric body diagnostic of cephalopods. We propose a mathematical model for the growth of shells, taking into account the physical interaction during development between the soft mollusk body and its hard shell. Our model shows that a growth mismatch between the secreted shell tube and a bilaterally symmetric body in ammonites can generate mechanical forces that are balanced by a twist of the body, breaking shell symmetry. In gastropods, where a twist is intrinsic to the body, the same model predicts that helicospiral shells are the most likely shell forms. Our model explains a large diversity of forms and shows that, although molluscan shells are incrementally secreted at their opening, the path followed by the shell edge and the resulting form are partly governed by the mechanics of the body inside the shell, a perspective that explains many aspects of their development and evolution.


Assuntos
Exoesqueleto/crescimento & desenvolvimento , Cefalópodes/crescimento & desenvolvimento , Cefalópodes/fisiologia , Caramujos/crescimento & desenvolvimento , Caramujos/fisiologia , Animais , Evolução Biológica , Fenômenos Mecânicos , Modelos Biológicos , Modelos Teóricos , Filogenia , Estresse Mecânico
10.
Artigo em Inglês | MEDLINE | ID: mdl-38878879

RESUMO

Gonadotropin-releasing hormone (GnRH)-like peptides are multifunctional neuropeptides involved in cardiac control, early ontogenesis, and reproduction in cephalopods. However, the precise role of GnRH-like peptides in embryonic development and juvenile growth in cephalopods remains unknown. In this study, we showed that GnRH-like peptides are involved in the embryonic development of kisslip cuttlefish (Sepia lycidas). We confirmed that higher water temperatures induced early hatching. Simultaneously, we found that brain GnRH-like peptide gene expression gradually increased with increasing hatching speed. However, the rise in water temperature within a suitable range had no effect on the juvenile sex ratio or early gonadal development. Our results indicate that GnRH-like peptides may play an accelerating role in embryonic development; however, they are not involved in sex determination or early gonadal development in kisslip cuttlefish.


Assuntos
Desenvolvimento Embrionário , Hormônio Liberador de Gonadotropina , Temperatura , Animais , Hormônio Liberador de Gonadotropina/metabolismo , Feminino , Masculino , Regulação da Expressão Gênica no Desenvolvimento , Água/metabolismo , Sepia/metabolismo , Sepia/embriologia , Sepia/crescimento & desenvolvimento , Embrião não Mamífero/metabolismo , Gônadas/metabolismo , Gônadas/crescimento & desenvolvimento
11.
Ecotoxicol Environ Saf ; 271: 115949, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219616

RESUMO

Ammonia is a common toxicant in aquatic systems and one of the key factors affecting aquaculture. However, data on mollusks' toxic response and coping mechanisms to ammonia nitrogen, especially freshwater mollusks, are still lacking. In this study, we evaluated the tolerance of a freshwater mollusk Solenaia oleivora to ammonia and investigated its coping mechanisms by combining physiological, metabolic, and transcriptomic analyses in the gills. The acute toxicity test revealed that the LC50-96 h (temperature-20 â„ƒ, pH-7.4) of ammonia in S. oleivora was 63.29 mg/L. The physiological and TUNEL results showed that although 10 mg/L ammonia exposure increased the activities of antioxidant, immune and ammonia detoxification-related enzymes, it still caused oxidative damage and cell apoptosis of gill tissues. A total of 97 differential metabolites (DMs) and 3431 differential expressed genes (DEGs) were identified after ammonia stress. Among them, most DMs and DEGs were involved in immune response, antioxidant, cell apoptosis, carbohydrate metabolism, amino acid metabolism, and lipid metabolism. The enhancement of glycolysis and lipid metabolisms may provide energy for immune response and ammonia detoxification. In addition, glutamine synthesis, alanine synthesis and urea cycle were involved in ammonia nitrogen detoxification in the gill tissue of S. oleivora. Our results indicate that ammonia leads to individual death in S. oleivora, as wells as oxidative damage, cell apoptosis, immune response, and metabolic changes of gill tissues. The findings will provide valuable information to assess the potential ecological risk of environmental ammonia to freshwater mollusks and theoretical guidance for the healthy aquaculture of S. oleivora.


Assuntos
Transcriptoma , Unionidae , Animais , Brânquias/metabolismo , Amônia/toxicidade , Amônia/metabolismo , Antioxidantes/metabolismo , Metaboloma , Unionidae/metabolismo , Nitrogênio/metabolismo
12.
Environ Monit Assess ; 196(3): 259, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349477

RESUMO

This work focused on assessing of the risk associated with the consumption of bivalve mollusks, potentially contaminated with phycotoxins. The studied phycotoxins are saxitoxin (STX), okadaic acid (OA), dinophysistoxins (DTXs), yessotoxins (YTXs), pectenotoxins (PTX), azaspiracids (AZAs), and domoic acid (DA). These toxins were investigated in three species of bivalve mollusks (Anadara senilis, Crassostrea gasar, and Perna perna), originating from the Ebrié lagoon. Chemical analyses were carried out by LC-MS/MS, HPLC-FLD, and HPLC-UV. The level of OA and DTXs, STX, and DA was 10.92 µg OA eq./kg, 9.6 µg STX eq./kg, and 0.17 mg DA eq./kg, respectively. The level of PTXs and AZAs was 3.3 µg PTX-2 eq./kg and 13.86 µg AZA-1 eq./kg; that of YTXs was 0.01 mg YTX eq./kg. The daily exposure dose (DED) was 0.019 µg OA eq./kg bw for OA and DTXs; 0.285 µg DA eq./kg bw for DA; 0.006 µg PTX-2 eq./kg bw for PTXs; 0.016 µg STX eq./kg bw for STX; 0.01 µg YTX eq./kg bw for YTXs; and 0.024 µg AZA-1 eq./kg bw for AZAs for the oyster Crassostrea gasar. These estimated values are lower than the acute reference dose (ARfD) of each phycotoxin recommended by the European Food Safety Agency (EFSA). The risk of harmful effects is acceptable. The absence of risk is valid only for the study period (11 months) and concerns coastal populations living near the sampling points.


Assuntos
Bivalves , Ecossistema , Furanos , Macrolídeos , Venenos de Moluscos , Oxocinas , Toxinas de Poliéter , Animais , Côte d'Ivoire , Cromatografia Líquida , Espectrometria de Massas em Tandem , Monitoramento Ambiental , Ácido Okadáico
13.
J Neurophysiol ; 129(5): 1045-1060, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36988203

RESUMO

Many behaviors and types of information storage are mediated by lengthy changes in neuronal activity. In bag cell neurons of the hermaphroditic sea snail Aplysia californica, a transient cholinergic synaptic input triggers an ∼30-min afterdischarge. This causes these neuroendocrine cells to release egg laying hormone and elicit reproductive behavior. When acetylcholine is pressure-ejected onto a current-clamped bag cell neuron, the evoked depolarization is far longer than the current evoked by acetylcholine under voltage clamp, suggesting recruitment of another conductance. Our earlier studies found bag cell neurons to display a voltage-dependent persistent Ca2+ current. Hence, we hypothesized that this current is activated by the acetylcholine-induced depolarization and sought a selective Ca2+ current blocker. Rapid Ca2+ current evoked by 200-ms depolarizing steps in voltage-clamped cultured bag cell neurons demonstrated a concentration-dependent sensitivity to Ni2+, Co2+, Zn2+, and verapamil but not Cd2+ or ω-conotoxin GIVa. Leak subtraction of Ca2+ current evoked by 10-s depolarizing steps using the IC100 (concentration required to eliminate maximal current) of Ni2+, Co2+, Zn2+, or verapamil revealed persistent Ca2+ current, demonstrating persistent current block. Only Co2+ and Zn2+ did not suppress the acetylcholine-induced current, although Zn2+ appeared to impact additional channels. When Co2+ was applied during an acetylcholine-induced depolarization, the amplitude was reduced; furthermore, protein kinase C activation, previously established to enhance the persistent Ca2+ current, extended the depolarization. Therefore, the persistent Ca2+ current sustains the acetylcholine-induced depolarization and may translate brief cholinergic input into afterdischarge initiation. This could be a general mechanism of triggering long-term change in activity with a short-lived input.NEW & NOTEWORTHY Ionotropic acetylcholine receptors mediate brief synaptic communication, including in bag cell neurons of the sea snail Aplysia. However, this study demonstrates that cholinergic depolarization can open a voltage-gated persistent Ca2+ current, which extends the bag cell neuron response to acetylcholine. Bursting in these neuroendocrine cells results in hormone release and egg laying. Thus, this emphasizes the role of ionotropic signaling in reaching a depolarized level to engage Ca2+ influx and perpetuating the activity necessary for behavior.


Assuntos
Acetilcolina , Aplysia , Animais , Aplysia/fisiologia , Acetilcolina/farmacologia , Neurônios/fisiologia , Colinérgicos , Verapamil , Hormônios , Cálcio/metabolismo
14.
Mol Biol Evol ; 39(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34751376

RESUMO

Although a conserved mechanism relying on BMP2/4 and Chordin is suggested for animal dorsal-ventral (DV) patterning, this mechanism has not been reported in spiralians, one of the three major clades of bilaterians. Studies on limited spiralian representatives have suggested markedly diverse DV patterning mechanisms, a considerable number of which no longer deploy BMP signaling. Here, we showed that BMP2/4 and Chordin regulate DV patterning in the mollusk Lottia goshimai, which was predicted in spiralians but not previously reported. In the context of the diverse reports in spiralians, it conversely represents a relatively unusual case. We showed that BMP2/4 and Chordin coordinate to mediate signaling from the D-quadrant organizer to induce the DV axis, and Chordin relays the symmetry-breaking information from the organizer. Further investigations on L. goshimai embryos with impaired DV patterning suggested roles of BMP signaling in regulating the behavior of the blastopore and the organization of the nervous system. These findings provide insights into the evolution of animal DV patterning and the unique development mode of spiralians driven by the D-quadrant organizer.


Assuntos
Padronização Corporal , Peptídeos e Proteínas de Sinalização Intercelular , Moluscos , Animais , Padronização Corporal/genética , Glicoproteínas/genética , Transdução de Sinais
15.
Glycoconj J ; 40(1): 33-46, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36454453

RESUMO

Marcia hiantina (Mollusca, Bivalvia) (Lamarck, 1818), is an edible clam mainly distributed along the tropical coastal regions. Recent researches have demonstrated that clams can possess compounds, including polysaccharides, with a wide range of biological actions including antioxidant, immunomodulatory and antitumor activities. Here an α-glucan was isolated from M. hiantina by hot water, purified by anion exchange chromatography, and its structure was characterized by a combination of multiple nuclear magnetic resonance (NMR) methods (1D 1H, 1H-1H COSY, 1H-1H TOCSY, 1H-1H NOESY, 1H-13C HSQC and 1H-13C HSQC-NOESY spectra), gas chromatography-mass spectrometry, and high performance size exclusion chromatography (HPSEC). The analysis from NMR, monosaccharide composition, methylation analyses and HPSEC combined with multi-angle light scattering (MALS) of M. hiantina-derived α-glycan confirmed a branched polysaccharide exclusively composed of glucose (Glc), mostly 4-linked in its backbone, branched occasionally at 6-positions, and having a molecular weight of ~ 570 kDa. The mollusk α-glucan was subjected to four cell-based assays: (i) viability of three cell lines (RAW264.7, HaCaT, and HT-29), (ii) activity on lipopolysaccharide (LPS)-induced prostaglandin production in RAW264.7 cells, (iii) inhibitory activities of in H2O2- and LPS-induced reactive oxygen species (ROS) production in HMC3 cells, and (iv) HaCaT cell proliferation. Results have indicated no cytotoxicity, potent inhibition of both H2O2- and LPS-induced ROS, and potent cell proliferative activity.


Assuntos
Bivalves , Glucanos , Animais , Glucanos/química , Lipopolissacarídeos , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Polissacarídeos/química , Cromatografia em Gel
16.
J Exp Biol ; 226(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37661725

RESUMO

Nudibranch mollusks have structurally simple eyes whose behavioral roles have not been established. We tested the effects of visual stimuli on the behavior of the nudibranch Berghia stephanieae under different food and hunger conditions. In an arena that was half-shaded, animals spent most of their time in the dark, where they also decreased their speed and made more changes in heading. These behavioral differences between the light and dark were less evident in uniformly illuminated or darkened arenas, suggesting that they were not caused by the level of illumination. Berghia stephanieae responded to distant visual targets; animals approached a black stripe that was at least 15 deg wide on a white background. They did not approach a stripe that was lighter than the background but approached a stripe that was isoluminant with the background, suggesting the detection of spatial information. Animals traveled in convoluted paths in a featureless arena but straightened their paths when a visual target was present even if they did not approach it, suggesting that visual cues were used for navigation. Individuals were less responsive to visual stimuli when food deprived or in the presence of food odor. Thus, B. stephanieae exhibits visually guided behaviors that are influenced by odors and hunger state.


Assuntos
Sinais (Psicologia) , Odorantes , Humanos , Animais , Estimulação Luminosa
17.
J Exp Biol ; 226(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37902141

RESUMO

Organismal responses to stressful environments are influenced by numerous transcript- and protein-level mechanisms, and the relationships between expression changes at these levels are not always straightforward. Here, we used paired transcriptomic and proteomic datasets from two previous studies from gill of the California mussel, Mytilus californianus, to explore how simultaneous transcript and protein abundance patterns may diverge under different environmental scenarios. Field-acclimatized mussels were sampled from two disparate intertidal sites; individuals from one site were subjected to three further treatments (common garden, low-intertidal or high-intertidal outplant) that vary in temperature and feeding time. Assessing 1519 genes shared between the two datasets revealed that both transcript and protein expression patterns differentiated the treatments at a global level, despite numerous underlying discrepancies. There were far more instances of differential expression between treatments in transcript only (1451) or protein only (226) than of the two levels shifting expression concordantly (68 instances). Upregulated expression of cilium-associated transcripts (likely related to feeding) was associated with relatively benign field treatments. In the most stressful treatment, transcripts, but not proteins, for several molecular chaperones (including heat shock proteins and endoplasmic reticulum chaperones) were more abundant, consistent with a threshold model for induction of translation of constitutively available mRNAs. Overall, these results suggest that the relative importance of transcript- and protein-level regulation (translation and/or turnover) differs among cellular functions and across specific microhabitats or environmental contexts. Furthermore, the degree of concordance between transcript and protein expression can vary across benign versus acutely stressful environmental conditions.


Assuntos
Multiômica , Mytilus , Humanos , Animais , Proteômica , Temperatura , Mytilus/genética , Temperatura Corporal
18.
J Invertebr Pathol ; 196: 107856, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36414122

RESUMO

Farming intensification and climate change are inevitably linked to pathogen emergence in aquaculture. In this context, infectious diseases associated with vibrios span all developmental stages of the Pacific Oyster Crassostrea gigas. Moreover, virulence factors associated with pathogenicity spread among the vibrio community through horizontal gene transfer as part of the natural eco-evolutive dynamic of this group. Therefore, risk factors associated with the emergence of pathogens should be assessed before the appearance of mass mortalities in developing rearing areas. In this context, we characterized the vibrios community associated with oysters cultured in a non-intensive area free of massive mortalities located at Tongoy bay, Chile, through a culture-dependent approach. We taxonomically affiliated our isolates at the species level through the partial sequencing of the heat shock protein 60 gene and estimated their virulence potential through experimental infection of juvenile C. gigas. The vibrio community belonged almost entirely to the Splendidus clade, with Vibrio lentus being the most abundant species. The virulence potential of selected isolates was highly contrasted with oyster survival ranging between 100 and 30 %. Moreover, different vibrio species affected oyster survival at different rates, for instance V. splendidus TO2_12 produced most mortalities just 24 h after injection, while the V. lentus the most virulent strain TO6_11 produced sustained mortalities reaching 30 % of survival at day 4 after injection. Production of enzymes associated with pathogenicity was detected and hemolytic activity was positive for 50 % of the virulent strains and negative for 90 % of non-virulent strains, representing the phenotype that better relates to the virulence status of strains. Overall, results highlight that virulence is a trait present in the absence of disease expression, and therefore the monitoring of potentially pathogenic groups such as vibrios is essential to anticipate and manage oyster disease emergence in both established and under-development rearing areas.


Assuntos
Crassostrea , Vibrio , Animais , Virulência , Fatores de Virulência , Aquicultura
19.
Mar Drugs ; 21(2)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36827161

RESUMO

Depsipeptides, an important group of polypeptides containing residues of hydroxy acids and amino acids linked together by amide and ester bonds, have potential applications in agriculture and medicine. A growing body of evidence demonstrates that marine organisms are prolific sources of depsipeptides, such as marine cyanobacteria, sponges, mollusks, microorganisms and algae. However, these substances have not yet been comprehensively summarized. In order to enrich our knowledge about marine depsipeptides, their biological sources and structural features, as well as bioactivities, are highlighted in this review after an extensive literature search and data analysis.


Assuntos
Cianobactérias , Depsipeptídeos , Organismos Aquáticos/química , Depsipeptídeos/química , Cianobactérias/química , Amidas
20.
Proc Natl Acad Sci U S A ; 117(1): 43-51, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31843921

RESUMO

Brachiopods and mollusks are 2 shell-bearing phyla that diverged from a common shell-less ancestor more than 540 million years ago. Brachiopods and bivalve mollusks have also convergently evolved a bivalved shell that displays an apparently mundane, yet striking feature from a developmental point of view: When the shell is closed, the 2 valve edges meet each other in a commissure that forms a continuum with no gaps or overlaps despite the fact that each valve, secreted by 2 mantle lobes, may present antisymmetric ornamental patterns of varying regularity and size. Interlocking is maintained throughout the entirety of development, even when the shell edge exhibits significant irregularity due to injury or other environmental influences, which suggests a dynamic physical process of pattern formation that cannot be genetically specified. Here, we derive a mathematical framework, based on the physics of shell growth, to explain how this interlocking pattern is created and regulated by mechanical instabilities. By close consideration of the geometry and mechanics of 2 lobes of the mantle, constrained both by the rigid shell that they secrete and by each other, we uncover the mechanistic basis for the interlocking pattern. Our modeling framework recovers and explains a large diversity of shell forms and highlights how parametric variations in the growth process result in morphological variation. Beyond the basic interlocking mechanism, we also consider the intricate and striking multiscale-patterned edge in certain brachiopods. We show that this pattern can be explained as a secondary instability that matches morphological trends and data.


Assuntos
Exoesqueleto/anatomia & histologia , Exoesqueleto/crescimento & desenvolvimento , Bivalves/anatomia & histologia , Bivalves/crescimento & desenvolvimento , Morfogênese/fisiologia , Animais , Evolução Biológica , Bivalves/classificação , Fenômenos Mecânicos , Modelos Anatômicos , Modelos Teóricos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA