Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Proteome Res ; 21(5): 1276-1284, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35349291

RESUMO

The characteristics of monoclonal antibodies (mAbs) cohering various function effectors show great expectation in therapy. Glycosylation, one of the common post-translational modifications, deeply influences cohesion. It is necessary to grasp monosaccharide composition/sequence and glycan structures in mAbs. There has been comprehensive mass spectrometry characterization of N-glycosylation of mAbs, and monosaccharide compositions are deduced according to known biosynthetic rules. Our recently developed intact N-glycopeptide search engine GPSeeker has made structure-specific characterization of N-glycosylation possible with structure-diagnostic fragment ions from selective fragmentation of N-glycan moieties. Here, we report our structure-specific N-glycoproteomics characterization of NIST monoclonal antibody reference material 8671 using GPSeeker, and 59 N-glycan structures (including 16 pairs of isomers) are characterized.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Anticorpos Monoclonais , Glicopeptídeos/análise , Monossacarídeos , Polissacarídeos/análise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
2.
Gen Comp Endocrinol ; 306: 113731, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33539901

RESUMO

Gonadotropins (Gths), follicle-stimulating hormone (Fsh), and luteinizing hormone (Lh) play central roles in the reproductive biology of vertebrates. In this study, recombinant single-chain Japanese eel Gths (rGth: rFsh and rLh), and recombinant chimeric Gths (rGth-hCTPs: rFsh-hCTP and rLh-hCTP; rGth-eCTPs: rFsh-eCTP and rLh-eCTP) with an extra O-glycosylation site (either a C-terminal peptide of human (hCTP) or equine (eCTP) chorionic gonadotropin), which are known to prolong the half-life of glycoprotein were produced in HEK293 cells and highly purified. Lectin blot analyses demonstrated that all these recombinant Gths contained N-glycans of the high mannose and complex types. In contrast, only rGth-hCTPs and rGth-eCTPs possessed highly sialylated O-linked oligosaccharides. Further analyses of glycans by liquid chromatography-mass spectrometry suggested that the species, amount, and degree of sialylation of N-glycans were comparable among recombinant Fshs and recombinant Lhs, while the amount of O-glycans with sialic acids in rGth-hCTPs was higher than that in the corresponding rGth-eCTPs. The serum levels of recombinant Gths in male eels significantly increased 12-24 h after a single injection of the Gths. The levels of rGth-hCTPs tended to be higher than those of the corresponding rGths and rGth-eCTPs throughout the experimental period, coinciding with the serum fluctuations of 11-ketotestosterone (11KT). The long-term treatment of male eels with these recombinant Gths also revealed the superiority of rGth-hCTPs in assisted reproduction; thus, the serum levels of 11KT and gonadosomatic indices in eels treated with rGth-hCTPs were higher than those in eels treated with the corresponding rGths and rGth-eCTPs. The induction of the entire process of spermatogenesis was only histologically observed in rGth-hCTPs-treated eels. These findings strongly suggest that hCTP enhances the in vivo biological activity of recombinant Japanese eel Gths due to the high abundance of O-linked glycans with sialylated antennae.


Assuntos
Anguilla , Hormônio Luteinizante , Animais , Gonadotropina Coriônica/farmacologia , Hormônio Foliculoestimulante , Células HEK293 , Cavalos , Humanos , Masculino , Proteínas Recombinantes
3.
Microb Ecol ; 80(1): 223-236, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31982929

RESUMO

The success of symbioses between cnidarian hosts (e.g., corals and sea anemones) and micro-algal symbionts hinges on the molecular interactions that govern the establishment and maintenance of intracellular mutualisms. As a fundamental component of innate immunity, glycan-lectin interactions impact the onset of marine endosymbioses, but our understanding of the effects of cell surface glycome composition on symbiosis establishment remains limited. In this study, we examined the canonical N-glycan biosynthesis pathway in the genome of the dinoflagellate symbiont Breviolum minutum (family Symbiodiniaceae) and found it to be conserved with the exception of the transferase GlcNAc-TII (MGAT2). Using coupled liquid chromatography-mass spectrometry (LC-MS/MS), we characterized the cell surface N-glycan content of B. minutum, providing the first insight into the molecular composition of surface glycans in dinoflagellates. We then used the biosynthesis inhibitors kifunensine and swainsonine to alter the glycan composition of B. minutum. Successful high-mannose enrichment via kifunensine treatment resulted in a significant decrease in colonization of the model sea anemone Aiptasia (Exaiptasia pallida) by B. minutum. Hybrid glycan enrichment via swainsonine treatment, however, could not be confirmed and did not impact colonization. We conclude that functional Golgi processing of N-glycans is critical for maintaining appropriate cell surface glycan composition and for ensuring colonization success by B. minutum.


Assuntos
Antozoários/microbiologia , Dinoflagellida/fisiologia , Polissacarídeos/fisiologia , Simbiose , Animais , Interações entre Hospedeiro e Microrganismos , Polissacarídeos/biossíntese , Polissacarídeos/química
4.
J Virol ; 92(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29491160

RESUMO

All human influenza pandemics have originated from avian influenza viruses. Although multiple changes are needed for an avian virus to be able to transmit between humans, binding to human-type receptors is essential. Several research groups have reported mutations in H5N1 viruses that exhibit specificity for human-type receptors and promote respiratory droplet transmission between ferrets. Upon detailed analysis, we have found that these mutants exhibit significant differences in fine receptor specificity compared to human H1N1 and H3N2 and retain avian-type receptor binding. We have recently shown that human influenza viruses preferentially bind to α2-6-sialylated branched N-linked glycans, where the sialic acids on each branch can bind to receptor sites on two protomers of the same hemagglutinin (HA) trimer. In this binding mode, the glycan projects over the 190 helix at the top of the receptor-binding pocket, which in H5N1 would create a stearic clash with lysine at position 193. Thus, we hypothesized that a K193T mutation would improve binding to branched N-linked receptors. Indeed, the addition of the K193T mutation to the H5 HA of a respiratory-droplet-transmissible virus dramatically improves both binding to human trachea epithelial cells and specificity for extended α2-6-sialylated N-linked glycans recognized by human influenza viruses.IMPORTANCE Infections by avian H5N1 viruses are associated with a high mortality rate in several species, including humans. Fortunately, H5N1 viruses do not transmit between humans because they do not bind to human-type receptors. In 2012, three seminal papers have shown how these viruses can be engineered to transmit between ferrets, the human model for influenza virus infection. Receptor binding, among others, was changed, and the viruses now bind to human-type receptors. Receptor specificity was still markedly different compared to that of human influenza viruses. Here we report an additional mutation in ferret-transmissible H5N1 that increases human-type receptor binding. K193T seems to be a common receptor specificity determinant, as it increases human-type receptor binding in multiple subtypes. The K193T mutation can now be used as a marker during surveillance of emerging viruses to assess potential pandemic risk.


Assuntos
Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A Subtipo H3N2/metabolismo , Virus da Influenza A Subtipo H5N1/metabolismo , Receptores Virais/metabolismo , Ligação Viral , Linhagem Celular , Células Epiteliais/virologia , Células HEK293 , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Virus da Influenza A Subtipo H5N1/genética , Influenza Humana/virologia , Mutação/genética , Polissacarídeos/química , Ligação Proteica/fisiologia , Ácidos Siálicos/química , Traqueia/citologia , Traqueia/virologia
5.
Am J Physiol Renal Physiol ; 314(3): F483-F492, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29187368

RESUMO

Epithelial Na+ channel (ENaC) subunits undergo N-linked glycosylation in the endoplasmic reticulum where they assemble into an αßγ complex. Six, 13, and 5 consensus sites (Asn-X-Ser/Thr) for N-glycosylation reside in the extracellular domains of the mouse α-, ß-, and γ-subunits, respectively. Because the importance of ENaC N-linked glycans has not been fully addressed, we examined the effect of preventing N-glycosylation of specific subunits on channel function, expression, maturation, and folding. Heterologous expression in Xenopus oocytes or Fischer rat thyroid cells with αßγ-ENaC lacking N-linked glycans on a single subunit reduced ENaC activity as well as the inhibitory response to extracellular Na+. The lack of N-linked glycans on the ß-subunit also precluded channel activation by trypsin. However, channel activation by shear stress was N-linked glycan independent, regardless of which subunit was modified. We also discovered that the lack of N-linked glycans on any one subunit reduced the total and surface levels of cognate subunits. The lack of N-linked glycans on the ß-subunit had the largest effect on total levels, with the lack of N-linked glycans on the γ- and α-subunits having intermediate and modest effects, respectively. Finally, channels with wild-type ß-subunits were more sensitive to limited trypsin proteolysis than channels lacking N-linked glycans on the ß-subunit. Our results indicate that N-linked glycans on each subunit are required for proper folding, maturation, surface expression, and function of the channel.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Processamento de Proteína Pós-Traducional , Sódio/metabolismo , Animais , Canais Epiteliais de Sódio/química , Canais Epiteliais de Sódio/genética , Glicosilação , Mecanotransdução Celular , Potenciais da Membrana , Mutação , Conformação Proteica , Dobramento de Proteína , Transporte Proteico , Ratos Endogâmicos F344 , Relação Estrutura-Atividade , Tripsina/metabolismo , Xenopus laevis
6.
Biotechnol Lett ; 39(1): 157-162, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27714557

RESUMO

OBJECTIVES: To establish an efficient method of chemoenzymatic modification for making N-linked oligosaccharide chains of glycoproteins structurally homogeneous, which crucially affects their bioactivities. RESULTS: Deglycosylated-RNase B (GlcNAc-RNase B; acceptor), sialylglyco (SG)-oxazoline (donor) and an N180H mutant of Coprinopsis cinerea endo-ß-N-acetylglucosaminidase (Endo-CCN180H) were employed. pH 7.5 was ideal for both SG-oxazoline's stability and Endo-CC's transglycosylation reaction. The most efficient reaction conditions for producing glycosylated-RNase B, virtually modified completely with sialo-biantennary-type complex oligosaccharide, were: 80 µg GlcNAc-RNase B, 200 µg SG-oxazoline and 3 µg Endo-CCN180H in 20 µl 20 mM Tris/HCl pH 7.5 at 30 °C for 30-60 min. CONCLUSIONS: This transglycosylation method using SG-oxazoline and Endo-CCN180H is beneficial for producing pharmaceutical glycoproteins modified with homogenous biantennary-complex-type oligosaccharides.


Assuntos
Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/metabolismo , Oligossacarídeos/metabolismo , Glicosilação
7.
Biochim Biophys Acta ; 1850(9): 1815-21, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26003537

RESUMO

BACKGROUND: Maackia amurensis leukoagglutinin (MAL) is a glycoprotein and sialic acid-binding lectin that is used widely in the detection and characterization of sialoglycoconjugates and human cancer cells. However, its N-linked glycan structure and role have yet to be determined. METHODS: The N-linked glycans were analyzed using high-performance liquid chromatography with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and the secondary structure was investigated using circular dichroism analysis. A hemagglutination assay was performed. Furthermore, surface plasmon resonance analysis, and fluorescence microscopy and fluorescence-activated cell-sorting analysis were conducted to assess the sialoglycoprotein-binding ability and its usefulness in the detection of human breast cancer MCF-7 cells, respectively. RESULTS: Analysis of the N-linked glycan structure of MAL confirmed the presence of eight glycans, comprising two α1,3-fucosylated paucimannosidic-type and six high-mannose-type glycans. Glycan analysis of MAL that had been treated with peptide N-glycosidase F (de-M-MAL) revealed that while the two α1,3-fucosylated paucimannosidic glycans remained attached following the treatment, the six high-mannose-type glycans had been completely cleaved from the original MAL. There were almost no secondary structural changes between MAL and de-M-MAL; however, the lectin activities exhibited by MAL, such as hemagglutination and binding to a sialoglycoprotein, were completely absent in de-M-MAL, and the ability to detect human breast cancer MCF-7 cells was 77% lower in de-M-MAL than in MAL. CONCLUSION: The high-mannose-type glycans in intact MAL are closely associated with its lectin activities. GENERAL SIGNIFICANCE: This is the first report of the N-linked glycan structure of MAL and the effect of high-mannose-type glycans on lectin activities.


Assuntos
Manose/química , Fito-Hemaglutininas/química , Polissacarídeos/química , Ácidos Siálicos/metabolismo , Dicroísmo Circular , Fetuínas/metabolismo , Humanos , Ressonância de Plasmônio de Superfície
8.
Proc Natl Acad Sci U S A ; 110(36): 14628-33, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23959878

RESUMO

N-glycosylation is a major posttranslational modification that endows proteins with various functions. It is established that N-glycans are essential for the correct folding and stability of some enzymes; however, the actual effects of N-glycans on their activities are poorly understood. Here, we show that human α-l-iduronidase (hIDUA), of which a dysfunction causes accumulation of dermatan/heparan sulfate leading to mucopolysaccharidosis type I, uses its own N-glycan as a substrate binding and catalytic module. Structural analysis revealed that the mannose residue of the N-glycan attached to N372 constituted a part of the substrate-binding pocket and interacted directly with a substrate. A deglycosylation study showed that enzyme activity was highly correlated with the N-glycan attached to N372. The kinetics of native and deglycosylated hIDUA suggested that the N-glycan is also involved in catalytic processes. Our study demonstrates a previously unrecognized function of N-glycans.


Assuntos
Iduronidase/química , Iduronidase/metabolismo , Modelos Moleculares , Polissacarídeos/química , Polissacarídeos/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Biocatálise , Dicroísmo Circular , Cristalografia por Raios X , Dermatan Sulfato/metabolismo , Eletroforese em Gel de Poliacrilamida , Heparitina Sulfato/metabolismo , Humanos , Iduronidase/genética , Cinética , Manose/química , Manose/metabolismo , Dados de Sequência Molecular , Mucopolissacaridose I/enzimologia , Mucopolissacaridose I/metabolismo , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
9.
Electrophoresis ; 35(11): 1560-70, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24519758

RESUMO

Numerous milk components, such as lactoferrin, are recognized as health-promoting compounds. A growing body of evidence suggests that glycans could mediate lactoferrin's bioactivity. Goat milk lactoferrin is a candidate for infant formula supplementation because of its high homology with its human counterpart. The aim of this study was to characterize the glycosylation pattern of goat milk lactoferrin. After the protein was isolated from milk by affinity chromatography, N-glycans were enzymatically released and a complete characterization of glycan composition was carried out by advanced MS. The glycosylation of goat milk lactoferrin was compared with that of human and bovine milk glycoproteins. Nano-LC-Chip-Q-TOF MS data identified 65 structures, including high mannose, hybrid, and complex N-glycans. Among the N-glycan compositions, 37% were sialylated and 34% were fucosylated. The results demonstrated the existence of similar glycans in human and goat milk but also identified novel glycans in goat milk that were not present in human milk. These data suggest that goat milk could be a source of bioactive compounds, including lactoferrin that could be used as functional ingredients for food products beneficial to human nutrition.


Assuntos
Glicômica/métodos , Lactoferrina/análise , Leite/química , Polissacarídeos/análise , Sequência de Aminoácidos , Animais , Sequência de Carboidratos , Bovinos , Cromatografia Líquida de Alta Pressão/métodos , Cabras , Humanos , Dados de Sequência Molecular , Espectrometria de Massas em Tandem/métodos
10.
Methods Mol Biol ; 2762: 27-41, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315358

RESUMO

Post-translational modification of proteins by the addition of sugar chains, or glycans, is a functionally important hallmark of proteins trafficked through the secretory system. These proteins are termed glycoproteins. Glycans are known to be important for initiating signaling through binding of cell surface receptors, facilitating protein folding, and maintaining protein stability. For pathogens, glycans can also mask vulnerable protein regions from neutralizing antibodies. Thus, there is a need to develop methods to decipher the role of specific glycans attached to proteins in order to understand their biological role. Here, we describe established methods for identifying glycosylated residues and understanding their role in protein synthesis and function using viral glycoproteins as a model.


Assuntos
Glicoproteínas , Polissacarídeos , Glicoproteínas/química , Glicosilação , Polissacarídeos/química , Processamento de Proteína Pós-Traducional
11.
Front Mol Biosci ; 11: 1390659, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645274

RESUMO

The transition of IgA antibodies into clinical development is crucial because they have the potential to create a new class of therapeutics with superior pathogen neutralization, cancer cell killing, and immunomodulation capacity compared to IgG. However, the biological role of IgA glycans in these processes needs to be better understood. This study provides a detailed biochemical, biophysical, and structural characterization of recombinant monomeric human IgA2, which varies in the amount/locations of attached glycans. Monomeric IgA2 antibodies were produced by removing the N-linked glycans in the CH1 and CH2 domains. The impact of glycans on oligomer formation, thermal stability, and receptor binding was evaluated. In addition, we performed a structural analysis of recombinant IgA2 in solution using Small Angle X-Ray Scattering (SAXS) to examine the effect of glycans on protein structure and flexibility. Our results indicate that the absence of glycans in the Fc tail region leads to higher-order aggregates. SAXS, combined with atomistic modeling, showed that the lack of glycans in the CH2 domain results in increased flexibility between the Fab and Fc domains and a different distribution of open and closed conformations in solution. When binding with the Fcα-receptor, the dissociation constant remains unaltered in the absence of glycans in the CH1 or CH2 domain, compared to the fully glycosylated protein. These results provide insights into N-glycans' function on IgA2, which could have important implications for developing more effective IgA-based therapeutics in the future.

12.
Adv Cancer Res ; 161: 1-30, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39032948

RESUMO

An overview of the role of glycosylation in prostate cancer (PCa) development and progression is presented, focusing on recent advancements in defining the N-glycome through glycomic profiling and glycoproteomic methodologies. Glycosylation is a common post-translational modification typified by oligosaccharides attached N-linked to asparagine or O-linked to serine or threonine on carrier proteins. These attached sugars have crucial roles in protein folding and cellular recognition processes, such that altered glycosylation is a hallmark of cancer pathogenesis and progression. In the past decade, advancements in N-glycan profiling workflows using Matrix Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI-MSI) technology have been applied to define the spatial distribution of glycans in PCa tissues. Multiple studies applying N-glycan MALDI-MSI to pathology-defined PCa tissues have identified significant alterations in N-glycan profiles associated with PCa progression. N-glycan compositions progressively increase in number, and structural complexity due to increased fucosylation and sialylation. Additionally, significant progress has been made in defining the glycan and glycopeptide compositions of prostatic-derived glycoproteins like prostate-specific antigen in tissues and biofluids. The glycosyltransferases involved in these changes are potential drug targets for PCa, and new approaches in this area are summarized. These advancements will be discussed in the context of the further development of clinical diagnostics and therapeutics targeting glycans and glycoproteins associated with PCa progression. Integration of large scale spatial glycomic data for PCa with other spatial-omic methodologies is now feasible at the tissue and single-cell levels.


Assuntos
Polissacarídeos , Neoplasias da Próstata , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Glicosilação , Humanos , Masculino , Polissacarídeos/metabolismo , Glicômica/métodos , Glicoproteínas/metabolismo , Biomarcadores Tumorais/metabolismo , Líquidos Corporais/metabolismo , Líquidos Corporais/química , Processamento de Proteína Pós-Traducional , Animais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
13.
J Biotechnol ; 378: 1-10, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37922995

RESUMO

The heterogeneity of the N-linked glycan profile of therapeutic monoclonal antibodies (mAbs) derived from animal cells affects therapeutic efficacy and, therefore, needs to be appropriately controlled during the manufacturing process. In this study, we examined the effects of polyamines on the N-linked glycan profiles of mAbs produced by CHO DP-12 cells. Normal cell growth of CHO DP-12 cells and their growth arrest by α-difluoromethylornithine (DFMO), an inhibitor of the polyamine biosynthetic pathway, was observed when 0.5% fetal bovine serum was added to serum-free medium, despite the presence of cadaverine and aminopropylcadaverine, instead of putrescine and spermidine in cells. Polyamine depletion by DFMO increased IgG galactosylation, accompanied by ß1,4-galactosyl transferase 1 (B4GAT1) mRNA elevation. Additionally, IgG production in polyamine-depleted cells was reduced by 30% compared to that in control cells. Therefore, we examined whether polyamine depletion induces an ER stress response. The results indicated increased expression levels of chaperones for glycoprotein folding in polyamine-depleted cells, suggesting that polyamine depletion causes ER stress related to glycoprotein folding. The effect of tunicamycin, an ER stress inducer that inhibits N-glycosylation, on the expression of B4GALT1 mRNA was examined. Tunicamycin treatment increased B4GALT1 mRNA expression. These results suggest that ER stress caused by polyamine depletion induces B4GALT1 mRNA expression, resulting in increased IgG galactosylation in CHO cells. Thus, introducing polyamines, particularly SPD, to serum-free CHO culture medium for CHO cells may contribute to consistent manufacturing and quality control of antibody production.


Assuntos
Anticorpos Monoclonais , Poliaminas , Cricetinae , Animais , Células CHO , Cricetulus , Tunicamicina , Putrescina/metabolismo , Eflornitina/farmacologia , RNA Mensageiro/metabolismo , Glicoproteínas , Polissacarídeos , Imunoglobulina G , Espermina/metabolismo
14.
Front Oncol ; 12: 828041, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371997

RESUMO

Normal early human B-cell development from lymphoid progenitors in the bone marrow depends on instructions from elements in that microenvironment that include stromal cells and factors secreted by these cells including the extracellular matrix. Glycosylation is thought to play a key role in such interactions. The sialyltransferase ST6Gal1, with high expression in specific hematopoietic cell types, is the only enzyme thought to catalyze the terminal addition of sialic acids in an α2-6-linkage to galactose on N-glycans in such cells. Expression of ST6Gal1 increases as B cells undergo normal B-lineage differentiation. B-cell precursor acute lymphoblastic leukemias (BCP-ALLs) with differentiation arrest at various stages of early B-cell development have widely different expression levels of ST6GAL1 at diagnosis, with high ST6Gal1 in some but not in other relapses. We analyzed the consequences of increasing ST6Gal1 expression in a diagnosis sample using lentiviral transduction. NSG mice transplanted with these BCP-ALL cells were monitored for survival. Compared to mice transplanted with leukemia cells expressing original ST6Gal1 levels, increased ST6Gal1 expression was associated with significantly reduced survival. A cohort of mice was also treated for 7 weeks with vincristine chemotherapy to induce remission and then allowed to relapse. Upon vincristine discontinuation, relapse was detected in both groups, but mice transplanted with ST6Gal1 overexpressing BCP-ALL cells had an increased leukemia burden and shorter survival than controls. The BCP-ALL cells with higher ST6Gal1 were more resistant to long-term vincristine treatment in an ex vivo tissue co-culture model with OP9 bone marrow stromal cells. Gene expression analysis using RNA-seq showed a surprisingly large number of genes with significantly differential expression, of which approximately 60% increased mRNAs, in the ST6Gal1 overexpressing BCP-ALL cells. Pathways significantly downregulated included those involved in immune cell migration. However, ST6Gal1 knockdown cells also showed increased insensitivity to chemotherapy. Our combined results point to a context-dependent effect of ST6Gal1 expression on BCP-ALL cells, which is discussed within the framework of its activity as an enzyme with many N-linked glycoprotein substrates.

15.
Bioelectrochemistry ; 146: 108141, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35594729

RESUMO

Bilirubin oxidase from Myrothecium verrucaria (mBOD) is a promising enzyme for catalyzing the four-electron reduction of dioxygen into water and realizes direct electron transfer (DET)-type bioelectrocatalysis. It has two N-linked glycans (N-glycans), and N472 and N482 are known as binding sites. Both binding sites located on opposite side of the type I (T1) Cu, which is the electrode-active site of BOD. We investigated the effect of N-glycans on DET-type bioelectrocatalysis by performing electrochemical measurements using electrodes with controlled surface charges. Two types of BODs with different N-glycans, mBOD and recombinant BOD overexpressed in Pichia pastoris (pBOD), and their deglycosylated forms (dg-mBOD and dg-pBOD) were used in this study. Kinetic analysis of the steady-state catalytic waves revealed that both size and composition of N-glycans affected the orientation of adsorbed BODs on the electrodes. Interestingly, the most favorable orientation was achieved with pBOD, which has the largest N-glycans. Furthermore, the effect of the orientation control by the N-glycans is cooperative with electrostatic interaction.


Assuntos
Elétrons , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Eletrodos , Cinética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Polissacarídeos
16.
Methods Mol Biol ; 2556: 1-18, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36175622

RESUMO

The glycocalyx is a layer of glycans that covers the surface of every cell. Glycans are covalently attached to proteins and lipids, and are classified into subclasses such as N-linked glycans, glycosaminoglycans, glycosphingolipid-glycans, free oligosaccharides, and O-linked glycans according to their biosynthetic pathways. These complex glycans affect various biological and pathological processes, such as cell growth, differentiation, and adhesion. During infection, bacteria and viruses often use glycans to recognize and attack host cells. In this chapter, we describe detailed protocols to prepare glycans, and perform comprehensive cellular glycomic analysis using glycoblotting and ß-elimination with pyrazolone methods.


Assuntos
Glicoesfingolipídeos , Pirazolonas , Diferenciação Celular , Glicoproteínas , Glicosaminoglicanos
17.
Virol Sin ; 36(4): 774-783, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33689141

RESUMO

Lassa virus (LASV) belongs to the Mammarenavirus genus (family Arenaviridae) and causes severe hemorrhagic fever in humans. The glycoprotein complex (GPC) contains eleven N-linked glycans that play essential roles in GPC functionalities such as cleavage, transport, receptor recognition, epitope shielding, and immune response. We used three mutagenesis strategies (asparagine to glutamine, asparagine to alanine, and serine/tyrosine to alanine mutants) to abolish individual glycan chain on GPC and found that all the three strategies led to cleavage inefficiency on the 2nd (N89), 5th (N119), or 8th (N365) glycosylation motif. To evaluate N to Q mutagenesis for further research, it was found that deletion of the 2nd (N89Q) or 8th (N365Q) glycan completely inhibited the transduction efficiency of pseudotyped particles. We further investigated the role of individual glycan on GPC-mediated immune response by DNA immunization of mice. Deletion of the individual 1st (N79Q), 3rd (N99Q), 5th (N119Q), or 6th (N167Q) glycan significantly enhanced the proportion of effector CD4+ cells, whereas deletion of the 1st (N79Q), 2nd (N89Q), 3rd (N99Q), 4th (N109Q), 5th (N119Q), 6th (N167Q), or 9th (N373Q) glycan enhanced the proportion of CD8+ effector T cells. Deletion of specific glycan improves the Th1-type immune response, and abolishment of glycan on GPC generally increases the antibody titer to the glycan-deficient GPC. However, the antibodies from either the mutant or WT GPC-immunized mice show little neutralization effect on wild-type LASV. The glycan residues on GPC provide an immune shield for the virus, and thus represent a target for the design and development of a vaccine.


Assuntos
Vírus Lassa , Envelope Viral , Animais , Imunidade , Vírus Lassa/genética , Camundongos , Polissacarídeos , Proteínas do Envelope Viral
18.
Environ Sci Pollut Res Int ; 28(41): 58799-58806, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34120284

RESUMO

Nanomaterials are in general use in a broad range of industries. However, there are concerns that their intense use leads to heavy damage to the aquatic environment, and their discharge harms many aquatic organisms. N-Glycans are widely distributed in eukaryotic organisms and are intimately involved in most life phenomena. However, little is known about N-glycans in aquatic organisms exposed to nanomaterials. In this study, we investigated how nanomaterials affect N-glycans in the gut of adult female medaka. We found that silver nanoparticles exposure had little effect on gut N-glycans, whereas titanium dioxide nanoparticles (TiO2NPs) exposure increased the relative levels of several N-glycans in comparison with control. Structural analysis showed high levels of N-glycans of the high-mannose type, of which five N-glycans were free N-glycans with one ß-N-acetylglucosamine residue on the reducing end. The levels of free N-glycans are closely related to protein quality control in the endoplasmic reticulum and cytosol. Our results suggest that TiO2NPs exposure increases the levels of misfolded glycoproteins, resulting in generation of considerable amounts of free N-glycans. Our findings also suggest that TiO2NPs exposure suppresses cytosolic α-mannosidase trimming. This study provides new evidence for the effect of TiO2NPs on medaka gut from the aspect of environmental glycobiology.


Assuntos
Nanopartículas Metálicas , Oryzias , Animais , Feminino , Polissacarídeos , Prata , Titânio
19.
Artigo em Inglês | MEDLINE | ID: mdl-31881512

RESUMO

Lung cancer (LC) and chronic obstructive pulmonary disease (COPD) are prevalent ailments with a great challenge to distinguish them based on symptoms only. Since they require different treatments, it is important to find non-invasive methods capable to readily diagnose them. Moreover, COPD increases the risk of lung cancer development, leading to their comorbidity. In this pilot study the N-glycosylation profile of pooled human serum samples (90 patients each) from lung cancer, COPD and comorbidity (LC with COPD) patients were investigated in comparison to healthy individuals (control) by capillary gel electrophoresis with high sensitivity laser-induced fluorescence detection. Sample preparation was optimized for human serum samples introducing a new temperature adjusted denaturation protocol to prevent precipitation and increased endoglycosidase digestion time to assure complete removal of the N-linked carbohydrates. The reproducibility of the optimized method was <3.5%. Sixty-one N-glycan structures were identified in the pooled control human serum sample and the profile was compared to pooled lung cancer, COPD and comorbidity of COPD with lung cancer patient samples. One important finding was that no other sugar structures were detected in any of the patient groups, only quantitative differences were observed. Based on this comparative exercise, a panel of 13 N-glycan structures were identified as potential glycobiomarkers to reveal significant changes (>33% in relative peak areas) between the pathological and control samples. In addition to N-glycan profile changes, alterations in the individual N-glycan subclasses, such as total fucosylation, degree of sialylation and branching may also hold important glycobiomarker values.


Assuntos
Eletroforese Capilar/métodos , Neoplasias Pulmonares , Polissacarídeos , Doença Pulmonar Obstrutiva Crônica , Comorbidade , Glicômica , Humanos , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/metabolismo , Projetos Piloto , Polissacarídeos/sangue , Polissacarídeos/química , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Reprodutibilidade dos Testes
20.
Artigo em Inglês | MEDLINE | ID: mdl-32514366

RESUMO

BACKGROUND: Monoclonal antibodies (mAbs) as biopharmaceuticals take a pivotal role in the current therapeutic applications. Generally mammalian cell lines, such as those derived from Chinese hamster ovaries (CHO), are used to produce the recombinant antibody. However, there are still concerns about the high cost and the risk of pathogenic contamination when using mammalian cells. Aspergillus oryzae, a filamentous fungus recognized as a GRAS (Generally Regarded As Safe) organism, has an ability to secrete a large amount of proteins into the culture supernatant, and thus the fungus has been used as one of the cost-effective microbial hosts for heterologous protein production. Pursuing this strategy the human anti-TNFα antibody adalimumab, one of the world's best-selling antibodies for the treatment of immune-mediated inflammatory diseases including rheumatoid arthritis, was chosen to produce the full length of mAbs by A. oryzae. Generally, N-glycosylation of the antibody affects immune effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC) via binding to the Fc receptor (FcγR) on immune cells. The CRISPR/Cas9 system was used to first delete the Aooch1 gene encoding a key enzyme for the hyper-mannosylation process in fungi to investigate the binding ability of antibody with FcγRIIIa. RESULTS: Adalimumab was expressed in A. oryzae by the fusion protein system with α-amylase AmyB. The full-length adalimumab consisting of two heavy and two light chains was successfully produced in the culture supernatants. Among the producing strains, the highest amount of antibody was obtained from the ten-protease deletion strain (39.7 mg/L). Two-step purifications by Protein A and size-exclusion chromatography were applied to obtain the high purity sample for further analysis. The antigen-binding and TNFα neutralizing activities of the adalimumab produced by A. oryzae were comparable with those of a commercial product Humira®. No apparent binding with the FcγRIIIa was detected with the recombinant adalimumab even by altering the N-glycan structure using the Aooch1 deletion strain, which suggests only a little additional activity of immune effector functions. CONCLUSION: These results demonstrated an alternative low-cost platform for human antibody production by using A. oryzae, possibly offering a reasonable expenditure for patient's welfare.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA