Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Labelled Comp Radiopharm ; 63(2): 56-64, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31715025

RESUMO

The gastrin-releasing peptide receptor (GRPR) is overexpressed in prostate cancer and other solid malignancies. Following up on our work on [68 Ga]Ga-ProBOMB1 that had better imaging characteristics than [68 Ga]Ga-NeoBOMB1, we investigated the effects of substituting 68 Ga for 177 Lu to determine if the resulting radiopharmaceuticals could be used with a therapeutic aim. We radiolabeled the bombesin antagonist ProBOMB1 (DOTA-pABzA-DIG-D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-ψ-Pro-NH2 ) with lutetium-177 and compared it with [177 Lu]Lu-NeoBOMB1 (obtained in 54.2 ± 16.5% isolated radiochemical yield with >96% radiochemical purity and 440.8 ± 165.1 GBq/µmol molar activity) for GRPR targeting. Lu-NeoBOMB1 had better binding affinity for GRPR than Lu-ProBOMB1 (Ki values: 2.26 ± 0.24 and 30.2 ± 3.23nM). [177 Lu]Lu-ProBOMB1 was obtained in 53.7 ± 5.4% decay-corrected radiochemical yield with 444.2 ± 193.2 GBq/µmol molar activity and >95% radiochemical purity. In PC-3 prostate cancer xenograft mice, tumor uptake of [177 Lu]Lu-ProBOMB1 was 3.38 ± 1.00, 1.32 ± 0.24, and 0.31 ± 0.04%ID/g at 1, 4, and 24 hours pi. However, the uptake in tumor was lower than [177 Lu]Lu-NeoBOMB1 at all time points. [177 Lu]Lu-ProBOMB1 was inferior to [177 Lu]Lu-NeoBOMB1, which had better therapeutic index for the organs receiving the highest doses.


Assuntos
Bombesina/química , Lutécio , Radioisótopos , Receptores da Bombesina/metabolismo , Animais , Bombesina/síntese química , Bombesina/metabolismo , Humanos , Masculino , Camundongos , Oligopeptídeos/química , Tomografia por Emissão de Pósitrons , Neoplasias da Próstata/diagnóstico por imagem , Radioquímica
2.
J Nucl Med ; 63(9): 1364-1370, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35027371

RESUMO

Theranostic applications targeting the gastrin-releasing peptide receptor (GRPR) have shown promising results. When compared with other peptide ligands for radioligand therapy, the most often used GRPR ligand, DOTA-Pip5-d-Phe6-Gln7-Trp8-Ala9-Val10-Gly11-His12-Sta13-Leu14-NH2 (RM2), may be clinically impacted by limited metabolic stability. With the aim of improving the metabolic stability of RM2, we investigated whether the metabolically unstable Gln7-Trp8 bond within the pharmacophore of RM2 can be stabilized via substitution of l-Trp8 by α-methyl-l-tryptophan (α-Me-l-Trp) and whether the corresponding DOTAGA analog might also be advantageous. A comparative preclinical evaluation of 177Lu-α-Me-l-Trp8-RM2 (177Lu-AMTG) and its DOTAGA counterpart (177Lu-AMTG2) was performed using 177Lu-RM2 and 177Lu-NeoBOMB1 as reference compounds. Methods: Peptides were synthesized by solid-phase peptide synthesis and labeled with 177Lu. Lipophilicity was determined at pH 7.4 (logD 7.4). Receptor-mediated internalization was investigated on PC-3 cells (37°C, 60 min), whereas GRPR affinity (half-maximal inhibitory concentration) was determined on both PC-3 and T-47D cells. Stability toward peptidases was examined in vitro (human plasma, 37°C, 72 ± 2 h) and in vivo (murine plasma, 30 min after injection). Biodistribution studies were performed at 24 h after injection, and small-animal SPECT/CT was performed on PC-3 tumor-bearing mice at 1, 4, 8, 24, and 28 h after injection. Results: Solid-phase peptide synthesis yielded 9%-15% purified labeling precursors. 177Lu labeling proceeded quantitatively. Compared with 177Lu-RM2, 177Lu-AMTG showed slightly improved GRPR affinity, a similar low internalization rate, slightly increased lipophilicity, and considerably improved stability in vitro and in vivo. In vivo, 177Lu-AMTG exhibited the highest tumor retention (11.45 ± 0.43 percentage injected dose/g) and tumor-to-blood ratio (2,702 ± 321) at 24 h after injection, as well as a favorable biodistribution profile. As demonstrated by small-animal SPECT/CT imaging, 177Lu-AMTG also revealed a less rapid clearance from tumor tissue. Compared with 177Lu-AMTG, 177Lu-AMTG2 did not show any further benefits. Conclusion: The results of this study, particularly the superior metabolic stability of 177Lu-AMTG, strongly recommend a clinical evaluation of this novel GRPR-targeted ligand to investigate its potential for radioligand therapy of GRPR-expressing malignancies.


Assuntos
Receptores da Bombesina , Triptofano , Animais , Linhagem Celular Tumoral , Humanos , Ligantes , Lutécio , Camundongos , Peptídeo Hidrolases/metabolismo , Peptídeos/metabolismo , Receptores da Bombesina/metabolismo , Distribuição Tecidual , Triptofano/análogos & derivados
3.
Biomedicines ; 10(11)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36428467

RESUMO

Background: Gastrin-releasing peptide receptors (GRPRs) are molecular imaging targets in multiple malignancies. Recently, NeoBOMB1, a 68Ga-labelled antagonist to GRPRs, was developed for PET. Here we report the outcome of a Phase I/IIa clinical trial (EudraCT 2016-002053-38) describing diagnostic properties and covariates influencing uptake of 68Ga-NeoBOMB1 in oligometastatic gastrointestinal stromal tumor (GIST) patients. Methods: Nine patients with advanced GIST using PET/CT (computed tomography) were included. After kit-based 68Ga-NeoBOMB1 preparation with a licensed 68Ge/68Ga generator, 3 MBq/kg body weight were injected intravenously. PET/CT included dynamic and static PET scans 5, 12 and 18 min and 1, 2, and 3−4 h post injection (first six patients) and static PET scans 2 and 3−4 h post injection (last three participants). Tumor targeting was assessed on a per-lesion and per-patient basis. Results: Six patients showed visible radiotracer uptake in at least one tumor lesion. Seventeen out of 37 tumor lesions exhibited significant 68Ga-NeoBOMB1 uptake (median SUVmax 11.8 [range 2.8−51.1] 2 h p.i. and 13.2 [range 2.5−53.8] 3−4 h p.i) and improved lesion-to-background contrast over time. Five lesions (13.5%) were identified only by 68Ga-NeoBOMB1-PET, with no correlation on contrast-enhanced CT. Three patients showed no radiotracer accumulation in any lesions. Tracer uptake correlated with male sex (p < 0.0001), higher body mass index (p = 0.007), and non-necrotic lesion appearance (p = 0.018). There was no association with whole-lesion contrast enhancement, hepatic localization, mutational status, or disease duration. Conclusions: 68Ga-NeoBOMB1-PET exhibits variable tumor uptake in advanced-stage GIST patients, correlating with lesion vitality based on CT contrast uptake, opening the possibility of a theragnostic approach in selected cases.

4.
Cancers (Basel) ; 13(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801382

RESUMO

NeoB is a radiotracer targeting the gastrin-releasing peptide receptor (GRPR), a G-protein-coupled receptor expressed in various cancers. The aim of the present study was to evaluate the biodistribution and efficacy of this new therapeutic agent in Gastrointestinal Stromal Tumors (GIST). Eighty-two SCID mice bearing GIST-882 tumors were employed. [177Lu]Lu-NeoB biodistribution was evaluated up to seven days by organ sampling (200 pmol/0.8 MBq, i.v.). For efficacy evaluation, mice received either saline, 400 pmol or 800 pmol of [177Lu]Lu-NeoB (37MBq, 1/w, 3 w, i.v.). SPECT/CT imaging was performed at 24 h, and tumor volume was determined up to 100 days. Elevated and specific [177Lu]Lu-NeoB uptake was found in the GIST tumor, as demonstrated by in vivo competition (19.1 ± 3.9 %ID/g vs. 0.3 ± 0.1 %ID/g at 4h). [177Lu]Lu-NeoB tumor retention (half-life of 40.2 h) resulted in elevated tumor-to-background ratios. Tumor volumes were significantly reduced in both treated groups (p < 0.01), even leading to complete tumor regression at the 400 pmol dose. [177Lu]Lu-NeoB exhibited excellent pharmacokinetics with elevated and prolonged tumor uptake and low uptake in non-target organs such as pancreas. The potential of this new theragnostic agent in different indications, including GIST, is under evaluation in the FIH [177Lu]Lu-NeoB clinical trial.

5.
J Nucl Med ; 61(12): 1749-1755, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32332143

RESUMO

Gastrin-releasing peptide receptors (GRPRs) are potential molecular imaging targets in a variety of tumors. Recently, a 68Ga-labeled antagonist to GRPRs, NeoBOMB1, was developed for PET. We report on the outcome of a phase I/IIa clinical trial (EudraCT 2016-002053-38) within the EU-FP7 project Closed-loop Molecular Environment for Minimally Invasive Treatment of Patients with Metastatic Gastrointestinal Stromal Tumors ('MITIGATE') (grant agreement no. 602306) in patients with oligometastatic gastrointestinal stromal tumors (GIST). Methods: The main objectives were evaluation of safety, biodistribution, dosimetry, and preliminary tumor targeting of 68Ga-NeoBOMB1 in patients with advanced tyrosine-kinase inhibitors-treated GIST using PET/CT. Six patients with histologically confirmed GIST and unresectable primary lesion or metastases undergoing an extended protocol for detailed pharmacokinetic analysis were included. 68Ga-NeoBOMB1 was prepared using a kit procedure with a licensed 68Ge/68Ga generator. 68Ga-NeoBOMB1 (3 MBq/kg of body weight) was injected intravenously, and safety parameters were assessed. PET/CT included dynamic imaging at 5, 11, and 19 min as well as static imaging at 1, 2, and 3-4 h after injection for dosimetry calculations. Venous blood samples and urine were collected for pharmacokinetic analysis. Tumor targeting was assessed on a per-lesion and per-patient basis. Results:68Ga-NeoBOMB1 (50 µg) was prepared with high radiochemical purity (yield > 97%). Patients received 174 ± 28 MBq of the radiotracer, which was well tolerated in all patients over a follow-up period of 4 wk. Dosimetry calculations revealed a mean effective dose of 0.029 ± 0.06 mSv/MBq, with the highest organ dose to the pancreas (0.274 ± 0.099 mSv/MBq). Mean plasma half-life was 27.3 min with primarily renal clearance (mean 25.7% ± 5.4% of injected dose 4 h after injection). Plasma metabolite analyses revealed high stability; metabolites were detected only in the urine. In 3 patients, a significant uptake with increasing maximum SUVs (SUVmax at 2 h after injection: 4.3-25.9) over time was found in tumor lesions. Conclusion: This phase I/IIa study provides safety data for 68Ga-NeoBOMB1, a promising radiopharmaceutical for targeting GRPR-expressing tumors. Safety profiles and pharmacokinetics are suitable for PET imaging, and absorbed dose estimates are comparable to those of other 68Ga-labeled radiopharmaceuticals used in clinical routine.


Assuntos
Bombesina/química , Bombesina/farmacocinética , Radioisótopos de Gálio/química , Tumores do Estroma Gastrointestinal/diagnóstico por imagem , Tumores do Estroma Gastrointestinal/patologia , Receptores da Bombesina/antagonistas & inibidores , Segurança , Idoso , Idoso de 80 Anos ou mais , Bombesina/efeitos adversos , Bombesina/farmacologia , Feminino , Tumores do Estroma Gastrointestinal/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Radiometria , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA