Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 352
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 59, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38279051

RESUMO

BACKGROUND: Vascular smooth muscle cell (VSMC) proliferation is the leading cause of vascular stenosis or restenosis. Therefore, investigating the molecular mechanisms and pivotal regulators of the proliferative VSMC phenotype is imperative for precisely preventing neointimal hyperplasia in vascular disease. METHODS: Wire-induced vascular injury and aortic culture models were used to detect the expression of staphylococcal nuclease domain-containing protein 1 (SND1). SMC-specific Snd1 knockout mice were used to assess the potential roles of SND1 after vascular injury. Primary VSMCs were cultured to evaluate SND1 function on VSMC phenotype switching, as well as to investigate the mechanism by which SND1 regulates the VSMC proliferative phenotype. RESULTS: Phenotype-switched proliferative VSMCs exhibited higher SND1 protein expression compared to the differentiated VSMCs. This result was replicated in primary VSMCs treated with platelet-derived growth factor (PDGF). In the injury model, specific knockout of Snd1 in mouse VSMCs reduced neointimal hyperplasia. We then revealed that ETS transcription factor ELK1 (ELK1) exhibited upregulation and activation in proliferative VSMCs, and acted as a novel transcription factor to induce the gene transcriptional activation of Snd1. Subsequently, the upregulated SND1 is associated with serum response factor (SRF) by competing with myocardin (MYOCD). As a co-activator of SRF, SND1 recruited the lysine acetyltransferase 2B (KAT2B) to the promoter regions leading to the histone acetylation, consequently promoted SRF to recognize the specific CArG motif, and enhanced the proliferation- and migration-related gene transcriptional activation. CONCLUSIONS: The present study identifies ELK1/SND1/SRF as a novel pathway in promoting the proliferative VSMC phenotype and neointimal hyperplasia in vascular injury, predisposing the vessels to pathological remodeling. This provides a potential therapeutic target for vascular stenosis.


Assuntos
Músculo Liso Vascular , Lesões do Sistema Vascular , Camundongos , Animais , Hiperplasia/metabolismo , Lesões do Sistema Vascular/genética , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/patologia , Proliferação de Células , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo , Constrição Patológica/metabolismo , Constrição Patológica/patologia , Fatores de Transcrição/metabolismo , Fenótipo , Neointima/genética , Neointima/metabolismo , Neointima/patologia , Miócitos de Músculo Liso/metabolismo , Células Cultivadas , Movimento Celular
2.
Am J Physiol Heart Circ Physiol ; 326(6): H1446-H1461, 2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38578237

RESUMO

Clinical failure of arteriovenous neointimal hyperplasia (NIH) fistulae (AVF) is frequently due to juxta-anastomotic NIH (JANIH). Although the mouse AVF model recapitulates human AVF maturation, previous studies focused on the outflow vein distal to the anastomosis. We hypothesized that the juxta-anastomotic area (JAA) has increased NIH compared with the outflow vein. AVF was created in C57BL/6 mice without or with chronic kidney disease (CKD). Temporal and spatial changes of the JAA were examined using histology and immunofluorescence. Computational techniques were used to model the AVF. RNA-seq and bioinformatic analyses were performed to compare the JAA with the outflow vein. The jugular vein to carotid artery AVF model was created in Wistar rats. The neointima in the JAA shows increased volume compared with the outflow vein. Computational modeling shows an increased volume of disturbed flow at the JAA compared with the outflow vein. Endothelial cells are immediately lost from the wall contralateral to the fistula exit, followed by thrombus formation and JANIH. Gene Ontology (GO) enrichment analysis of the 1,862 differentially expressed genes (DEG) between the JANIH and the outflow vein identified 525 overexpressed genes. The rat jugular vein to carotid artery AVF showed changes similar to the mouse AVF. Disturbed flow through the JAA correlates with rapid endothelial cell loss, thrombus formation, and JANIH; late endothelialization of the JAA channel correlates with late AVF patency. Early thrombus formation in the JAA may influence the later development of JANIH.NEW & NOTEWORTHY Disturbed flow and focal endothelial cell loss in the juxta-anastomotic area of the mouse AVF colocalizes with acute thrombus formation followed by late neointimal hyperplasia. Differential flow patterns between the juxta-anastomotic area and the outflow vein correlate with differential expression of genes regulating coagulation, proliferation, collagen metabolism, and the immune response. The rat jugular vein to carotid artery AVF model shows changes similar to the mouse AVF model.


Assuntos
Derivação Arteriovenosa Cirúrgica , Hiperplasia , Veias Jugulares , Camundongos Endogâmicos C57BL , Neointima , Ratos Wistar , Trombose , Animais , Trombose/fisiopatologia , Trombose/patologia , Trombose/genética , Trombose/etiologia , Trombose/metabolismo , Masculino , Veias Jugulares/metabolismo , Veias Jugulares/patologia , Veias Jugulares/fisiopatologia , Modelos Animais de Doenças , Artérias Carótidas/patologia , Artérias Carótidas/fisiopatologia , Artérias Carótidas/metabolismo , Artérias Carótidas/cirurgia , Camundongos , Ratos , Fluxo Sanguíneo Regional , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Endotélio Vascular/patologia , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/fisiopatologia , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia
3.
J Vasc Res ; 61(2): 89-98, 2024.
Artigo em Francês | MEDLINE | ID: mdl-38368869

RESUMO

INTRODUCTION: Vascular prosthetic grafts are widely used in vascular surgery; however, graft infection remains a major concern. Silver-coated vascular grafts have demonstrated anti-infection properties in clinical settings; however, whether the silver irons influence foreign body reaction or neointimal hyperplasia remains unclear. METHODS: Sodium alginate and hyaluronic acid (SA/HA) hydrogel patches loaded with rhodamine, with or without silver, were fabricated. Patches were implanted in the subcutaneous or abdominal cavity and inferior vena cava of rats. Samples were harvested on day 14 and examined via immunohistochemical and immunofluorescence analyses. RESULTS: Silver hydrogel was found to decrease the foreign body reaction; after subcutaneous and abdominal cavity implantation in rats, the capsule was found to be thinner in the silver hydrogel group than in the control hydrogel group. The silver hydrogel group had fewer CD68-positive cells and proliferating cell nuclear antigen and interleukin-33 (IL-33) dual-positive cells than the control hydrogel group. Additionally, the silver hydrogel patch reduced the neointimal thickness after patch venoplasty in rats, and the number of IL-33- and IL-1ß-positive cells was lower than that in the control patch. CONCLUSION: Silver-loaded SA/HA hydrogel patches decreased the foreign body reaction and venous neointimal hyperplasia in rats by the inhibition of IL-33 expression.


Assuntos
Interleucina-33 , Prata , Ratos , Animais , Hiperplasia , Neointima , Reação a Corpo Estranho/etiologia , Reação a Corpo Estranho/prevenção & controle , Hidrogéis
4.
J Vasc Res ; 61(3): 99-108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38151007

RESUMO

INTRODUCTION: This study aimed to determine whether bone morphogenetic protein-4 (BMP-4), which increases in response to intimal hyperplasia, promotes phenotype transition in vascular smooth muscle cells (VSMCs). METHODS: Balloon injury was used to induce intimal hyperplasia in rats. Hematoxylin-eosin staining was used to detect the alteration of vascular structure. Serum levels of BMP-4 and lactate were detected by ELISA. Human aortic smooth muscle cells (HA-SMCs) were cultured. Protein and mRNA expression levels were detected through Western blot and real-time PCR. Cell migration was measured by transwell assay. RESULTS: Our data showed that serum concentration of BMP-4 was upregulated after balloon injury. Treatment with BMP-4 inhibitor DMH1 (4-(6-(4-isopropoxyphenyl)pyrazolo(1,5-a)pyrimidin-3-yl)quinoline) suppressed the abnormal expression of BMP-4 and inhibited the intimal hyperplasia induced by balloon injury. Compared to BMP-4-negative medium, BMP-4-positive medium was associated with higher synthetic VSMC marker expression levels and lower in contractile gene markers in cultured HA-SMCs. Transfection of monocarboxylic acid transporters-4 (MCT-4) siRNA inhibited the excretion of lactate induced by BMP-4. CONCLUSION: Our analyses provided evidence that BMP-4 and its regulator Smad-4 are key regulators in MCT-4-mediated lactate excretion. This indicates that BMP-4 stimulates the phenotypic transition of VSMCs via SMAD-4/MCT-4 signaling pathway.


Assuntos
Proteína Morfogenética Óssea 4 , Movimento Celular , Modelos Animais de Doenças , Hiperplasia , Transportadores de Ácidos Monocarboxílicos , Músculo Liso Vascular , Miócitos de Músculo Liso , Neointima , Fenótipo , Ratos Sprague-Dawley , Transdução de Sinais , Proteína Smad4 , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Músculo Liso Vascular/efeitos dos fármacos , Animais , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Proteína Morfogenética Óssea 4/metabolismo , Proteína Morfogenética Óssea 4/genética , Humanos , Proteína Smad4/metabolismo , Proteína Smad4/genética , Masculino , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Ácido Láctico/metabolismo , Ácido Láctico/sangue , Angioplastia com Balão/efeitos adversos , Lesões do Sistema Vascular/patologia , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/genética , Plasticidade Celular/efeitos dos fármacos
5.
J Vasc Surg ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39208919

RESUMO

BACKGROUND: Endovascular therapy (ET) outcomes for femoropopliteal peripheral arterial disease (FP-PAD) remain suboptimal. Cilostazol therapy may improve patency rates and decrease major adverse limb events after ET for FP-PAD. Our goal was to analyze published studies evaluating the use of cilostazol after ET for FP-PAD. METHODS: We searched MEDLINE, EMBASE, and CENTRAL for randomized and observational studies (OSs) evaluating cilostazol therapy after ET for FP-PAD. We only included OSs adjusting for confounding variables. We analyzed observational and randomized studies separately and explored heterogeneity by estimating an I2 statistic. A fixed-effects model was chosen if the I2 statistic was low. If the two-sided probability of observing the difference between groups under a true null hypothesis was <5%, we considered this difference statistically significant. RESULTS: We screened 2171 studies and included 26 papers in our analysis (5 randomized controlled trials and 21 OSs). All randomized studies were open label. In randomized studies, the odds of restenosis were lower in patients treated with cilostazol (pooled odds ratio, 0.28; 95% confidence interval [CI], 0.18-0.43; P < .01; I2 = 0%). The odds of target lesion revascularization (TLR) were also lower in patients treated with cilostazol (pooled odds ratio, 0.35; 95% CI, 0.22-0.65; P < .01; I2 = 0%). In OSs, we also identified associations between peri-interventional treatment with cilostazol and lower rates of restenosis (pooled hazard ratio [pHR], 0.57; 95% CI, 0.51-0.65; P < .01; I2 = 34%), TLR (pHR, 0.53; 95% CI, 0.36-0.79; P < .01; I2 = 0%), and amputation (pHR, 0.54; 95% CI, 0.32-0.90; P = .02; I2 = 30%). CONCLUSIONS: In randomized open-label studies, peri-interventional treatment with cilostazol after ET for FP-PAD decreased the odds of restenosis and TLR (Level 1A). Similarly, in OSs that adjusted for confounding, peri-interventional cilostazol therapy was associated with lower rates of restenosis, TLR, and amputation (Level 2A).

6.
Microvasc Res ; 154: 104688, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38640999

RESUMO

Arteriovenous fistula (AVF) failure often involves venous neointimal hyperplasia (VNH) driven by elevated hypoxia-inducible factor-1 alpha (HIF-1α) in the venous wall. Omentin, known for its anti-inflammatory and anti-hyperplasia properties, has an uncertain role in early AVF failure. This study investigates omentin's impact on VNH using a chronic renal failure (CRF) rabbit model. The CRF rabbit model of AVF received omentin-expressing adenoviral vector or control ß-gal vector to assess omentin's effects on VNH. Human vascular smooth muscle cells (HVSMCs), stimulated with tumor necrosis factor-α (TNF-α), were exposed to recombinant human omentin (Rh-OMT) to study its influence on cell proliferation and migration. The AMP-activated protein kinase (AMPK) inhibitor compound C and the mammalian target of rapamycin (mTOR) activator MHY1485 were employed to explore omentin's mechanisms in VNH reduction through HIF-1α inhibition. Omentin treatment reduced VNH in CRF rabbits, concomitant with HIF-1α down-regulation and the suppression of downstream factors, including vascular endothelial growth factor and matrix metalloproteinases. Rh-OMT inhibited TNF-α-induced HVSMC proliferation and migration by modulating both cell cycle and cell adhesion proteins. Additionally, omentin reduced HIF-1α expression through the AMPK/mTOR pathway activation. Notably, the blockade of AMPK/mTOR signaling reversed omentin-mediated inhibition of VNH, cell proliferation, and migration, both in vivo and in vitro. In conclusion, omentin mitigates VNH post-AVF creation by restraining HIF-1α via AMPK/mTOR signaling. Strategies boosting circulating omentin levels may offer promise in averting AVF failure.


Assuntos
Proteínas Quinases Ativadas por AMP , Derivação Arteriovenosa Cirúrgica , Movimento Celular , Proliferação de Células , Citocinas , Modelos Animais de Doenças , Proteínas Ligadas por GPI , Hiperplasia , Subunidade alfa do Fator 1 Induzível por Hipóxia , Lectinas , Músculo Liso Vascular , Miócitos de Músculo Liso , Neointima , Transdução de Sinais , Animais , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Citocinas/metabolismo , Coelhos , Humanos , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/farmacologia , Proteínas Ligadas por GPI/genética , Proliferação de Células/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Lectinas/farmacologia , Lectinas/metabolismo , Movimento Celular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Células Cultivadas , Derivação Arteriovenosa Cirúrgica/efeitos adversos , Masculino , Falência Renal Crônica/patologia , Serina-Treonina Quinases TOR/metabolismo , Oclusão de Enxerto Vascular/patologia , Oclusão de Enxerto Vascular/prevenção & controle , Oclusão de Enxerto Vascular/metabolismo , Oclusão de Enxerto Vascular/fisiopatologia , Veias Jugulares/patologia , Veias Jugulares/metabolismo , Veias Jugulares/transplante
7.
Vasc Med ; 29(5): 470-482, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39212227

RESUMO

Introduction: Renin and prorenin promote the proliferation of vascular smooth muscle cells (VSMCs) through the (pro)renin receptor, or (P)RR, to promote restenosis occurrence. This study aimed to explore whether prorenin promoted the proliferation of VSMCs in a (P)RR-mediated Ang II-independent manner. Methods: Losartan and PD123319 were used to block the interaction between (P)RR and angiotensin in vitro. Cells were treated with renin, platelet-derived growth factor (PDGF), or RNAi-(P)RR, either jointly or individually. Cell proliferation was measured via Cell Counting Kit-8 (CCK-8) and flow cytometry methods; moreover, real-time polymerase chain reaction (RT-PCR) and Western blot (WB) assays were used to detect the expression of cyclin D1, proliferating cell nuclear antigen (PCNA), (P)RR, NOX1, and phosphatidylinositol 3-kinase (PI3K)/AKT signaling proteins. Immunofluorescence staining was conducted to measure the expression of (P)RR, and the levels of renin, PDGF-BB, inflammatory factors, and oxidative stress were determined by using enzyme-linked immunosorbent assay (ELISA). Moreover, a balloon catheter was used to enlarge the carotid artery of the Sprague Dawley rats. PRO20 was applied to identify angiotensin II (Ang II). The hematoxylin and eosin, RT-PCR, and WB results validated the cell assay results. Results: Renin promoted the proliferation of rat VSMCs by enhancing cell viability and cell cycle protein expression when Ang II was blocked, but silencing (P)RR inhibited this effect. Furthermore, renin enhanced NOX1-mediated oxidative stress and inflammation by activating the extracellular signal-regulated kinase 1/2 (ERK1/2)-AKT pathway in vitro. Similarly, the inhibition of (P)RR resulted in the opposite phenomenon. Importantly, the inhibition of (P)RR inhibited neointimal hyperplasia in vivo after common carotid artery injury by restraining NOX1-mediated oxidative stress through the downregulation of the ERK1/2-AKT pathway. The animal study confirmed these findings. Conclusion: Renin and (P)RR induced VSMC proliferation and neointimal hyperplasia by activating oxidative stress, inflammation, and the ERK1/2-AKT pathway in an Ang II-independent manner.


Assuntos
Lesões das Artérias Carótidas , Proliferação de Células , Modelos Animais de Doenças , Hiperplasia , Músculo Liso Vascular , Miócitos de Músculo Liso , Neointima , Estresse Oxidativo , Receptor de Pró-Renina , Ratos Sprague-Dawley , Receptores de Superfície Celular , Renina , Transdução de Sinais , Animais , Estresse Oxidativo/efeitos dos fármacos , Músculo Liso Vascular/patologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Proliferação de Células/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Células Cultivadas , Renina/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética , Lesões das Artérias Carótidas/patologia , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/genética , Masculino , Sistema Renina-Angiotensina/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
8.
Cell Mol Biol Lett ; 29(1): 2, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172726

RESUMO

Neointimal hyperplasia is a pathological vascular remodeling caused by abnormal proliferation and migration of subintimal vascular smooth muscle cells (VSMCs) following intimal injury. There is increasing evidence that tRNA-derived small RNA (tsRNA) plays an important role in vascular remodeling. The purpose of this study is to search for tsRNAs signature of neointima formation and to explore their potential functions. The balloon injury model of rat common carotid artery was replicated to induce intimal hyperplasia, and the differentially expressed tsRNAs (DE-tsRNAs) in arteries with intimal hyperplasia were screened by small RNA sequencing and tsRNA library. A total of 24 DE-tsRNAs were found in the vessels with intimal hyperplasia by small RNA sequencing. In vitro, tRF-Glu-CTC inhibited the expression of fibromodulin (FMOD) in VSMCs, which is a negative modulator of TGF-ß1 activity. tRF-Glu-CTC also increased VSMC proliferation and migration. In vivo experiments showed that inhibition of tRF-Glu-CTC expression after balloon injury of rat carotid artery can reduce the neointimal area. In conclusion, tRF-Glu-CTC expression is increased after vascular injury and inhibits FMOD expression in VSMCs, which influences neointima formation. On the other hand, reducing the expression of tRF-Glu-CTC after vascular injury may be a potential approach to prevent vascular stenosis.


Assuntos
Lesões das Artérias Carótidas , Lesões do Sistema Vascular , Animais , Ratos , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Fibromodulina/metabolismo , Hiperplasia/complicações , Hiperplasia/metabolismo , Hiperplasia/patologia , Miócitos de Músculo Liso/metabolismo , Neointima/metabolismo , Neointima/patologia , Neointima/prevenção & controle , Ratos Sprague-Dawley , RNA/metabolismo , RNA de Transferência/metabolismo , Remodelação Vascular , Lesões do Sistema Vascular/metabolismo
9.
Nanomedicine ; 61: 102763, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38897395

RESUMO

The primary challenge in percutaneous coronary interventions for vascular restenosis is the occurrence of restenosis, which is defined by the excessive proliferation of neointimal tissue. Herein, our research team suggests that exosomes obtained from PSC, when paired with quercetin (Q@PSC-E), successfully reduce neointimal hyperplasia in a Sprague-Dawley rat model. Furthermore, the physical properties of the synthesized Q@PSC-E were examined using UV-vis, DLS, and FT-IR characterization techniques. The rats were subjected to balloon injury (BI) utilizing a 2-Fr Fogarty arterial embolectomy balloon catheter. Intimal hyperplasia and the degree of VSMC proliferation were evaluated using histological analysis in the rat groups that received a dosage of Q@PSC-E at 30 mg/kg/d. Significantly, Q@PSC-E inhibited cell proliferation through a pathway that does not include lipoxygenase, as demonstrated by [3H] thymidine incorporation, MTT, and flow cytometry studies. Additionally, the data indicate that Q@PSC-E hinders cell proliferation by targeting particular events that promote cell growth, including the activation of Akt and NF-κB, disruption of cell-cycle progression and also obstructs the ERK signaling pathway.


Assuntos
Proliferação de Células , Exossomos , Hiperplasia , Proteínas Proto-Oncogênicas c-akt , Quercetina , Transdução de Sinais , Animais , Masculino , Ratos , Lesões das Artérias Carótidas/patologia , Lesões das Artérias Carótidas/tratamento farmacológico , Lesões das Artérias Carótidas/metabolismo , Proliferação de Células/efeitos dos fármacos , Exossomos/metabolismo , Exossomos/efeitos dos fármacos , Hiperplasia/patologia , Hiperplasia/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quercetina/farmacologia , Quercetina/química , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Túnica Íntima/patologia , Túnica Íntima/efeitos dos fármacos , Túnica Íntima/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-39262325

RESUMO

The pathological proliferation and migration of vascular smooth muscle cells (VSMCs) are key processes during vascular neointimal hyperplasia (NIH) and restenosis. Phosphoenolpyruvate carboxy kinase 1 (PCK1) is closely related to a variety of malignant proliferative diseases. However, the role of PCK1 in VSMCs has rarely been investigated. This study aims to examine the role of PCK1 in the proliferation and migration of VSMCs and vascular NIH after injury. In vivo, extensive NIH and increased expression of PCK1 within the neointima are observed in injured arteries. Interestingly, the administration of adeno-associated virus-9 (AAV-9) carrying Pck1 short hairpin RNA (sh Pck1) significantly attenuates NIH and stenosis of the vascular lumen. In vitro, Pck1 small interfering RNA (si Pck1)-induced PCK1 silencing inhibits VSMC proliferation and migration. Additionally, silencing of PCK1 leads to reduced expression of dynamin-related protein 1 (DRP1) and attenuated mitochondrial fission. Lentivirus-mediated DRP1 overexpression markedly reverses the inhibitory effects of PCK1 silencing on VSMC proliferation, migration, and mitochondrial fission. Finally, PCK1 inhibition attenuates the phosphorylation of signal transducer and activator of transcription 3 (STAT3). Activation of STAT3 abolishes the suppressive effects of PCK1 silencing on DRP1 expression, mitochondrial fission, proliferation, and migration in VSMCs. In conclusion, PCK1 inhibition attenuates the mitochondrial fission, proliferation, and migration of VSMCs by inhibiting the STAT3/DRP1 axis, thereby suppressing vascular NIH and restenosis.

11.
Ren Fail ; 46(1): 2294148, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38186351

RESUMO

This study aimed to investigate ultrasound features of arteriovenous fistula stenosis and their relationship with primary patency after percutaneous transluminal angioplasty (post-intervention primary patency) and compare this classification with that using lesion location. Hemodialysis patients who underwent ultrasound-guided percutaneous transluminal angioplasty for arteriovenous fistula stenosis from July 2020 to December 2021 were retrospectively evaluated. Lesions (excluding inflow arteries) were categorized into five groups based on ultrasound features, and the clinical characteristics and risk factors affecting the post-intervention primary patency of the arteriovenous fistula were analyzed. Among 185 patients, 100 (54.05%), 36 (19.46%), 22 (11.89%), 11 (5.95%), and 16 (8.65%) were classified into the intima-dominant, non-intima-dominant, valve obstruction, vascular calcification, and mixed groups, respectively. The dialysis duration and arteriovenous fistula use time were the highest in the vascular calcification group at 86 (interquartile range: 49-140) and 77 (interquartile range: 49-110) months, respectively. Diabetes mellitus was most common in the intima-dominant group (42.0%). In Kaplan-Meier and univariate Cox analysis, type III lesion location (stenosis in the venous confluence site) was associated with the lower post-intervention primary patency. In the multivariate Cox analysis, percutaneous transluminal angioplasty times (the number of times patients were treated with percutaneous transluminal angioplasty for arteriovenous fistula stenosis dysfunction), vascular calcification, calcification at the lesion site requiring percutaneous transluminal angioplasty, and serum parathyroid hormone levels were independent risk factors for post-intervention primary patency. Ultrasound features showed that calcification of the arteriovenous fistula was detrimental to the post-intervention primary patency of arteriovenous fistula.


Assuntos
Fístula Arteriovenosa , Calcificação Vascular , Humanos , Constrição Patológica , Estudos Retrospectivos , Ultrassonografia , Calcificação Vascular/diagnóstico por imagem , Calcificação Vascular/terapia , Fístula Arteriovenosa/diagnóstico por imagem , Fístula Arteriovenosa/terapia
12.
Heart Lung Circ ; 33(4): 486-492, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423849

RESUMO

AIM: Angiotensin receptor blockers (ARBs) have been shown to inhibit restenosis in vitro and in vivo, but the evidence found in humans is inconsistent. This study aimed to evaluate the effectiveness of ARBs in preventing in-stent restenosis after percutaneous coronary intervention (PCI). METHOD: Databases including the Cochrane Library, MEDLINE, Web of Science, EMBASE, and CNKI were searched to collect randomised controlled trials on ARBs inhibiting restenosis that were published before October 2022. A total of 1,056 patients enrolled in eight trials were included in the study. RESULTS: The ARBs group showed lower target lesion revascularisation than the control group (RR 0.54; 95% CI 0.34-0.86; p=0.01), but the restenosis incidence between these two groups was not statistically significant (RR 0.85; 95% CI 0.65-1.11; p>0.05). CONCLUSION: This study found that ARBs might have a potential effect on reducing target lesion revascularisation after PCI in coronary heart disease patients but has no impact on angiographic restenosis.


Assuntos
Antagonistas de Receptores de Angiotensina , Reestenose Coronária , Intervenção Coronária Percutânea , Humanos , Reestenose Coronária/prevenção & controle , Antagonistas de Receptores de Angiotensina/uso terapêutico , Intervenção Coronária Percutânea/métodos , Stents/efeitos adversos , Oclusão de Enxerto Vascular/prevenção & controle
13.
J Biol Chem ; 298(5): 101816, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35278430

RESUMO

Jumonji domain-containing protein-3 (JMJD3), a histone H3 lysine 27 (H3K27) demethylase, promotes endothelial regeneration, but its function in neointimal hyperplasia (NIH) of arteriovenous fistulas (AVFs) has not been explored. In this study, we examined the contribution of endothelial JMJD3 to NIH of AVFs and the mechanisms underlying JMJD3 expression during kidney failure. We found that endothelial JMJD3 expression was negatively associated with NIH of AVFs in patients with kidney failure. JMJD3 expression in endothelial cells (ECs) was also downregulated in the vasculature of chronic kidney disease (CKD) mice. In addition, specific knockout of endothelial JMJD3 delayed EC regeneration, enhanced endothelial mesenchymal transition, impaired endothelial barrier function as determined by increased Evans blue staining and inflammatory cell infiltration, and accelerated neointima formation in AVFs created by venous end to arterial side anastomosis in CKD mice. Mechanistically, JMJD3 expression was downregulated via binding of transforming growth factor beta 1-mediated Hes family transcription factor Hes1 to its gene promoter. Knockdown of JMJD3 enhanced H3K27 methylation, thereby inhibiting transcriptional activity at promoters of EC markers and reducing migration and proliferation of ECs. Furthermore, knockdown of endothelial JMJD3 decreased endothelial nitric oxide synthase expression and nitric oxide production, leading to the proliferation of vascular smooth muscle cells. In conclusion, we demonstrate that decreased expression of endothelial JMJD3 impairs EC regeneration and function and accelerates neointima formation in AVFs. We propose increasing the expression of endothelial JMJD3 could represent a new strategy for preventing endothelial dysfunction, attenuating NIH, and improving AVF patency in patients with kidney disease.


Assuntos
Fístula Arteriovenosa , Histona Desmetilases com o Domínio Jumonji/genética , Insuficiência Renal Crônica , Animais , Fístula Arteriovenosa/genética , Fístula Arteriovenosa/patologia , Regulação para Baixo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Hiperplasia/genética , Hiperplasia/patologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Camundongos , Neointima/genética
14.
Biochem Biophys Res Commun ; 672: 10-16, 2023 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-37331166

RESUMO

PURPOSE: The study was conducted to investigate the effect of the treatment with imatinib, a c-kit specific inhibitor, on the neointimal hyperplasia (NIH) of aortocaval fistula (ACF) in adenine-induced renal failure rats. MATERIALS AND METHODS: All rats were randomly assigned to 4 groups: rats were fed on a normal diet (normal group); rats were fed on a 0.75% adenine-rich diet (renal failure group). The remaining rats underwent ACF after receiving a 0.75% adenine-rich diet and received daily saline gavage (model group) or imatinib gavage (imatinib group) for 7 days after surgery. Immunohistochemical method was used to detect c-kit expression, and Elastomeric Verhoeff-Van Gieson (EVG) staining was used to observe morphological changes of the ACF. The Pearson correlation analysis was used to evaluate the correlations of c-kit expression with intimal thickness and the percentage of stenosis, respectively. RESULTS: The renal failure group showed positive c-kit expression on the intima of the inferior vena cava (IVC), whereas the normal group did not. Compared to the model group, intimal thickness (P = 0.001), the percentage of stenosis (P = 0.006) and c-kit expression (P = 0.04) were decreased in the imatinib group at 8 weeks postoperatively. C-kit expression was positively correlated with both intimal thickness and percentage of stenosis (intimal thickness: R = 0.650, P = 0.003; the percentage of stenosis: R = 0.581, P = 0.011) in both the model and imatinib groups. CONCLUSION: Treatment with imatinib, a c-kit specific inhibitor, was useful to delay the NIH of ACF in adenine-induced renal failure rats.


Assuntos
Fístula , Insuficiência Renal , Ratos , Animais , Mesilato de Imatinib , Hiperplasia , Constrição Patológica , Neointima , Proteínas Proto-Oncogênicas c-kit
15.
FASEB J ; 36(9): e22486, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35929425

RESUMO

Neointimal hyperplasia (NIH) after revascularization is a key unsolved clinical problem. Various studies have shown that attenuation of the acute inflammatory response on the vascular wall can prevent NIH. MicroRNA146a-5p (miR146a-5p) has been reported to show anti-inflammatory effects by inhibiting the NF-κB pathway, a well-known key player of inflammation of the vascular wall. Here, a nanomedicine, which can reach the vascular injury site, based on polymeric micelles was applied to deliver miR146a-5p in a rat carotid artery balloon injury model. In vitro studies using inflammation-induced vascular smooth muscle cell (VSMC) was performed. Results showed anti-inflammatory response as an inhibitor of the NF-κB pathway and VSMC migration, suppression of reactive oxygen species production, and proinflammatory cytokine gene expression in VSMCs. A single systemic administration of miR146a-5p attenuated NIH and vessel remodeling in a carotid artery balloon injury model in both male and female rats in vivo. MiR146a-5p reduced proinflammatory cytokine gene expression in injured arteries and monocyte/macrophage infiltration into the vascular wall. Therefore, miR146a-5p delivery to the injury site demonstrated therapeutic potential against NIH after revascularization.


Assuntos
Lesões das Artérias Carótidas , MicroRNAs , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Artérias , Lesões das Artérias Carótidas/metabolismo , Proliferação de Células , Citocinas/metabolismo , Feminino , Hiperplasia/metabolismo , Inflamação/metabolismo , Masculino , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , NF-kappa B/metabolismo , Nanomedicina , Neointima/tratamento farmacológico , Neointima/metabolismo , Neointima/prevenção & controle , Ratos
16.
Nephrol Dial Transplant ; 38(7): 1752-1760, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36758984

RESUMO

INTRODUCTION: There is a substantial risk of developing stenosis and dysfunction in the arteriovenous fistula (AVF) in patients on hemodialysis (HD). Far infrared radiation (FIR) is a non-invasive local intervention with a potentially beneficial effect on AVF patency. The underlying mechanism is not clear. It was hypothesized that a single FIR treatment reduces factors of inflammation and promotes endothelial vasodilators in the AVF. METHODS: Forty HD patients with an AVF were included in an open-label intervention study. Patients were randomized to receive either FIR (FIR group) or no FIR (control group). Blood samples were drawn directly from the AVF and from a peripheral vein in the non-AVF arm before (T0) and 40 min after (T40) treatment during a HD session. The changes [median (interquartile range)] in circulating factors of inflammation, endothelial function and vasoreactivity during FIR were measured. RESULTS: In the AVF a single FIR treatment during dialysis resulted in a significantly diminished decrease in soluble vascular cell adhesion molecule, sVCAM [-31.6 (-54.3; 22.1) vs -89.9 (-121.6; -29.3), P = .005] and soluble intercellular adhesion molecule, sICAM [-24.2 (-43.5; 25.3) vs -49 (-79.9; -11.6), P = .02] compared with the control group. Other factors, such as interleukins, nitrite, nitrate and tumor necrosis factor 1, also declined during dialysis, but with no significant differences related to FIR in either the AVF or the non-AVF arm. CONCLUSION: A single FIR treatment attenuated the decrease in sVCAM and sICAM in the AVF compared with a control group during HD. Findings do not support the hypothesis of a vaso-protective effect of FIR. The long-term effects of FIR on the AVF are unknown.


Assuntos
Fístula Arteriovenosa , Derivação Arteriovenosa Cirúrgica , Humanos , Diálise Renal/efeitos adversos , Moléculas de Adesão Celular , Inflamação/etiologia , Fístula Arteriovenosa/terapia , Derivação Arteriovenosa Cirúrgica/efeitos adversos , Grau de Desobstrução Vascular/efeitos da radiação
17.
Acta Pharmacol Sin ; 44(5): 984-998, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36450791

RESUMO

The proliferation and migration of vascular smooth muscle cells (VSMCs) after vascular injury lead to neointimal hyperplasia, thus aggravating vascular diseases. However, the molecular mechanisms underlying neointima formation are not fully elucidated. Extracellular vesicles (EVs) are mediators of various intercellular communications. The potential of EVs as regulators in cardiovascular diseases has raised significant interest. In the current study we investigated the role of circulating small extracellular vesicles (csEVs), the most abundant EVs (1010 EVs/mL serum) in VSMC functions. csEVs were prepared from bovine, porcine or rat serum. We showed that incubation with csEVs (0.5 × 1010-2 × 1010) dose-dependently enhanced the proliferation and migration of VSMCs via the membrane phosphatidylserine (PS). In rats with ligation of right carotid artery, we demonstrated that application of csEVs in the ligated vessels aggravated neointima formation via interaction of membrane PS with injury. Furthermore, incubation with csEVs markedly enhanced the phosphorylation of AXL and MerTK in VSMCs. Pretreatment with BSM777607 (pan-TAM inhibitor), bemcentinib (AXL inhibitor) or UNC2250 (MerTK inhibitor) blocked csEV-induced proliferation and migration of VSMCs. We revealed that csEV-activated AXL and MerTK shared the downstream signaling pathways of Akt, extracellular signal-regulated kinase (ERK) and focal adhesion kinase (FAK) that mediated the effects of csEVs. We also found that csEVs increased the expression of AXL through activation of transcription factor YAP, which might constitute an AXL-positive feedback loop to amplify the signals. Finally, we demonstrated that dual inhibition of AXL/MerTK by ONO-7475 (0.1 µM) effectively hindered csEV-mediated proliferation and migration of VSMCs in ex vivo mouse aorta injury model. Based on these results, we propose an essential role for csEVs in proliferation and migration of VSMCs and highlight the feasibility of dual AXL/MerTK inhibitors in the treatment of vascular diseases.


Assuntos
Vesículas Extracelulares , Músculo Liso Vascular , Animais , Bovinos , Camundongos , Ratos , c-Mer Tirosina Quinase/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Vesículas Extracelulares/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima/metabolismo , Suínos , Doenças Vasculares/tratamento farmacológico , Doenças Vasculares/metabolismo
18.
Cell Mol Life Sci ; 80(1): 3, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36477660

RESUMO

The pathological proliferation of cells in vascular smooth muscle underlies neointimal hyperplasia (NIH) development during atherosclerosis. Circular RNAs (circRNAs), which represent novel functional biomarkers and RNA-binding proteins, contribute to multiple cardiovascular diseases; however, their roles in regulating the vascular smooth muscle cell cycle remain unknown. Thus, we aimed to identify the roles of circRNAs in vascular smooth muscle during coronary heart disease (CHD). Through circRNA sequencing of CHD samples and human antigen R (ELAVL1) immunoprecipitation, we identified circRNAs that are associated with CHD and interact with ELAVL1. Our results suggested that the hsa_circ_0000280 associated with CHD inhibits cell proliferation and induces ELAVL1-dependent cell cycle arrest. Gain/loss-of-function experiments and assays in vivo indicated that hsa_circ_0000280 facilitates interactions between ELAVL1 and cyclin-dependent kinase suppressor 1 (CDKN1A) mRNA and stabilization of this complex and leads to cell cycle arrest at the G1/S checkpoint, inhibiting cell proliferation of vascular smooth muscle cells in vitro and NIH in vivo. Importantly, hsa_circ_0000280 reduced neointimal thickness and smooth muscle cell proliferation in vivo. Taken together, these findings reveal a novel pathway in which hsa_circ_0000280 facilitates the regulation of ELAVL1 on CDKN1A mRNA to inhibit NIH. Therefore, measuring and modulating their expression might represent a potential diagnostic or therapeutic strategy for CHD.


Assuntos
Músculo Liso Vascular , Miócitos de Músculo Liso , Humanos , Hiperplasia/genética , Proteína Semelhante a ELAV 1/genética
19.
Clin Exp Hypertens ; 45(1): 2229538, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37395230

RESUMO

OBJECTIVE: Neointimal hyperplasia is the primary mechanism underlying atherosclerosis and restenosis after percutaneous coronary intervention. Ketogenic diet (KD) exerts beneficial effects in various diseases, but whether it could serve as non-drug therapy for neointimal hyperplasia remains unknown. This study aimed to investigate the effect of KD on neointimal hyperplasia and the potential mechanisms. METHODS AND RESULTS: Carotid artery balloon-injury model was employed in adult Sprague-Dawley rats to induce neointimal hyperplasia. Then, animals were subjected to either standard rodent chow or KD. For in-vitro experiment, impacts of ß-hydroxybutyrate (ß-HB), the main mediator of KD effects, on platelet-derived growth factor BB (PDGF-BB) induced vascular smooth muscle cell (VSMC) migration and proliferation were determined. Balloon injury induced event intimal hyperplasia and upregulation of protein expression of proliferating cell nuclear antigen (PCNA) and α-smooth muscle actin (α-SMA), and these changes were significantly ameliorated by KD. In addition, ß-HB could markedly inhibit PDGF-BB induced VMSC migration and proliferation, as well as inhibiting expressions of PCNA and α-SMC. Furthermore, KD inhibited balloon-injury induced oxidative stress in carotid artery, indicated by reduced ROS level, malondialdehyde (MDA) and myeloperoxidase (MPO) activities, and increased superoxide dismutase (SOD) activity. We also found balloon-injury induced inflammation in carotid artery was suppressed by KD, indicated by decreased expressions of proinflammatory cytokines IL-1ß and TNF-α, and increased expression of anti-inflammatory cytokine IL-10. CONCLUSION: KD attenuates neointimal hyperplasia through suppressing oxidative stress and inflammation to inhibit VSMC proliferation and migration. KD may represent a promising non-drug therapy for neointimal hyperplasia associated diseases.


Assuntos
Lesões das Artérias Carótidas , Dieta Cetogênica , Ratos , Animais , Hiperplasia/complicações , Ratos Sprague-Dawley , Becaplermina/metabolismo , Becaplermina/farmacologia , Becaplermina/uso terapêutico , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/farmacologia , Antígeno Nuclear de Célula em Proliferação/uso terapêutico , Neointima/complicações , Neointima/tratamento farmacológico , Neointima/metabolismo , Lesões das Artérias Carótidas/complicações , Lesões das Artérias Carótidas/tratamento farmacológico , Lesões das Artérias Carótidas/metabolismo , Estresse Oxidativo , Inflamação/complicações , Proliferação de Células , Movimento Celular , Células Cultivadas
20.
Clin Exp Hypertens ; 45(1): 2178659, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36794491

RESUMO

BACKGROUND: In-stent restenosis hardly limits the therapeutic effect of the percutaneous vascular intervention. Although the restenosis is significantly ameliorated after the application of new drug-eluting stents, the incidence of restenosis remains at a high level. OBJECTIVE: Vascular adventitial fibroblasts (AFs) play an important role in intimal hyperplasia and subsequent restenosis. The current study was aimed to investigate the role of nuclear receptor subfamily 1, group D, member 1 (NR1D1) in the vascular intimal hyperplasia. METHODS AND RESULTS: We observed increased expression of NR1D1 after the transduction of adenovirus carrying Nr1d1 gene (Ad-Nr1d1) in AFs. Ad-Nr1d1 transduction significantly reduced the numbers of total AFs, Ki-67-positive AFs, and the migration rate of AFs. NR1D1 overexpression decreased the expression level of ß-catenin and attenuated the phosphorylation of the effectors of mammalian target of rapamycin complex 1 (mTORC1), including mammalian target of rapamycin (mTOR) and 4E binding protein 1 (4EBP1). Restoration of ß-catenin by SKL2001 abolished the inhibitory effects of NR1D1 overexpression on the proliferation and migration of AFs. Surprisingly, the restoration of mTORC1 activity by insulin could also reverse the decreased expression of ß-catenin, attenuated proliferation, and migration in AFs induced by NR1D1 overexpression. In vivo, we found that SR9009 (an agonist of NR1D1) ameliorated the intimal hyperplasia at days 28 after injury of carotid artery. We further observed that SR9009 attenuated the increased Ki-67-positive AFs, an essential part of vascular restenosis at days 7 after injury to the carotid artery. CONCLUSION: These data suggest that NR1D1 inhibits intimal hyperplasia by suppressing the proliferation and migration of AFs in a mTORC1/ß-catenin-dependent manner.


Assuntos
Músculo Liso Vascular , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares , beta Catenina , beta Catenina/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Fibroblastos , Hiperplasia/metabolismo , Hiperplasia/patologia , Antígeno Ki-67/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Miócitos de Músculo Liso , Neointima/genética , Neointima/metabolismo , Neointima/patologia , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA