Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(21): e2200022119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35584114

RESUMO

Inducible nitric oxide synthase (NOS2) produces high local concentrations of nitric oxide (NO), and its expression is associated with inflammation, cellular stress signals, and cellular transformation. Additionally, NOS2 expression results in aggressive cancer cell phenotypes and is correlated with poor outcomes in patients with breast cancer. DNA hypomethylation, especially of noncoding repeat elements, is an early event in carcinogenesis and is a common feature of cancer cells. In addition to altered gene expression, DNA hypomethylation results in genomic instability via retrotransposon activation. Here, we show that NOS2 expression and associated NO signaling results in substantial DNA hypomethylation in human cell lines by inducing the degradation of DNA (cytosine-5)­methyltransferase 1 (DNMT1) protein. Similarly, NOS2 expression levels were correlated with decreased DNA methylation in human breast tumors. NOS2 expression and NO signaling also resulted in long interspersed noncoding element 1 (LINE-1) retrotransposon hypomethylation, expression, and DNA damage. DNMT1 degradation was mediated by an NO/p38-MAPK/lysine acetyltransferase 5­dependent mechanism. Furthermore, we show that this mechanism is required for NO-mediated epithelial transformation. Therefore, we conclude that NOS2 and NO signaling results in DNA damage and malignant cellular transformation via an epigenetic mechanism.


Assuntos
Metilação de DNA , Inflamação , S-Nitrosotióis , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Humanos , Inflamação/genética , Óxido Nítrico , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Retroelementos/genética
2.
Immunol Rev ; 301(1): 157-174, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33660297

RESUMO

Leprosy is a chronic granulomatous infectious disease caused by the pathogen, Mycobacterium leprae, and the more recently discovered, M. lepromatosis. Described in 1873, M. leprae was among the first microorganisms to be proposed as a cause of a human infectious disease. As an obligate intracellular bacterium, it has still not thus far been reproducibly cultivated in axenic medium or cell cultures. Shepard's mouse footpad assay, therefore, was truly a breakthrough in leprosy research. The generation of immunosuppressed and genetically engineered mice, along with advances in molecular and cellular techniques, has since offered more tools for the study of the M. leprae-induced granuloma. While far from perfect, these new mouse models have provided insights into the immunoregulatory mechanisms responsible for the spectrum of this complex disease.


Assuntos
Hanseníase , Animais , Modelos Animais de Doenças , Camundongos , Mycobacterium leprae , Pele
3.
J Biol Chem ; 299(8): 104803, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37172723

RESUMO

Interleukin-1ß is one of the most potent inducers of beta cell inflammation in the lead-up to type 1 diabetes. We have previously reported that IL1ß-stimulated pancreatic islets from mice with genetic ablation of stress-induced pseudokinase TRB3(TRB3KO) show attenuated activation kinetics for the MAP3K MLK3 and JNK stress kinases. However, JNK signaling constitutes only a portion of the cytokine-induced inflammatory response. Here we report that TRB3KO islets also show a decrease in amplitude and duration of IL1ß-induced phosphorylation of TAK1 and IKK, kinases that drive the potent NF-κB proinflammatory signaling pathway. We observed that TRB3KO islets display decreased cytokine-induced beta cell death, preceded by a decrease in select downstream NF-κB targets, including iNOS/NOS2 (inducible nitric oxide synthase), a mediator of beta cell dysfunction and death. Thus, loss of TRB3 attenuates both pathways required for a cytokine-inducible, proapoptotic response in beta cells. In order to better understand the molecular basis of TRB3-enhanced, post-receptor IL1ß signaling, we interrogated the TRB3 interactome using coimmunoprecipitation followed by mass spectrometry to identify immunomodulatory protein Flightless homolog 1 (Fli1) as a novel, TRB3-interacting protein. We show that TRB3 binds and disrupts Fli1-dependent sequestration of MyD88, thereby increasing availability of this most proximal adaptor required for IL1ß receptor-dependent signaling. Fli1 sequesters MyD88 in a multiprotein complex resulting in a brake on the assembly of downstream signaling complexes. By interacting with Fli1, we propose that TRB3 lifts the brake on IL1ß signaling to augment the proinflammatory response in beta cells.


Assuntos
Proteínas de Ciclo Celular , Interleucina-1beta , Transdução de Sinais , Animais , Camundongos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Citocinas/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Transdução de Sinais/genética , Inibidores Enzimáticos/farmacologia , Apoptose/efeitos dos fármacos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/fisiologia , Ativação Transcricional/genética
4.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892206

RESUMO

Sulfated marine polysaccharides, so-called fucoidans, have been shown to exhibit anti-inflammatory and immunomodulatory activities in retinal pigment epithelium (RPE). In this study, we tested the effects of different fucoidans (and of fucoidan-treated RPE cells) on retinal microglia to investigate whether its anti-inflammatory effect can be extrapolated to the innate immune cells of the retina. In addition, we tested whether fucoidan treatment influenced the anti-inflammatory effect of RPE cells on retinal microglia. Three fucoidans were tested (FVs from Fucus vesiculosus, Fuc1 and FucBB04 from Laminaria hyperborea) as well as the supernatant of primary porcine RPE treated with fucoidans for their effects on inflammatory activated (using lipopolysaccharide, LPS) microglia cell line SIM-A9 and primary porcine retinal microglia. Cell viability was detected with a tetrazolium assay (MTT), and morphology by Coomassie staining. Secretion of tumor necrosis factor alpha (TNFα), interleukin 1 beta (IL1ß) and interleukin 8 (IL8) was detected with ELISA, gene expression (NOS2 (Nitric oxide synthase 2), and CXCL8 (IL8)) with qPCR. Phagocytosis was detected with a fluorescence assay. FucBB04 and FVs slightly reduced the viability of SIM-A9 and primary microglia, respectively. Treatment with RPE supernatants increased the viability of LPS-treated primary microglia. FVs and FucBB04 reduced the size of LPS-activated primary microglia, indicating an anti-inflammatory phenotype. RPE supernatant reduced the size of LPS-activated SIM-A9 cells. Proinflammatory cytokine secretion and gene expression in SIM-A9, as well as primary microglia, were not significantly affected by fucoidans, but RPE supernatants reduced the secretion of LPS-induced proinflammatory cytokine secretion in SIM-A9 and primary microglia. The phagocytosis ability of primary microglia was reduced by FucBB04. In conclusion, fucoidans exhibited only modest effects on inflammatorily activated microglia by maintaining their cell size under stimulation, while the anti-inflammatory effect of RPE cells on microglia irrespective of fucoidan treatment could be confirmed, stressing the role of RPE in regulating innate immunity in the retina.


Assuntos
Sobrevivência Celular , Microglia , Polissacarídeos , Epitélio Pigmentado da Retina , Microglia/efeitos dos fármacos , Microglia/metabolismo , Animais , Polissacarídeos/farmacologia , Suínos , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/citologia , Sobrevivência Celular/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/citologia , Linhagem Celular , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo
5.
Virol J ; 20(1): 51, 2023 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966345

RESUMO

BACKGROUND: Multiple sclerosis (MS) is characterized by neuroinflammation and demyelination orchestrated by activated neuroglial cells, CNS infiltrating leukocytes, and their reciprocal interactions through inflammatory signals. An inflammatory stimulus triggers inducible nitric oxide synthase (NOS2), a pro-inflammatory marker of microglia/macrophages (MG/Mφ) to catalyze sustained nitric oxide production. NOS2 during neuroinflammation, has been associated with MS disease pathology; however, studies dissecting its role in demyelination are limited. We studied the role of NOS2 in a recombinant ß-coronavirus-MHV-RSA59 induced neuroinflammation, an experimental animal model mimicking the pathological hallmarks of MS: neuroinflammatory demyelination and axonal degeneration. OBJECTIVE: Understanding the role of NOS2 in murine-ß-coronavirus-MHV-RSA59 demyelination. METHODS: Brain and spinal cords from mock and RSA59 infected 4-5-week-old MHV-free C57BL/6 mice (WT) and NOS2-/- mice were harvested at different disease phases post infection (p.i.) (day 5/6-acute, day 9/10-acute-adaptive and day 30-chronic phase) and compared for pathological outcomes. RESULTS: NOS2 was upregulated at the acute phase of RSA59-induced disease in WT mice and its deficiency resulted in severe disease and reduced survival at the acute-adaptive transition phase. Low survival in NOS2-/- mice was attributed to (i) high neuroinflammation resulting from increased accumulation of macrophages and neutrophils and (ii) Iba1 + phagocytic MG/Mφ mediated-early demyelination as observed at this phase. The phagocytic phenotype of CNS MG/Mφ was confirmed by significantly higher mRNA transcripts of phagocyte markers-CD206, TREM2, and Arg1 and double immunolabelling of Iba1 with MBP and PLP. Further, NOS2 deficiency led to exacerbated demyelination at the chronic phase as well. CONCLUSION: Taken together the results imply that the immune system failed to control the disease progression in the absence of NOS2. Thus, our observations highlight a protective role of NOS2 in murine-ß-coronavirus induced demyelination.


Assuntos
Infecções por Coronavirus , Doenças Desmielinizantes , Vírus da Hepatite Murina , Óxido Nítrico Sintase Tipo II , Animais , Camundongos , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/virologia , Glicoproteínas de Membrana , Camundongos Endogâmicos C57BL , Vírus da Hepatite Murina/metabolismo , Doenças Neuroinflamatórias , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Receptores Imunológicos , Infecções por Coronavirus/patologia
6.
Fish Shellfish Immunol ; 142: 109178, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37863126

RESUMO

The enzyme nitric oxide synthase 2 or inducible NOS (NOS2), reactive oxygen species (ROS) and nitric oxide (NO) are important participants in various inflammatory and immune responses. However, the functional significances of the correlations among piscine NOS2, ROS and NO during pathogen infection remain unclear. In teleost, there are two nos2 genes (nos2a and nos2b). It has been previously reported that zebrafish nos2a behaves as a classical inducible NOS, and nos2b exerts some functions similar to mammalian NOS3. In the present study, we reported the functional characterization of zebrafish nos2a during bacterial infection. We found that zebrafish nos2a promoted bacterial proliferation, accompanied by an increased susceptibility to Edwardsiella piscicida infection. The nagative regulation of zebrafish nos2a during E. piscicida infection was characterized by the impaired ROS levels, the induced NO production and the decreased expressions of proinflammatory cytokines, antibacterial genes and oxidant factors. Furthermore, although both inducing ROS and inhibiting NO production significantly inhibited bacterial proliferation, only inhibiting NO production but not inducing ROS significantly increased resistance to E. piscicida infection. More importantly, ROS supplementation and inhibition of NO completely abolished this detrimental consequence mediated by zebrafish nos2a during E. piscicida infection. All together, these results firstly demonstrate that the innate response mediated by zebrafish nos2a in promoting bacterial proliferation is dependent on the lower ROS level and higher NO production. The present study also reveals that inhibition of NO can be effective in the protection against E. piscicida infection.


Assuntos
Edwardsiella , Infecções por Enterobacteriaceae , Animais , Citocinas , Peixe-Zebra , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Proliferação de Células , Edwardsiella/fisiologia , Mamíferos/metabolismo
7.
BMC Pregnancy Childbirth ; 23(1): 719, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37817070

RESUMO

BACKGROUND: Pre-eclampsia (PE) is a common condition in pregnancy; however, methods for early diagnosis and effective treatment options are lacking. Ferroptosis is a newly identified iron-dependent cell death pathway. The aim of this study was to investigate the role of ferroptosis-related genes in PE, the underlying mechanism, and their potential diagnostic value using a bioinformatics approach. METHODS: We downloaded the GSE48424 and GSE98224 datasets from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between PE and healthy pregnancy samples were identified in the GSE48424 dataset and subjected to weighted gene co-expression network analysis; the most relevant modules were intersected with known ferroptosis-related genes to distinctly identify the role of ferroptosis in PE. We further searched transcription factors and microRNAs that are predicted to regulate these ferroptosis-related genes, and patients in the GSE48424 dataset were divided into two groups according to high or low expression of the key ferroptosis-related genes associated with PE. To obtain robust key ferroptosis-related genes in PE, we validated their expression levels in the external dataset GSE98224. Finally, the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assay was utilized to access the expression of these genes in the PE and normal blood samples. RESULTS: Six ferroptosis-related genes involved in PE were obtained by overlapping 3661 genes most associated with PE, 565 DEGs between PE and normal samples, and 259 known ferroptosis-related genes. Among these genes, patients with PE displaying lower expression levels of NOS2 and higher expression levels of PTGS2 had a higher ferroptosis potential index. The expression pattern of NOS2 was consistent in the GSE48424 and GSE98224 datasets. RT-qPCR data confirmed that NOS2 expression was more significantly elevated in patients with PE than in those with a normal pregnancy. CONCLUSIONS: Our study explored the diagnostic value of ferroptosis-related genes in PE, and identified NOS2 as the key gene linking ferroptosis and PE, suggesting a new candidate biomarker for early PE diagnosis.


Assuntos
Ferroptose , Óxido Nítrico Sintase Tipo II , Pré-Eclâmpsia , Feminino , Humanos , Gravidez , Biomarcadores , Biologia Computacional , Óxido Nítrico Sintase Tipo II/genética , Pré-Eclâmpsia/diagnóstico , Pré-Eclâmpsia/genética
8.
Proc Natl Acad Sci U S A ; 117(26): 14694-14702, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32554491

RESUMO

Innate immune cells destroy pathogens within a transient organelle called the phagosome. When pathogen-associated molecular patterns (PAMPs) displayed on the pathogen are recognized by Toll-like receptors (TLRs) on the host cell, it activates inducible nitric oxide synthase (NOS2) which instantly fills the phagosome with nitric oxide (NO) to clear the pathogen. Selected pathogens avoid activating NOS2 by concealing key PAMPs from their cognate TLRs. Thus, the ability to map NOS2 activity triggered by PAMPs can reveal critical mechanisms underlying pathogen susceptibility. Here, we describe DNA-based probes that ratiometrically report phagosomal and endosomal NO, and can be molecularly programmed to display precise stoichiometries of any desired PAMP. By mapping phagosomal NO produced in microglia of live zebrafish brains, we found that single-stranded RNA of bacterial origin acts as a PAMP and activates NOS2 by engaging TLR-7. This technology can be applied to study PAMP-TLR interactions in diverse organisms.


Assuntos
Encéfalo/enzimologia , DNA/química , Corantes Fluorescentes/química , Óxido Nítrico Sintase Tipo II , Animais , Encéfalo/metabolismo , Química Encefálica , DNA/metabolismo , Corantes Fluorescentes/metabolismo , Técnicas de Inativação de Genes , Camundongos , Microglia/química , Microglia/enzimologia , Microglia/metabolismo , Microscopia de Fluorescência , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Óxido Nítrico Sintase Tipo II/análise , Óxido Nítrico Sintase Tipo II/química , Óxido Nítrico Sintase Tipo II/metabolismo , Fagossomos/química , Fagossomos/metabolismo , Peixe-Zebra
9.
Biochem Genet ; 61(3): 1097-1112, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36449151

RESUMO

Tuberculosis (TB) is a fatal infectious disease; however, the molecular mechanisms underlying the pathogenicity of TB remain elusive. The present study aims to identify potential biomarkers associated with Mycobacterium tuberculosis (M.tb) infection by using integrated bioinformatics and in vitro validation studies. GSE50050, GSE78706, and GSE108844 data from the gene expression omnibus (GEO) database were downloaded to identify differentially expressed genes (DEGs). The functions of DEGs were further subjected to gene ontology (GO) and KEGG pathway analysis. The hub genes from the DEGs were determined based on the protein-protein interaction (PPI) network analysis. Finally, the hub genes were experimentally validated using the in vitro functional studies. A total of 26 common DEGs were identified among GSE50050, GSE78706, and GSE108844. The functional enrichment analysis showed that the common DEGs were associated with cytokines response and TB pathways. The PPI network analysis identified nine hub genes. Further in vitro studies showed that nitric oxide synthase 2 (NOS2) was up-regulated in RAW264.7 cells upon lipopolysaccharides (LPS) stimulation, which was accompanied by increased inflammatory cytokines release. Furthermore, NOS2 was found to be a target of miR-493-5p, which was confirmed by luciferase reporter assay. NOS2 was repressed by miR-493-5p overexpression and was up-regulated after miR-493-5p inhibition in RAW264.7 cells. The rescue experiments showed that LPS-induced increase in the inflammatory cytokines of the RAW264.7 cells was significantly attenuated by NOS2 knockdown and miR-493-5p overexpression. Collectively, our results for the first time demonstrated that NOS2/miR-493-5p signaling pathway may potentially involve in the inflammatory response during bacterial infection such as M. tb infection.


Assuntos
MicroRNAs , Tuberculose , Animais , Camundongos , Citocinas/metabolismo , Inflamação/metabolismo , Inflamação/microbiologia , Lipopolissacarídeos/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Transdução de Sinais , Tuberculose/metabolismo
10.
Anim Biotechnol ; 34(7): 2106-2110, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35622405

RESUMO

Spermatogenesis is the developmental process that produces spermatozoa. The aim of this study was to investigate the single nucleotide polymorphisms (SNPs) within C7H15orf39 and NOS2 genes and to determine the correlations between two SNPs and semen quality in Duroc boars (n = 604). The polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLP) method was used for genotyping the selected two nonsynonymous SNPs. The significant correlation was observed between two SNPs (rs80969873: g.58385473 G > A within C7H15orf39; rs325865291: g.44175445 G > A within NOS2) and semen traits in Duroc boars. This study indicates the SNPs in C7H15orf39 and NOS2 may be the potential molecular marker for improving the semen quality traits in Duroc boars.


Assuntos
Polimorfismo de Nucleotídeo Único , Análise do Sêmen , Suínos/genética , Animais , Masculino , Análise do Sêmen/veterinária , Polimorfismo de Nucleotídeo Único/genética , Sêmen , Espermatozoides , Espermatogênese/genética
11.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982725

RESUMO

Emerging evidence shows that peripheral systemic inflammation, such as inflammatory bowel disease (IBD), has a close even interaction with central nervous disorders such as Alzheimer's disease (AD). This study is designed to further clarify the relationship between AD and ulcerative colitis (UC, a subclass of IBD). The GEO database was used to download gene expression profiles for AD (GSE5281) and UC (GSE47908). Bioinformatics analysis included GSEA, KEGG pathway, Gene Ontology (GO), WikiPathways, PPI network, and hub gene identification. After screening the shared genes, qRT-PCR, Western blot, and immunofluorescence were used to verify the reliability of the dataset and further confirm the shared genes. GSEA, KEGG, GO, and WikiPathways suggested that PPARG and NOS2 were identified as shared genes and hub genes by cytoHubba in AD and UC and further validated via qRT-PCR and Western blot. Our work identified PPARG and NOS2 are shared genes of AD and UC. They drive macrophages and microglia heterogeneous polarization, which may be potential targets for treating neural dysfunction induced by systemic inflammation and vice versa.


Assuntos
Doença de Alzheimer , Colite Ulcerativa , Doenças Inflamatórias Intestinais , Humanos , Microglia , Colite Ulcerativa/genética , PPAR gama/genética , Doença de Alzheimer/genética , Reprodutibilidade dos Testes , Macrófagos , Inflamação , Biologia Computacional , Óxido Nítrico Sintase Tipo II/genética
12.
Molecules ; 28(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36677873

RESUMO

When the expression of NOS2 in M1-polarized macrophages is induced, huge amounts of nitric oxide (•NO) are produced from arginine and molecular oxygen as the substrates. While anti-microbial action is the primary function of M1 macrophages, excessive activation may result in inflammation being aggravated. The reaction of •NO with superoxide produces peroxynitrite, which is highly toxic to cells. Alternatively, however, this reaction eliminates radial electrons and may occasionally alleviate subsequent radical-mediated damage. Reactions of •NO with lipid radicals terminates the radical chain reaction in lipid peroxidation, which leads to the suppression of ferroptosis. •NO is involved in the metabolic remodeling of M1 macrophages. Enzymes in the tricarboxylic acid (TCA) cycle, notably aconitase 2, as well as respiratory chain enzymes, are preferential targets of •NO derivatives. Ornithine, an alternate compound produced from arginine instead of citrulline and •NO, is recruited to synthesize polyamines. Itaconate, which is produced from the remodeled TCA cycle, and polyamines function as defense systems against overresponses of M1 macrophages in a feedback manner. Herein, we overview the protective aspects of •NO against radical species and the autoregulatory systems that are enabled by metabolic remodeling in M9-polarized macrophages.


Assuntos
Macrófagos , Óxido Nítrico , Óxido Nítrico/metabolismo , Macrófagos/metabolismo , Arginina/metabolismo , Poliaminas/metabolismo , Homeostase
13.
Cell Commun Signal ; 20(1): 47, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35392923

RESUMO

BACKGROUND: NOS2 expression is mostly found in bacteria-exposed or cytokine-treated tissues and is mostly connected to innate immune reactions. There are three isoforms of NOS2 (NOS2-1 to -3). In RNA-seq data sets, analyzing inflammatory gene expression, only expression of the NOS2-1 mRNA isoform is detected. However, the expression of NOS2 in differentiating human pluripotent stems (hPSCs) has not been analyzed yet. METHODS: Public available RNA-seq databases were screened for data of hPSCs during differentiation to different target cells. An isoform specific algorithm was used to analyze NOS2 mRNA isoform expression. In addition, we differentiated four different human iPSC cell lines toward cortical neurons and analyzed NOS2 mRNA expression by qRT-PCR and 5'-RACE. The functionality of the NOS2-2 protein was analyzed by transient transfection of expression clones in human DLD1 cells and nitrate measurement in the supernatant of these cells. RESULTS: In RNA-seq databases we detected a transient expression of the NOS2 mRNA during the differentiation of hPSCs to cardiomyocytes, chondrocytes, mesenchymal stromal cells, neurons, syncytiotrophoblast cells, and trophoblasts. NOS2 mRNA isoform specific analyses showed, that the transiently expressed NOS2 mRNA in differentiating hPSC (NOS2-2; "diff-iNOS") differ remarkably from the already described NOS2 transcript found in colon or induced islets (NOS2-1; "immuno-iNOS"). Also, analysis of the NOS2 mRNA- and protein expression during the differentiation of four different hiPSC lines towards cortical neurons showed a transient expression of the NOS2 mRNA and NOS2 protein on day 18 of the differentiation course. 5'-RACE experiments and isoform specific qRT-PCR analyses revealed that only the NOS2-2 mRNA isoform was expressed in these experiments. To analyze the functionality of the NOS2-2 protein, we transfected human DLD-1 cells with tetracycline inducible expression clones encoding the NOS2-1- or -2 coding sequence. After induction of the NOS2-1 or -2 mRNA expression by tetracycline a similar nitrate production was measured proofing the functionality of the NOS2-2 protein isoform. CONCLUSIONS: Our data show that a differentiation specific NOS2 isoform (NOS2-2) is transiently expressed during differentiation of hPSC. Video Abstract.


Assuntos
Células-Tronco Pluripotentes , Isoformas de RNA , Tetraciclina , Diferenciação Celular , Humanos , Isoenzimas/genética , Nitratos/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Células-Tronco Pluripotentes/citologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
14.
Cell Biol Int ; 46(1): 158-169, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34719858

RESUMO

Low levels of nitric oxide (NO) produced by constitutively expressed inducible NO synthase (NOS2) in tumor cells may be an important factor in their development. NOS2 expression is associated with high mortality rates for various cancers. Alternative splicing of NOS2 down-regulates its enzymatic activity, resulting in decreased intracellular NO concentrations. Specific probes to detect alternative splicing of NOS2 were used in two isogenic human colon cancer cell lines derived either from the primary tumor (SW480) or from a lymph node metastasis (SW620). Splicing variant of NOS2 S3, lacking exons 9, 10, and 11, was overexpressed in SW480 cells. NOS2 S3 was silenced in SW480 cells. Flow-cytometry analysis was used to estimate the intracellular NO levels and to analyze the cell cycle of the studied cell lines. Western blot analysis and quantitative real-time polymerase chain reaction (qRT-PCR) were used to determine apoptosis and autophagy markers. SW480 and SW620 cells expressed NOS2 S3. Overexpression of the NOS2 S3 in SW480 cells downregulated intracellular NO levels. SW480 cells with knocked down NOS2 S3 (referred to as S3C9 cells) had higher intracellular levels of NO compared to the wild-type SW480 cells under serum restriction. Higher NO levels resulted in the loss of viability of S3C9 cells, which was associated with autophagy. Induction of autophagy by elevated intracellular NO levels in S3C9 cells under serum restriction, suggests that autophagy operates as a cytotoxic response to nitrosative stress. The expression of NOS2 S3 plays an important role in regulating intracellular NO production and maintaining viability in SW480 cells under serum restriction. These findings may prove significant in the design of NOS2/NO-based therapies for colon cancer.


Assuntos
Adenocarcinoma/enzimologia , Autofagia , Neoplasias do Colo/enzimologia , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo , Estresse Nitrosativo , Adenocarcinoma/genética , Adenocarcinoma/secundário , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Óxido Nítrico Sintase Tipo II/genética , Isoformas de Proteínas , Transdução de Sinais
15.
Exp Lung Res ; 48(2): 53-60, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35075953

RESUMO

BACKGROUND: Excessive macrophage-mediated inflammation participates in the development of Staphylococcus aureus (S. aureus)-induced pneumonia. Checkpoint kinase 2 (Chek2) was screened out as macrophage-related infantile pneumonia gene after the differentially expressed analysis of RNAseq data derived from pam3CSK4 stimulated bone marrow-derived macrophages (BMDMs). METHODS: RAW264.7 macrophage cells were transfected with Chek2-specific gRNA, which were further overexpressed with wide-type Chek2 or Chek2 kinase activity mutant (Chek2 KD, D368N). At the same time, the relative protein and mRNA expression of inflammatory cytokines were determined. C57BL/6J WT mice were intranasally infected with S. aureus to induce S. aureus-induced pneumonia, which was treated with BML-277, an inhibitor of Chek2. The symptoms of pneumonia mice and inflammatory cytokines associated with the nuclear factor kappa B (NF-κB) signaling pathways were further examined. RESULTS: In vivo, BML-277 significantly promoted pneumonia symptoms, including mortality, lung infiltration of immune cells, and the abundance of lung pro-inflammatory cytokines. Mechanically, BML-277 did not affect BMDMs survival but up-regulated the mRNA expression of tumor necrosis factor (Tnf), nitric oxide synthase 2 (Nos2), interleukin (Il)23a, and the secretion of Tnf-α and Il-23a. At the same time, genetic complementation experiment testified that Chek2 KD did not inhibit NF-κB and relevant inflammatory cytokines expression. CONCLUSION: Chek2 functions through the kinase mechanism to down-regulate the NF-κB pathway in macrophages to alleviate S. aureus-induced pneumonia in mice.


Assuntos
NF-kappa B , Pneumonia , Animais , Camundongos , NF-kappa B/metabolismo , Staphylococcus aureus , Quinase do Ponto de Checagem 2/metabolismo , Camundongos Endogâmicos C57BL , Macrófagos/metabolismo , Citocinas/metabolismo , Pneumonia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ciclo Celular , RNA Mensageiro/metabolismo , Lipopolissacarídeos/farmacologia
16.
Exp Cell Res ; 407(1): 112779, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34428455

RESUMO

Skeletal muscle wasting drives negative clinical outcomes and is associated with a spectrum of pathologies including cancer. Cancer cachexia is a multi-factorial syndrome that encompasses skeletal muscle wasting and remains understudied, despite being a frequent and serious co-morbidity. Deviation from the homeostatic balance between breakdown and regeneration leads to muscle wasting disorders, such as cancer cachexia. Muscle stem cells (MuSCs) are the cellular compartment responsible for muscle regeneration, which makes MuSCs an intriguing target in the context of wasting muscle. Molecular studies investigating MuSCs and skeletal muscle wasting largely focus on transcriptional changes, but our group and others propose that metabolic changes are another layer of cellular regulation underlying MuSC dysfunction in cancer cachexia. In the present study, we combined gene expression and non-targeted metabolomic profiling of myoblasts exposed to wasting conditions (cancer cell conditioned media, CC-CM) to derive a more complete picture of the myoblast response to wasting factors. After mapping these features to annotated pathways, we found that more than half of the mapped pathways were amino acid-related, linking global amino acid metabolic disruption to conditioned media-induced myoblast defects. Notably, arginine metabolism was a highly enriched pathway in combined metabolomic and transcriptomic data. Arginine catabolism generates nitric oxide (NO), an important signaling molecule known to have negative effects on mature muscle. We hypothesize that tumor-derived disruptions in Nitric Oxide Synthase (NOS)2-regulated arginine catabolism impair differentiation of MuSCs. The work presented here further investigates the effect of NOS2 overactivity on myoblast proliferation and differentiation. We show that NOS2 inhibition is sufficient to rescue wasting phenotypes associated with inflammatory cytokines. Ultimately, this work provides new insights into MuSC biology and opens up potential therapeutic avenues for addressing disrupted MuSC dynamics in cancer cachexia.


Assuntos
Caquexia/metabolismo , Citocinas/metabolismo , Mioblastos/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Caquexia/complicações , Caquexia/patologia , Diferenciação Celular/fisiologia , Humanos , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Atrofia Muscular/patologia , Regeneração
17.
Int J Mol Sci ; 23(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35216171

RESUMO

Short cationic peptides (SCPs) with therapeutic efficacy of antimicrobial peptides (AMPs), antifungal peptides (AFPs), and anticancer peptides (ACPs) are known as an enhancement of the host defense system. Here, we investigated the uppermost peptide(s), hub signaling pathway(s), and their associated target(s) through network pharmacology. Firstly, we selected SCPs with positive amino acid residues on N- and C- terminals under 500 Dalton via RStudio. Secondly, the overlapping targets between the bacteria-responsive targets (TTD and OMIM) and AMPs' targets were visualized by VENNY 2.1. Thirdly, the overlapping targets between AFPs' targets and fungal-responsive targets were exhibited by VENNY 2.1. Fourthly, the overlapping targets between cancer-related targets (TTD and OMIM) and fungal-responsive targets were displayed by VENNY 2.1. Finally, a molecular docking study (MDS) was carried out to discover the most potent peptides on a hub signaling pathway. A total of 1833 SCPs were identified, and AMPs', AFPs', and ACPs' filtration suggested that 197 peptides (30 targets), 81 peptides (6 targets), and 59 peptides (4 targets) were connected, respectively. The AMPs-AFPs-ACPs' axis indicated that 27 peptides (2 targets) were associated. Each hub signaling pathway for the enhancement of the host defense system was "Inactivation of Rap1 signaling pathway on AMPs", "Activation of Notch signaling pathway on AMPs-AFPs' axis", and "Inactivation of HIF-1 signaling pathway on AMPs-AFPs-ACPs' axis". The most potent peptides were assessed via MDS; finally, HPIK on STAT3 and HVTK on NOS2 and on HIF-1 signaling pathway were the most stable complexes. Furthermore, the two peptides had better affinity scores than standard inhibitors (Stattic, 1400 W). Overall, the most potent SCPs for the human defense system were HPIK on STAT3 and HVTK on NOS2, which might inactivate the HIF-1 signaling pathway.


Assuntos
Antifúngicos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Antineoplásicos/farmacologia , Farmacologia em Rede , Transdução de Sinais , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Proteoma/química , Proteoma/metabolismo
18.
Cent Eur J Immunol ; 47(1): 30-40, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600157

RESUMO

Chronic inflammation develops when the immune system is unable to clear a persistent insult. Unresolved chronic inflammation leads to immunosuppression to maintain the internal homeostatic conditions, which is mediated primarily by myeloid-derived suppressor cells (MDSCs). Toll-like receptors 2 (TLR2) has an important role in chronic inflammation and can be activated by a vast number and diversity of TLR2 ligands, for example Pam2CSK4. However, the regulatory effect of TLR2 signaling on MDSCs in chronic inflammation remains controversial. This study demonstrated that heat-killed Mycobacterium bovis BCG-induced pathology-free chronic inflammation triggered suppressive monocytic MDSCs (M-MDSCs) that expressed TLR2. Activation of TLR2 signaling by Pam2CSK4 treatment enhanced immunosuppression of M-MDSCs by upregulating inducible nitric oxide synthase (iNOS) activity and nitric oxide (NO) production partly through signal transducer and activator of transcription 3 (STAT3) activation. Thus, TLR2 has a fundamental role in promoting the MDSC-mediated immunosuppressive environment during chronic inflammation and might represent a potentially therapeutic target in chronic inflammation disease.

19.
J Cell Physiol ; 236(7): 5362-5372, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33368266

RESUMO

This study aimed to unravel the regulatory role of noncoding RNAs (ncRNA) on the nitric oxide (NO) machinery system in triple-negative breast cancer (TNBC) patients and to further assess the influence of NO-modulating ncRNAs on TNBC progression, immunogenic profile, and the tumor microenvironment (TME). The results revealed miR-939-5p and lncRNA HEIH as novel ncRNAs modulating NO machinery in TNBC. MiR-939-5p, an underexpressed microRNA (miRNA) in BC patients, showed an inhibitory effect on NOS2 and NOS3 transcript levels on TNBC cells. In contrast, HEIH was found to be markedly upregulated in TNBC patients and showed a modulatory role on miR-939-5p/NOS2/NO axis. Functionally, miR-939-5p was characterized as a tumor suppressor miRNA while HEIH was categorized as a novel oncogenic lncRNA in TNBC. Finally, knocking down of HEIH resulted in improvement of immunogenic profile of TNBC cells through inducing MICA/B and suppressing the immune checkpoint inhibitor PDL1. In the same context, knockdown of HEIH resulted in the alleviation of the immune-suppressive TME by repressing interleukin-10 and tumor necrosis factor-α levels. In conclusion, this study identifies miR-939-5p as a tumor suppressor miRNA while HEIH as an oncogenic lncRNA exhibiting its effect through miR-939-5p/NOS2/NO axis. Therefore, repressing BC hallmarks, improving TNBC immunogenic profile, and trimming TME.


Assuntos
MicroRNAs/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo , RNA Longo não Codificante/metabolismo , Neoplasias de Mama Triplo Negativas , Adulto , Idoso , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , MicroRNAs/genética , Pessoa de Meia-Idade , RNA Longo não Codificante/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral/fisiologia
20.
Mol Biol Rep ; 48(3): 2519-2525, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33778919

RESUMO

Fanconi anemia (FA) occurs due to genomic instability with predisposition to bone marrow failure, phenotypic abnormalities and cancers. Though mutations in 22 genes leading to DNA repair defect have been identified, the cellular factor such as oxidative stress has also shown to be associated with FA. Nitrosative Stress (NS) is biochemically correlated to many oxidative stress related disorders and the NS as a pathological hallmark in FA has been so far overlooked. We carried out the study first time in Indian patients with FA with an objective to understand the role of NS in the pathogenesis of FA. The study was carried out in 70 FA subjects. The FA subjects were diagnosed by chromosomal breakage analysis. Molecular study was carried out by Next Generation Sequencing and Sanger sequencing. The 3-nitrotyrosine [3-NT] levels were estimated through enzyme-linked immuno-sorbent assay (ELISA) and the nitric oxide synthase genes- NOS1 (c.-420-34221G>A (rs1879417), c.-420-10205C>T (rs499776), c.4286+720G>C (rs81631)) and NOS2 (c.1823C>T (p. Ser608Leu) (rs2297518)) polymorphism were studied by direct sequencing. Chromosomal breakage analysis revealed a high frequency of chromosomal breaks (Mean chromosomal breakage-4.13 ± 1.5 breaks/metaphase) in 70 FA patients as compared to the control. Molecular studies revealed FANCA (58.34%), FANCG (18.34%) and FANCL (16.6%) complementation groups. The 3-nitrotyrosine [3-NT] levels showed to be significantly (p < 0.05) elevated in FA subjects when compared to the age match controls. Genotyping of the NOS2 gene c.1823C>T (p. Ser608Leu) (rs2297518), showed statistically significant (P < 0.05) association with FA. Elevated level of 3-NT is one of the cause of NS and NOS2 gene polymorphism associated with FA is an important target in the treatment regimen.


Assuntos
Anemia de Fanconi/genética , Estudos de Associação Genética , Óxido Nítrico Sintase Tipo II/genética , Estresse Nitrosativo/genética , Polimorfismo de Nucleotídeo Único/genética , Adolescente , Adulto , Sequência de Bases , Estudos de Casos e Controles , Criança , Pré-Escolar , Frequência do Gene/genética , Humanos , Óxido Nítrico Sintase Tipo I/genética , Tirosina/análogos & derivados , Tirosina/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA