Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Pharm Bull (Tokyo) ; 66(2): 123-131, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29386462

RESUMO

Muraymycins, isolated from a culture broth of Streptomyces sp., are members of a class of naturally occurring nucleoside antibiotics. They are strong inhibitors of the phospho-MurNAc-pentapeptide translocase (MraY), which is responsible for the peptidoglycan biosynthesis. Since MraY is an essential enzyme among bacteria, muraymycins are expected to be a novel antibacterial agent. In this review, our efforts to synthesize muraymycin D2, simplify the chemical structure, improve antibacterial spectrum, and solve the X-ray crystal structure of the muraymycin D2/MraY complex are described.


Assuntos
Antibacterianos/síntese química , Antibacterianos/metabolismo , Nucleosídeos/síntese química , Nucleosídeos/metabolismo , Peptídeos/síntese química , Peptídeos/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Cristalização , Humanos , Estrutura Molecular , Streptomyces , Relação Estrutura-Atividade , Transferases/antagonistas & inibidores , Transferases (Outros Grupos de Fosfato Substituídos)
2.
Antibiotics (Basel) ; 13(5)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38786149

RESUMO

Chlamydial infections and diseases caused by filarial nematodes are global health concerns. However, treatment presents challenges due to treatment failures potentially caused by persisting Chlamydia and long regimens against filarial infections accompanied by low compliance. A new treatment strategy could be the targeting of the reduced peptidoglycan structures involved in cell division in the obligate intracellular bacteria Chlamydia and Wolbachia, the latter being obligate endosymbionts supporting filarial development, growth, and survival. Here, cell culture experiments with C. trachomatis and Wolbachia showed that the nucleoside antibiotics muraymycin and carbacaprazamycin interfere with bacterial cell division and induce enlarged, aberrant cells resembling the penicillin-induced persistence phenotype in Chlamydia. Enzymatic inhibition experiments with purified C. pneumoniae MraY revealed that muraymycin derivatives abolish the synthesis of the peptidoglycan precursor lipid I. Comparative in silico analyses of chlamydial and wolbachial MraY with the corresponding well-characterized enzyme in Aquifex aeolicus revealed a high degree of conservation, providing evidence for a similar mode of inhibition. Muraymycin D2 treatment eradicated persisting non-dividing C. trachomatis cells from an established penicillin-induced persistent infection. This finding indicates that nucleoside antibiotics may have additional properties that can break bacterial persistence.

3.
Antibiotics (Basel) ; 11(9)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36139968

RESUMO

New inhibitors of the bacterial transferase MraY from Aquifex aeolicus (MraYAA), based on the aminoribosyl uridine central core of known natural MraY inhibitors, have been designed to generate interaction of their oxadiazole linker with the key amino acids (H324 or H325) of the enzyme active site, as observed for the highly potent inhibitors carbacaprazamycin, muraymycin D2 and tunicamycin. A panel of ten compounds was synthetized notably thanks to a robust microwave-activated one-step sequence for the synthesis of the oxadiazole ring that involved the O-acylation of an amidoxime and subsequent cyclization. The synthetized compounds, with various hydrophobic substituents on the oxadiazole ring, were tested against the MraYAA transferase activity. Although with poor antibacterial activity, nine out of the ten compounds revealed the inhibition of the MraYAA activity in the range of 0.8 µM to 27.5 µM.

4.
Eur J Med Chem ; 215: 113272, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33607457

RESUMO

Antibiotic resistance is one of the most challenging global health issues and presents an urgent need for the development of new antibiotics. In this regard, phospho-MurNAc-pentapeptide translocase (MraY), an essential enzyme in the early stages of peptidoglycan biosynthesis, has emerged as a promising new antibiotic target. We recently reported the crystal structures of MraY in complex with representative members of naturally occurring nucleoside antibiotics, including muraymycin D2. However, these nucleoside antibiotics are synthetically challenging targets, which limits the scope of medicinal chemistry efforts on this class of compounds. To gain access to active muraymycin analogs with reduced structural complexity and improved synthetic tractability, we prepared and evaluated cyclopentane-based muraymycin analogs for targeting MraY. For the installation of the 1,2-syn-amino alcohol group of analogs, the diastereoselective isocyanoacetate aldol reaction was explored. The structure-activity relationship analysis of the synthesized analogs suggested that a lipophilic side chain is essential for MraY inhibition. Importantly, the analog 20 (JH-MR-23) showed antibacterial efficacy against Staphylococcus aureus. These findings provide insights into designing new muraymycin-based MraY inhibitors with improved chemical tractability.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Ciclopentanos/farmacologia , Transferases/antagonistas & inibidores , Uridina/análogos & derivados , Uridina/farmacologia , Antibacterianos/síntese química , Arginina/análogos & derivados , Arginina/farmacologia , Ciclopentanos/síntese química , Ensaios Enzimáticos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Transferases (Outros Grupos de Fosfato Substituídos)
5.
Synthesis (Stuttg) ; 53(15): 2643-2650, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35431351

RESUMO

(4,4'-Bisfluorophenyl)methoxymethyl (BFPM) group of uridine ureido nitrogen shows good relative stability in a variety of chemical transformation reactions for uridine. The BFPM group can be cleaved via 2% of TFA in CH2Cl2 without affecting the Boc group.

6.
ACS Med Chem Lett ; 5(5): 556-60, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24900879

RESUMO

It is urgent to develop novel anti-Pseudomonas agents that should also be active against multidrug resistant P. aeruginosa. Expanding the antibacterial spectrum of muraymycins toward P. aeruginosa was investigated by the systematic structure-activity relationship study. It was revealed that two functional groups, a lipophilic side chain and a guanidino group, at the accessory moiety of muraymycins were important for the anti-Pseudomonas activity, and analogue 29 exhibited antibacterial activity against a range of P. aeruginosa strains with the minimum inhibitory concentration values of 4-8 µg/mL.

7.
ACS Med Chem Lett ; 1(6): 258-62, 2010 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-24900205

RESUMO

Muraymycin analogues with a lipophilic substituent were synthesized using an Ugi four-component assemblage. This approach provides ready access to a range of analogues simply by altering the aldehyde component. The impact of the lipophilic substituent on the antibacterial activity was very large, and analogues 7b-e and 8b-e exhibited good activity against a range of Gram-positive bacterial pathogens including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. This study also showed that the accessory urea-dipeptide motif contributes to MraY inhibitory and antibacterial activity. The knowledge obtained from our structure-activity relationship study of muraymycins provides further direction toward the design of potent MraY inhibitors. This study has set the stage for the generation of novel antibacterial "lead" compounds based on muraymycins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA