Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Cell ; 77(4): 761-774.e8, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31973890

RESUMO

The tumor suppressor p53 transcriptionally activates target genes to suppress cellular proliferation during stress. p53 has also been implicated in the repression of the proto-oncogene Myc, but the mechanism has remained unclear. Here, we identify Pvt1b, a p53-dependent isoform of the long noncoding RNA (lncRNA) Pvt1, expressed 50 kb downstream of Myc, which becomes induced by DNA damage or oncogenic signaling and accumulates near its site of transcription. We show that production of the Pvt1b RNA is necessary and sufficient to suppress Myc transcription in cis without altering the chromatin organization of the locus. Inhibition of Pvt1b increases Myc levels and transcriptional activity and promotes cellular proliferation. Furthermore, Pvt1b loss accelerates tumor growth, but not tumor progression, in an autochthonous mouse model of lung cancer. These findings demonstrate that Pvt1b acts at the intersection of the p53 and Myc transcriptional networks to reinforce the anti-proliferative activities of p53.


Assuntos
Carcinogênese/genética , Regulação da Expressão Gênica , Proteínas Proto-Oncogênicas c-myc/genética , RNA Longo não Codificante/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Células Cultivadas , Cromatina/metabolismo , Elementos Facilitadores Genéticos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , Estresse Fisiológico/genética , Proteína Supressora de Tumor p53/genética
2.
Drug Resist Updat ; 71: 101007, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37741091

RESUMO

Therapy resistance has long been considered to occur through the selection of pre-existing clones equipped to survive and quickly regrow, or through the acquisition of mutations during chemotherapy. Here we show that following in vitro treatment by chemotherapy, epithelial breast cancer cells adopt a transient drug tolerant phenotype characterized by cell cycle arrest, epithelial-to-mesenchymal transition (EMT) and the reversible upregulation of the multidrug resistance (MDR) efflux transporter P-glycoprotein (P-gp). The drug tolerant persister (DTP) state is reversible, as cells eventually resume proliferation, giving rise to a cell population resembling the initial, drug-naïve cell lines. However, recovery after doxorubicin treatment is almost completely eliminated when DTP cells are cultured in the presence of the P-gp inhibitor Tariquidar. Mechanistically, P-gp contributes to the survival of DTP cells by removing reactive oxygen species-induced lipid peroxidation products resulting from doxorubicin exposure. In vivo, prolonged administration of Tariquidar during doxorubicin treatment holidays resulted in a significant increase of the overall survival of Brca1-/-;p53-/- mammary tumor bearing mice. These results indicate that prolonged administration of a P-gp inhibitor during drug holidays would likely benefit patients without the risk of aggravated side effects related to the concomitantly administered toxic chemotherapy. Effective targeting of DTPs through the inhibition of P-glycoprotein may result in a paradigm shift, changing the focus from countering drug resistance mechanisms to preventing or delaying therapy resistance.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Neoplasias da Mama , Humanos , Animais , Camundongos , Feminino , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Peroxidação de Lipídeos , Preparações Farmacêuticas , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Doxorrubicina/farmacologia
3.
Genes Dev ; 29(17): 1850-62, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26341558

RESUMO

Despite the fact that the majority of lung cancer deaths are due to metastasis, the molecular mechanisms driving metastatic progression are poorly understood. Here, we present evidence that loss of Foxa2 and Cdx2 synergizes with loss of Nkx2-1 to fully activate the metastatic program. These three lineage-specific transcription factors are consistently down-regulated in metastatic cells compared with nonmetastatic cells. Knockdown of these three factors acts synergistically and is sufficient to promote the metastatic potential of nonmetastatic cells to that of naturally arising metastatic cells in vivo. Furthermore, silencing of these three transcription factors is sufficient to account for a significant fraction of the gene expression differences between the nonmetastatic and metastatic states in lung adenocarcinoma, including up-regulated expression of the invadopodia component Tks5long, the embryonal proto-oncogene Hmga2, and the epithelial-to-mesenchymal mediator Snail. Finally, analyses of tumors from a genetically engineered mouse model and patients show that low expression of Nkx2-1, Foxa2, and Cdx2 strongly correlates with more advanced tumors and worse survival. Our findings reveal that a large part of the complex transcriptional network in metastasis can be controlled by a small number of regulatory nodes that function redundantly, and loss of multiple nodes is required to fully activate the metastatic program.


Assuntos
Adenocarcinoma/fisiopatologia , Fator 3-beta Nuclear de Hepatócito/metabolismo , Proteínas de Homeodomínio/metabolismo , Neoplasias Pulmonares/fisiopatologia , Metástase Neoplásica/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/mortalidade , Adenocarcinoma de Pulmão , Animais , Animais Geneticamente Modificados , Fator de Transcrição CDX2 , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Inativação Gênica , Fator 3-beta Nuclear de Hepatócito/genética , Proteínas de Homeodomínio/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Camundongos , Camundongos Nus , Proteínas Nucleares/genética , Proto-Oncogene Mas , Fator Nuclear 1 de Tireoide , Fatores de Transcrição/genética
4.
Biomed Pharmacother ; 168: 115817, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37925934

RESUMO

Metformin is a widespread antidiabetic agent that is commonly used as a treatment against type 2 diabetes mellitus patients. Regarding its therapeutic potential, multiple studies have concluded that Metformin exhibits antineoplastic activity on several types of cancer, including endometrial carcinoma. Although Metformin's antineoplastic activity is well documented, its cellular and molecular anticancer mechanisms are still a matter of controversy because a plethora of anticancer mechanisms have been proposed for different cancer cell types. In this study, we addressed the cellular and molecular mechanisms of Metformin's antineoplastic activity by using both in vitro and in vivo studies of Pten-loss driven carcinoma mouse models. In vivo, Metformin reduced endometrial neoplasia initiated by Pten-deficiency. Our in vitro studies using Pten-deficient endometrial organoids focused on both cellular and molecular levels in Metformin's tumor suppressive action. At cellular level, we showed that Metformin is involved in not only the proliferation of endometrial epithelial cells but also their regulation via a variety of mechanisms of epithelial-to-mesenchymal transition (EMT) as well as TGF-ß-induced apoptosis. At the molecular level, Metformin was shown to affect the TGF-ß signalling., a widely known signal that plays a pivotal role in endometrial carcinogenesis. In this respect, Metformin restored TGF-ß-induced apoptosis of Pten-deficient endometrial organoids through a p38-dependent mechanism and inhibited TGF-ß-induced EMT on no-polarized endometrial epithelial cells by inhibiting ERK/MAPK signalling. These results provide new insights into the link between the cellular and molecular mechanism for Metformin's antineoplastic activity in Pten-deficient endometrial cancers.


Assuntos
Antineoplásicos , Diabetes Mellitus Tipo 2 , Neoplasias do Endométrio , Metformina , Humanos , Feminino , Animais , Camundongos , Metformina/farmacologia , Metformina/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Fator de Crescimento Transformador beta/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias do Endométrio/patologia , Proliferação de Células
5.
Adv Sci (Weinh) ; 10(32): e2303134, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37749866

RESUMO

Phosphatase and TENsin homolog (Pten) and p53 are two of the most frequently mutated tumor suppressor genes in endometrial cancer. However, the functional consequences and histopathological manifestation of concomitant p53 and Pten loss of function alterations in the development of endometrial cancer is still controversial. Here, it is demonstrated that simultaneous Pten and p53 deletion is sufficient to cause epithelial to mesenchymal transition phenotype in endometrial organoids. By a novel intravaginal delivery method using HIV1 trans-activator of transcription cell penetrating peptide fused with a Cre recombinase protein (TAT-Cre), local ablation of both p53 and Pten is achieved specifically in the uterus. These mice developed high-grade endometrial carcinomas and a high percentage of uterine carcinosarcomas resembling those found in humans. To further demonstrate that carcinosarcomas arise from epithelium, double Pten/p53 deficient epithelial cells are mixed with wild type stromal and myometrial cells and subcutaneously transplanted to Scid mice. All xenotransplants resulted in the development of uterine carcinosarcomas displaying high nuclear pleomorphism and metastatic potential. Accordingly, in vivo CRISPR/Cas9 disruption of Pten and p53 also triggered the development of metastatic carcinosarcomas. The results unfadingly demonstrate that simultaneous deletion of p53 and Pten in endometrial epithelial cells is enough to trigger epithelial to mesenchymal transition that is consistently translated to the formation of uterine carcinosarcomas in vivo.


Assuntos
Carcinossarcoma , Neoplasias do Endométrio , Neoplasias Uterinas , Humanos , Feminino , Camundongos , Animais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Transição Epitelial-Mesenquimal , Sistemas CRISPR-Cas/genética , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Neoplasias Uterinas/genética , Neoplasias Uterinas/patologia , Carcinossarcoma/genética , Carcinossarcoma/patologia
6.
Elife ; 92020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32571479

RESUMO

Glucose utilization increases in tumors, a metabolic process that is observed clinically by 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET). However, is increased glucose uptake important for tumor cells, and which transporters are implicated in vivo? In a genetically-engineered mouse model of lung adenocarcinoma, we show that the deletion of only one highly expressed glucose transporter, Glut1 or Glut3, in cancer cells does not impair tumor growth, whereas their combined loss diminishes tumor development. 18F-FDG-PET analyses of tumors demonstrate that Glut1 and Glut3 loss decreases glucose uptake, which is mainly dependent on Glut1. Using 13C-glucose tracing with correlated nanoscale secondary ion mass spectrometry (NanoSIMS) and electron microscopy, we also report the presence of lamellar body-like organelles in tumor cells accumulating glucose-derived biomass, depending partially on Glut1. Our results demonstrate the requirement for two glucose transporters in lung adenocarcinoma, the dual blockade of which could reach therapeutic responses not achieved by individual targeting.


Assuntos
Adenocarcinoma de Pulmão/fisiopatologia , Deleção de Genes , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 2/genética , Glucose/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Fluordesoxiglucose F18/química , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 2/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Tomografia por Emissão de Pósitrons , Espectrometria de Massa de Íon Secundário
7.
Cell Rep ; 29(10): 2998-3008.e8, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31801068

RESUMO

Regulatory T cells (Tregs) can impair anti-tumor immune responses and are associated with poor prognosis in multiple cancer types. Tregs in human tumors span diverse transcriptional states distinct from those of peripheral Tregs, but their contribution to tumor development remains unknown. Here, we use single-cell RNA sequencing (RNA-seq) to longitudinally profile dynamic shifts in the distribution of Tregs in a genetically engineered mouse model of lung adenocarcinoma. In this model, interferon-responsive Tregs are more prevalent early in tumor development, whereas a specialized effector phenotype characterized by enhanced expression of the interleukin-33 receptor ST2 is predominant in advanced disease. Treg-specific deletion of ST2 alters the evolution of effector Treg diversity, increases infiltration of CD8+ T cells into tumors, and decreases tumor burden. Our study shows that ST2 plays a critical role in Treg-mediated immunosuppression in cancer, highlighting potential paths for therapeutic intervention.


Assuntos
Interleucina-33/imunologia , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Feminino , Tolerância Imunológica/imunologia , Terapia de Imunossupressão/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Microambiente Tumoral/imunologia
8.
Lung Cancer ; 119: 25-35, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29656749

RESUMO

OBJECTIVES: Tumor-associated macrophages (TAMs) are known to promote tumorigenesis but the mechanism(s) remain elusive. We have developed a mouse model of lung cancer that is initiated through an inducible overexpression of fibroblast growth factor 9 (FGF9) in type-2 pneumocytes. Expression of FGF9 in adult lungs resulted in a rapid development of multiple adenocarcinoma-like tumor nodules, and is associated with an intense immunological reaction. The purpose of this study is to characterize the immune response to the FGF9-induced lung adenocarcinoma and to determine the contribution of TAMs to growth and survival of these tumors. MATERIALS AND METHODS: We used flow cytometry, immunostaining, RT-PCR and in vitro culture system on various cell populations isolated from the FGF9-induced adenocarcinoma mouse lungs. RESULTS: Immunostaining demonstrated that the majority of the inflammatory cells recruited to FGF9-induced lung tumors were macrophages. These TAMs were enriched for the alternatively activated (M2) macrophage subtype. TAMs performed a significantly high immune suppressive function on T-cells and displayed high levels of arginase-1 expression and activity. The growth and colony forming potential of tumor cells was induced by co-culture with TAMs. Additionally, TAMs were shown to promote fibroblast proliferation and angiogenesis. TAMs had high expression of Tgf-ß, Vegf, Fgf2, Fgf10, Fgfr2 and several matrix metalloproteinases; factors that play multiple roles in supporting tumor growth, immune protection, fibroblast activation and angiogenesis. CONCLUSION: Our results provide evidence that the Fgf9-induced lung adenocarcinoma is associated with recruitment and activation of M2-biased TAMs, which provided multiple means of support to the tumor. This model represents an excellent means to further study the complex interactions between TAMs, their related chemokines, and progression of lung adenocarcinoma, and adds further evidence to support the importance of TAMs in tumorigenesis.


Assuntos
Adenocarcinoma/imunologia , Neoplasias Pulmonares/imunologia , Macrófagos/imunologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transformação Celular Neoplásica , Modelos Animais de Doenças , Progressão da Doença , Fator 9 de Crescimento de Fibroblastos/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Transgênicos , Fator de Crescimento Transformador beta/metabolismo
9.
Cancer Lett ; 347(2): 204-11, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24576621

RESUMO

PI3K inhibition in combination with other agents has not been studied in the context of PIK3CA wild-type, KRAS mutant cancer. In a screen of phospho-kinases, PI3K inhibition of KRAS mutant colorectal cancer cells activated the MAPK pathway. Combination PI3K/MEK inhibition with NVP-BKM120 and PD-0325901 induced tumor regression in a mouse model of PIK3CA wild-type, KRAS mutant colorectal cancer, which was mediated by inhibition of mTORC1, inhibition of MCL-1, and activation of BIM. These findings implicate mitochondrial-dependent apoptotic mechanisms as determinants for the efficacy of PI3K/MEK inhibition in the treatment of PIK3CA wild-type, KRAS mutant cancer.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Colorretais/patologia , Genes ras , MAP Quinase Quinase Quinases/antagonistas & inibidores , Mutação , Inibidores de Fosfoinositídeo-3 Quinase , Animais , Classe I de Fosfatidilinositol 3-Quinases , Neoplasias Colorretais/enzimologia , Inibidores Enzimáticos/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA