Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Pflugers Arch ; 468(9): 1609-19, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27344659

RESUMO

Eukaryotic cells exhibit negative resting membrane potential (RMP) owing to the high K(+) permeability of the plasma membrane and the asymmetric [K(+)] between the extracellular and intracellular compartments. However, cochlear fibrocytes, which comprise the basolateral surface of a multilayer epithelial-like tissue, exhibit a RMP of +5 to +12 mV in vivo. This positive RMP is critical for the formation of an endocochlear potential (EP) of +80 mV in a K(+)-rich extracellular fluid, endolymph. The epithelial-like tissue bathes fibrocytes in a regular extracellular fluid, perilymph, and apically faces the endolymph. The EP, which is essential for hearing, represents the potential difference across the tissue. Using in vivo electrophysiological approaches, we describe a potential mechanism underlying the unusual RMP of guinea pig fibrocytes. The RMP was +9.0 ± 3.7 mV when fibrocytes were exposed to an artificial control perilymph (n = 28 cochleae). Perilymphatic perfusion of a solution containing low [Na(+)] (1 mM) markedly hyperpolarized the RMP to -31.1 ± 11.2 mV (n = 10; p < 0.0001 versus the control, Tukey-Kramer test after one-way ANOVA). Accordingly, the EP decreased. Little change in RMP was observed when the cells were treated with a high [K(+)] of 30 mM (+10.4 ± 2.3 mV; n = 7; p = 0.942 versus the control). During the infusion of a low [Cl(-)] solution (2.4 mM), the RMP moderately hyperpolarized to -0.9 ± 3.4 mV (n = 5; p < 0.01 versus the control), although the membranes, if governed by Cl(-) permeability, should be depolarized. These observations imply that the fibrocyte membranes are more permeable to Na(+) than K(+) and Cl(-), and this unique profile and [Na(+)] gradient across the membranes contribute to the positive RMP.


Assuntos
Permeabilidade da Membrana Celular , Cóclea/metabolismo , Potenciais da Membrana , Potássio/metabolismo , Sódio/metabolismo , Animais , Cloretos/metabolismo , Cóclea/citologia , Cóclea/fisiologia , Endolinfa/metabolismo , Cobaias , Transporte de Íons , Masculino , Perilinfa/metabolismo
2.
Am J Physiol Cell Physiol ; 305(7): C716-27, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23864606

RESUMO

Slc4a11, a member of the solute linked cotransporter 4 family that is comprised predominantly of bicarbonate transporters, was described as an electrogenic 2Na(+)-B(OH)4(-) (borate) cotransporter and a Na(+)-2OH(-) cotransporter. The goal of the current study was to confirm and/or clarify the function of SLC4A11. In HEK293 cells transfected with SLC4A11 we tested if SLC4A11 is a: 1) Na(+)-HCO3(-) cotransporter, 2) Na(+)-OH(-)(H(+)) transporter, and/or 3) Na(+)-B(OH)4(-) cotransporter. CO2/HCO3(-) perfusion yielded no significant differences in rate or extent of pHi changes or Na(+) flux in SLC4A11-transfected compared with control cells. Similarly, in CO2/HCO3(-), acidification on removal of Na(+) and alkalinization on Na(+) add back were not significantly different between control and transfected indicating that SLC4A11 does not have Na(+)-HCO3(-) cotransport activity. In the absence of CO2/HCO3(-), SLC4A11-transfected cells showed higher resting intracelllular Na(+) concentration ([Na(+)]i; 25 vs. 17 mM), increased NH4(+)-induced acidification and increased acid recovery rate (160%) after an NH4 pulse. Na(+) efflux and influx were faster (80%) following Na(+) removal and add back, respectively, indicative of Na(+)-OH(-)(H(+)) transport by SLC4A11. The increased alkalinization recovery was confirmed in NHE-deficient PS120 cells demonstrating that SLC4A11 is a bonafide Na(+)-OH(-)(H(+)) transporter and not an activator of NHEs. SLC4A11-mediated H(+) efflux is inhibited by 5-(N-ethyl-N-isopropyl) amiloride (EIPA; EC50: 0.1 µM). The presence of 10 mM borate did not alter dpHi/dt or ΔpH during a Na(+)-free pulse in SLC4A11-transfected cells. In summary our results show that SLC4A11 is not a bicarbonate or borate-linked transporter but has significant EIPA-sensitive Na(+)-OH(-)(H(+)) and NH4(+) permeability.


Assuntos
Amilorida/análogos & derivados , Proteínas de Transporte de Ânions/antagonistas & inibidores , Antiporters/antagonistas & inibidores , Permeabilidade da Membrana Celular/efeitos dos fármacos , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Sódio/metabolismo , Amilorida/farmacologia , Sequência de Aminoácidos , Cloreto de Amônio/metabolismo , Animais , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Antiporters/genética , Antiporters/metabolismo , Células CHO , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Transporte de Íons , Dados de Sequência Molecular , Hidróxido de Sódio/metabolismo , Fatores de Tempo , Transfecção
3.
Eur J Pharmacol ; 782: 77-88, 2016 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-27108787

RESUMO

UNLABELLED: Membrane depolarization of airway smooth muscle (ASM) opens L-type voltage dependent Ca(2+) channels (L-VDCC) allowing Ca(2+) entrance to produce contraction. In Ca(2+) free conditions Na(+) permeates through L-VDCC in excitable and non-excitable cells and this phenomenon is annulled at µM Ca(2+) concentrations. Membrane depolarization also induces activation of Gq proteins and sarcoplasmic reticulum Ca(2+) release. In bovine ASM, KCl induced a transient contraction sensitive to nifedipine in Ca(2+)free medium, indicating an additional mechanism to the SR-Ca(2+) release. It is possible that Na(+) could permeate through L-VDCC in bovine ASM. KCl induced a transient contraction in Ca(2+) free medium with a fast intracellular Ca(2+) increment, reduced by TMB-8. This contraction was abolished by caffeine and CPA, diminished with nifedipine and augmented by Bay K8644. Increasing extracellular Na(+) concentration in tracheal myocytes, proportionally augmented the SBFI fluorescence ratio, suggesting an increment in the intracellular Na(+) concentration ([Na(+)]i). 50mM Na(+) with and without Ca(2+) induced a [Na(+)]i increment, enhanced by Bay K8644 and inhibited with D-600. In Ca(2+) free medium, KCl increased [Na(+)]i. Ba(2+) currents corresponding to L-VDCC were observed in myocytes and Na(+) permeated in the presence and absence of Ca(2+). SBFI-loaded myocytes in Na(+) and Ca(2+) containing Krebs stimulated with carbachol showed a Na(+) increment with a plateau. D-600 and 2-APB almost abolished the carbachol-induced Na(+) increment. RT-PCR demonstrated that CaV1.2 is the only L-VDCC subunit present in ASM. CONCLUSION: under physiological conditions, Na(+) permeates through L-VDCC in bovine ASM, probably contributing to sustain membrane depolarization during agonist stimulation.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Músculo Liso/metabolismo , Sódio/metabolismo , Traqueia/metabolismo , Animais , Canais de Cálcio Tipo L/genética , Bovinos , Membrana Celular/metabolismo , Regulação da Expressão Gênica , Músculo Liso/citologia , Permeabilidade , Retículo Sarcoplasmático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA