Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.886
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Emerg Infect Dis ; 30(7): 1479-1481, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38786464

RESUMO

Dengue fever is a growing worldwide public health concern. In mid-October 2023, multiple cases of uncommon febrile illness were reported among patients in Niamey, Niger. Fifteen samples were tested by using molecular methods, from which 7 (46.66%) were confirmed positive for mosquitoborne dengue virus belonging to serotypes 1 and 3.


Assuntos
Vírus da Dengue , Dengue , Humanos , Dengue/epidemiologia , Dengue/virologia , Níger/epidemiologia , Vírus da Dengue/genética , Masculino , Feminino , Adulto , Sorogrupo , Adolescente , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/virologia , Pessoa de Meia-Idade , Adulto Jovem , Criança , Filogenia , História do Século XXI
2.
Ann Hum Genet ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563088

RESUMO

BACKGROUND: Africans are underrepresented in Huntington's disease (HD) research. A European ancestor was postulated to have introduced the mutant Huntingtin (mHtt) gene to the continent; however, recent work has shown the existence of a unique Htt haplotype in South-Africa specific to indigenous Africans. OBJECTIVE: We aimed to investigate the CAG trinucleotide repeats expansion in the Htt gene in a geographically diverse cohort of patients with chorea and unaffected controls from sub-Saharan Africa. METHODS: We evaluated 99 participants: 43 patients with chorea, 21 asymptomatic first-degree relatives of subjects with chorea, and 35 healthy controls for the presence of the mHtt. Participants were recruited from 5 African countries. Additional data were collected from patients positive for the mHtt gene; these included demographics, the presence of psychiatric and (or) cognitive symptoms, family history, spoken languages, and ethnic origin. Additionally, their pedigrees were examined to estimate the number of people at risk of developing HD and to trace back the earliest account of the disease in each region. RESULTS: HD cases were identified in all countries. Overall, 53.4% of patients with chorea were carriers for the mHTT; median tract size was 45 CAG repeats. Of the asymptomatic relatives, 28.6% (6/21) were carriers for the mHTT; median tract size was 40 CAG. No homozygous carries were identified. Median CAG tract size in controls was 17 CAG repeats. Men and women were equally affected by HD. All patients with HD-bar three who were juvenile onset of <21 years-were defined as adult onset (median age of onset was 40 years). HD transmission followed an autosomal dominant pattern in 84.2% (16/19) of HD families. In familial cases, maternal transmission was higher 52.6% (10/19) than paternal transmission 36.8% (7/19). The number of asymptomatic individuals at risk of developing HD was estimated at ten times more than the symptomatic patients. HD could be traced back to the early 1900s in most African sites. HD cases spread over seven ethnic groups belonging to two distinct linguistic lineages separated from each other approximately 54-16 kya ago: Nilo-Sahara and Niger-Congo. CONCLUSION: This is the first study examining HD in multiple sites in sub-Saharan Africa. We demonstrated that HD is found in multiple ethnic groups residing in five sub-Saharan African countries including the first genetically confirmed HD cases from Guinea and Kenya. The prevalence of HD in the African continent, its associated socio-economic impact, and genetic origins need further exploration and reappraisal.

3.
BMC Biotechnol ; 24(1): 69, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39334195

RESUMO

The present study deals with the production of cellulase-free endoxylanase by Aspergillus niger ISL-9 using wheat bran as a solid substrate. Endoxylanase was produced under a solid-state fermentation. Various growth parameters were optimized for the improved production of the enzyme. The Substrate level of 15 g was optimized as it provided the fungus with balanced aeration and nutrition. Among the six moisture contents investigated, Moisture Content 5 (MC5) was optimized (g/l: malt extract, 10; (NH4)2HPO4, 2.5; urea, 1.0) and 10 mL of MC5 was found to give the highest production of endoxylanase. The pH and time of incubation were optimized to 6.2 and 48 h respectively. The Inoculum size of 2 mL (1.4 × 106 spores/mL) gave the maximum enzyme production. After optimization of these growth parameters, a significantly high endoxylanase activity of 21.87 U/g was achieved. Very negligible Carboxymethylcellulase (CMCase) activity was observed indicating the production of cellulase-free endoxylanase. The notable finding is that the endoxylanase activity was increased by 1.4-fold under optimized conditions (p ≤ 0.05). The overall comparison of kinetic parameters for enhanced production of endoxylanase by A. niger ISL-9 under Solid State Fermentation (SSF) was also studied. Different kinetic variables which included specific growth rate, product yield coefficients, volumetric rates and specific rates were observed at 48, 72 and 96 h incubation time and were compared for MC1 and MC5. Among the kinetic parameters, the most significant result was obtained with volumetric rate constant for product formation (Qp) that was found to be optimum (1.89 U/h) at 72 h incubation period and a high value of Qp i.e.1.68 U/h was also observed at 48 h incubation period. Thus, the study demonstrates a cost-effective and environmentally sustainable process for xylanase production and exhibits scope towards successful industrial applications.


Assuntos
Aspergillus niger , Fibras na Dieta , Endo-1,4-beta-Xilanases , Fermentação , Aspergillus niger/enzimologia , Aspergillus niger/metabolismo , Fibras na Dieta/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Endo-1,4-beta-Xilanases/biossíntese , Cinética , Concentração de Íons de Hidrogênio , Meios de Cultura/metabolismo , Meios de Cultura/química
4.
BMC Plant Biol ; 24(1): 375, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38714928

RESUMO

BACKGROUND: Potato virus Y (PVY) is among the economically most damaging viral pathogen in production of potato (Solanum tuberosum) worldwide. The gene Rysto derived from the wild potato relative Solanum stoloniferum confers extreme resistance to PVY. RESULTS: The presence and diversity of Rysto were investigated in wild relatives of potato (298 genotypes representing 29 accessions of 26 tuber-bearing Solanum species) using PacBio amplicon sequencing. A total of 55 unique Rysto-like sequences were identified in 72 genotypes representing 12 accessions of 10 Solanum species and six resistant controls (potato cultivars Alicja, Bzura, Hinga, Nimfy, White Lady and breeding line PW363). The 55 Rysto-like sequences showed 89.87 to 99.98% nucleotide identity to the Rysto reference gene, and these encoded in total 45 unique protein sequences. While Rysto-like26 identified in Alicja, Bzura, White Lady and Rysto-like16 in PW363 encode a protein identical to the Rysto reference, the remaining 44 predicted Rysto-like proteins were 65.93 to 99.92% identical to the reference. Higher levels of diversity of the Rysto-like sequences were found in the wild relatives of potato than in the resistant control cultivars. The TIR and NB-ARC domains were the most conserved within the Rysto-like proteins, while the LRR and C-JID domains were more variable. Several Solanum species, including S. antipoviczii and S. hougasii, showed resistance to PVY. This study demonstrated Hyoscyamus niger, a Solanaceae species distantly related to Solanum, as a host of PVY. CONCLUSIONS: The new Rysto-like variants and the identified PVY resistant potato genotypes are potential resistance sources against PVY in potato breeding. Identification of H. niger as a host for PVY is important for cultivation of this plant, studies on the PVY management, its ecology, and migrations. The amplicon sequencing based on PacBio SMRT and the following data analysis pipeline described in our work may be applied to obtain the nucleotide sequences and analyze any full-length genes from any, even polyploid, organisms.


Assuntos
Resistência à Doença , Variação Genética , Doenças das Plantas , Potyvirus , Solanum tuberosum , Solanum , Potyvirus/fisiologia , Resistência à Doença/genética , Doenças das Plantas/virologia , Doenças das Plantas/genética , Solanum/genética , Solanum/virologia , Solanum tuberosum/genética , Solanum tuberosum/virologia , Genes de Plantas , Genótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
BMC Plant Biol ; 24(1): 642, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38972980

RESUMO

Among the several threats to humanity by anthropogenic activities, contamination of the environment by heavy metals is of great concern. Upon entry into the food chain, these metals cause serious hazards to plants and other organisms including humans. Use of microbes for bioremediation of the soil and stress mitigation in plants are among the preferred strategies to provide an efficient, cost-effective, eco-friendly solution of the problem. The current investigation is an attempt in this direction where fungal strain PH1 was isolated from the rhizosphere of Parthenium hysterophorus which was identified as Aspergillus niger by sequence homology of the ITS 1 and ITS 4 regions of the rRNA. The strain was tested for its effect on growth and biochemical parameters as reflection of its potential to mitigate Pb stress in Zea mays exposed to 100, 200 and 500 µg of Pb/g of soil. In the initial screening, it was revealed that the strain has the ability to tolerate lead stress, solubilize insoluble phosphate and produce plant growth promoting hormones (IAA and SA) and other metabolites like phenolics, flavonoids, sugar, protein and lipids. Under 500 µg of Pb/g of soil, Z. mays exhibited significant growth retardation with a reduction of 31% in root length, 30.5% in shoot length, 57.5% in fresh weight and 45.2% in dry weight as compared to control plants. Inoculation of A. niger to Pb treated plants not only restored root and shoot length, rather promoted it to a level significantly higher than the control plants. Association of the strain modulated the physio-hormonal attributes of maize plants that resulted in their better growth which indicated a state of low stress. Additionally, the strain boosted the antioxidant defence system of the maize there by causing a significant reduction in the ascorbic acid peroxidase (1.5%), catalase (19%) and 1,1-diphenyl-2 picrylhydrazyl (DPPH) radical scavenging activity (33.3%), indicating a lower stress condition as compared to their non-inoculated stressed plants. Based on current evidence, this strain can potentially be used as a biofertilizer for Pb-contaminated sites where it will improve overall plant health with the hope of achieving better biological and agricultural yields.


Assuntos
Antioxidantes , Aspergillus niger , Chumbo , Fosfatos , Fotossíntese , Zea mays , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia , Zea mays/efeitos dos fármacos , Zea mays/metabolismo , Aspergillus niger/metabolismo , Chumbo/metabolismo , Antioxidantes/metabolismo , Fotossíntese/efeitos dos fármacos , Fosfatos/metabolismo , Poluentes do Solo/metabolismo , Estresse Fisiológico , Biodegradação Ambiental
6.
Appl Environ Microbiol ; 90(4): e0000824, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38506527

RESUMO

Currently, the L-malic acid titer achieved through Aspergillus niger fermentation reaches 201 g/L, meeting industrial demands satisfactorily. However, the co-presence of structurally similar fumaric acid and succinic acid in fermentation products suggests a theoretical potential for further improvement in L-malic acid production. In the tricarboxylic acid cycle, fumarate reductase mediates the conversion of succinic acid to fumaric acid. Subsequently, fumarase catalyzes the conversion of fumaric acid to L-malic acid. Notably, both enzymatic reactions are reversible. Our investigation revealed that A. niger contains only one mitochondria-located fumarase FumA. Employing CRISPR-Cas9 technology, we performed a replacement of the fumA promoter with a doxycycline-induced promoter Tet. Under non-inducing condition, the conditional strain exhibited increased levels of fumaric acid and succinic acid. It strongly suggests that FumA mainly promotes the flow of fumaric acid to L-malic acid. Furthermore, a promoter PmfsA that is exclusively activated in a fermentation medium by calcium carbonate was identified through RNA-sequencing screening. Utilizing PmfsA to regulate fumA expression led to a 9.0% increase in L-malic acid titer, an 8.75% increase in yield (glucose to L-malic acid), and an 8.86% enhancement in productivity. This research serves as a significant step toward expediting the industrialization of L-malic acid synthesis via biological fermentation. Additionally, it offers valuable insights for the biosynthesis of other organic acids.IMPORTANCEThis study focuses on enhancing L-malic acid synthesis by modifying the tricarboxylic acid cycle within the mitochondria of Aspergillus niger. We emphasize the significant role of fumarase in converting fumaric acid into L-malic acid, enhancing our understanding of metabolic pathways in A. niger. The precise regulation of fumA is highlighted as a key factor in enhancing L-malic acid production. Furthermore, this research introduces a stringent conditional promoter (PmfsA), exclusively activated by CaCO3. The utilization of PmfsA for fumA expression resulted in heightened L-malic acid titers. The progress in metabolic engineering and bioprocess optimization holds promise for expediting industrial L-malic acid synthesis via biological fermentation. Moreover, it carries implications for the biosynthesis of various other organic acids.


Assuntos
Aspergillus niger , Fumarato Hidratase , Fumaratos , Aspergillus niger/genética , Aspergillus niger/metabolismo , Fumarato Hidratase/genética , Fumarato Hidratase/metabolismo , Malatos/metabolismo , Ácido Succínico
7.
Microb Pathog ; 191: 106659, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701959

RESUMO

There is an increasing focus on genetically altering Paulownia trees to enhance their resistance against fungal infections, given their rapid growth and quality wood production. The aim of this research was to establish a technique for incorporating two antimicrobial thionin genes, namely thionin-60 (thio-60) and thionin-63 (thio-63), into Paulownia tomentosa and Paulownia hybrid 9501 through the utilization of chitosan nanoparticles. The outcomes revealed the successful gene transfer into Paulownia trees utilizing chitosan nanoparticles. The effectiveness of thionin proteins against plant pathogens Fusarium and Aspergillus was examined, with a specific focus on Fusarium equiseti due to limited available data. In non-transgenic Paulownia species, the leaf weight inhibition percentage varied from 25 to 36 %, whereas in transgenic species, it ranged from 22 to 7 %. In general, Paulownia species expressing thio-60 displayed increased resistance to F. equiseti, while those expressing thio-63 exhibited heightened resistance to A. niger infection. The thionin proteins displayed a strong affinity for the phospholipid bilayer of the fungal cell membrane, demonstrating their capability to disrupt its structure. The transgenic plants created through this technique showed increased resistance to fungal infections. Thionin-60 demonstrated superior antifungal properties in comparison to thio-63, being more effective at disturbing the fungal cell membrane. These findings indicate that thio-60 holds potential as a novel antifungal agent and presents a promising approach for enhancing the antimicrobial traits of genetically modified Paulownia trees.


Assuntos
Antifúngicos , Quitosana , Fusarium , Nanopartículas , Doenças das Plantas , Plantas Geneticamente Modificadas , Tioninas , Quitosana/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/genética , Fusarium/efeitos dos fármacos , Fusarium/genética , Plantas Geneticamente Modificadas/genética , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Tioninas/genética , Tioninas/metabolismo , Aspergillus/genética , Aspergillus/efeitos dos fármacos , Resistência à Doença/genética , Árvores/microbiologia , Folhas de Planta/microbiologia , Folhas de Planta/genética
8.
Microb Pathog ; 193: 106742, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38879139

RESUMO

Nano-biotechnology is quickly developing as an important field of modern research, generating the most promising applications in medicine and agriculture. Biosynthesis of silver nanoparticles using biogenic or green approach provide ecofriendly, clean and effective way out for the synthesis of nanoparticles. The main aim of the study was to synthesize silver nanoparticles (AgNPs) from Aspergillus niger, Aspergillus flavus and Pencillium chrysogenum using a green approach and to test the antifungal activity of these synthesized AgNPs against a variety of pathogenic fungi. The characterization of samples was done by using UV-visible spectroscopy, SEM (scanning electron microscopy), FTIR (Fourier transmission infrared spectroscopy), and XRD (X-ray diffractometry). The investigation confirmed the creation of AgNPs by the fungi Aspergillus niger, Aspergillus flavus and Pencillium chrysogenum, as evidenced by prominent plasmon absorbance bands at 420 and 450 nm.The biosynthesized AgNPs were 80-100 nm in size, asymmetrical in shape and became spherical to sub-spherical when aggregated. Agar well diffusion method was performed to evaluate the antifungal activity of AgNPs against various plant pathogenic fungi. An efficient and strong antifungal activity was shown by these biosynthesized nanoparticles against serious plant pathogenic fungi, viz. Aspergillus terreus, Fusarium oxysporum, Penicillium citrinum, Rhizopus stolonifer and Mucor mucedo. The biosynthesized AgNPs at various concentrations caused significant zone of inhibition in the test fungal pathogens. Silver nanoparticles (AgNPs) biosynthesized from Aspergillus niger at highest concentrations showed maximum zone of inhibition against Penicillium citrinum (19.33 ± 0.57 mm) followed by Rhizopus stolonifer (17.66 ± 0.57), Aspergillus terreus (16.33 ± 1.54 mm), Fusarium oxysporum (14.00 ± 1.00 mm) and Mucor mucedo (13.33 ± 1.15 mm) respectively. Therefore, the findings clearly indicate that silver nanoparticles could play a significant role in managing diverse plant diseases caused by fungi.


Assuntos
Antifúngicos , Aspergillus flavus , Aspergillus niger , Fusarium , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Prata , Prata/farmacologia , Prata/química , Prata/metabolismo , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/síntese química , Nanopartículas Metálicas/química , Fusarium/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/metabolismo , Aspergillus niger/efeitos dos fármacos , Aspergillus/efeitos dos fármacos , Aspergillus/metabolismo , Fungos/efeitos dos fármacos , Difração de Raios X , Microscopia Eletrônica de Varredura , Química Verde , Doenças das Plantas/microbiologia
9.
FEMS Yeast Res ; 242024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38242845

RESUMO

Enzymes of the ureohydrolase superfamily are specific in recognizing their substrates. While looking to broaden the substrate specificity of 4-guanidinobutyrase (GBase), we isolated a yeast, typed as Candida parapsilosis (NCIM 3689), that efficiently utilized both 4-guanidinobutyrate (GB) and 3-guanidinopropionate (GP) as a sole source of nitrogen. A putative GBase sequence was identified from its genome upon pBLAST query using the GBase sequence from Aspergillus niger (AnGBase). The C. parapsilosis GBase (CpGBase) ORF was PCR amplified, cloned, and sequenced. Further, the functional CpGBase protein expressed in Saccharomyces cerevisiae functioned as GBase and 3-guanidinopropionase (GPase). S. cerevisiae cannot grow on GB or GP. However, the transformants expressing CpGBase acquired the ability to utilize and grow on both GB and GP. The expressed CpGBase protein was enriched and analyzed for substrate saturation and product inhibition by γ-aminobutyric acid and ß-alanine. In contrast to the well-characterized AnGBase, CpGBase from C. parapsilosis is a novel ureohydrolase and showed hyperbolic saturation for GB and GP with comparable efficiency (Vmax/KM values of 3.4 and 2.0, respectively). With the paucity of structural information and limited active site data available on ureohydrolases, CpGBase offers an excellent paradigm to explore this class of enzymes.


Assuntos
Candida parapsilosis , Saccharomyces cerevisiae , Candida parapsilosis/genética , Saccharomyces cerevisiae/genética , Ureo-Hidrolases/química , Ureo-Hidrolases/genética , Ureo-Hidrolases/metabolismo
10.
Biotechnol Bioeng ; 121(10): 3128-3143, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38943490

RESUMO

Controlling the morphology of filamentous fungi is crucial to improve the performance of fungal bioprocesses. Microparticle-enhanced cultivation (MPEC) increases productivity, most likely by changing the fungal morphology. However, due to a lack of appropriate methods, the exact impact of the added microparticles on the structural development of fungal pellets is mostly unexplored. In this study synchrotron radiation-based microcomputed tomography and three-dimensional (3D) image analysis were applied to unveil the detailed 3D incorporation of glass microparticles in nondestructed pellets of Aspergillus niger from MPEC. The developed method enabled the 3D analysis based on 375 pellets from various MPEC experiments. The total and locally resolved volume fractions of glass microparticles and hyphae were quantified for the first time. At increasing microparticle concentrations in the culture medium, pellets with lower hyphal fraction were obtained. However, the total volume of incorporated glass microparticles within the pellets did not necessarily increase. Furthermore, larger microparticles were less effective than smaller ones in reducing pellet density. However, the total volume of incorporated glass was larger for large microparticles. In addition, analysis of MPEC pellets from different times of cultivation indicated that spore agglomeration is decisive for the development of MPEC pellets. The developed 3D morphometric analysis method and the presented results will promote the general understanding and further development of MPEC for industrial application.


Assuntos
Aspergillus niger , Imageamento Tridimensional , Microtomografia por Raio-X , Imageamento Tridimensional/métodos , Aspergillus niger/crescimento & desenvolvimento , Microtomografia por Raio-X/métodos , Esporos Fúngicos/química , Esporos Fúngicos/citologia , Esporos Fúngicos/crescimento & desenvolvimento , Microesferas , Hifas/química , Hifas/crescimento & desenvolvimento
11.
Arch Microbiol ; 206(6): 273, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38772954

RESUMO

Acid protease is widely used in industries such as food processing and feed additives. In the study, low frequency magnetic field (LF-MF) as an aid enhances acid protease production by Aspergillus niger (A. niger). The study assessed mycelial biomass, the enzymic activity of the acidic protease and underlying mechanism. At low intensities, alternating magnetic field (AMF) is more effective than static magnetic fields (SMF). Under optimal magnetic field conditions, acid protease activity and biomass increased by 91.44% and 16.31%, as compared with the control, respectively. Maximum 19.87% increase in enzyme activity after magnetic field treatment of crude enzyme solution in control group. Transcriptomics analyses showed that low frequency alternating magnetic field (LF-AMF) treatment significantly upregulated genes related to hydrolases and cell growth. Our results showed that low-frequency magnetic fields can enhance the acid protease production ability of A. niger, and the effect of AMF is better at low intensities. The results revealed that the effect of magnetic field on the metabolic mechanism of A. niger and provided a reference for magnetic field-assisted fermentation of A. niger.


Assuntos
Aspergillus niger , Campos Magnéticos , Peptídeo Hidrolases , Aspergillus niger/enzimologia , Aspergillus niger/genética , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/genética , Fermentação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Biomassa , Micélio/enzimologia , Micélio/crescimento & desenvolvimento , Micélio/genética
12.
Malar J ; 23(1): 30, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243247

RESUMO

BACKGROUND: Malaria remains a significant public health concern in Niger, with the number of cases increasing from 592,334 in 2000 to 3,138,696 in 2010. In response, a concerted campaign against the disease has been initiated. However, the implementation of these malaria interventions and their association with epidemiological behaviour remains unclear. METHODS: A time-series study was conducted in Niger from 2010 to 2019. Multiple data sources concerning malaria were integrated, encompassing national surveillance data, Statistic Yearbook, targeted malaria control interventions, and meteorological data. Incidence rate, mortality rate, and case fatality ratio (CFR) by different regions and age groups were analysed. Joinpoint regression models were used to estimate annual changes in malaria. The changes in coverage of malaria interventions were evaluated. RESULTS: Between 2010 to 2019, the incidence rate of malaria decreased from 249.43 to 187.00 cases per 1,000 population in Niger. Niamey had a high annual mean incidence rate and the lowest CFR, while Agadez was on the contrary. Joinpoint regression analysis revealed a declining trend in malaria incidence for all age groups except the 10-24 years group, and the mortality rate and the CFR initially decreased followed by an increase in all age groups. Niger has implemented a series of malaria interventions, with the major ones being scaled up to larger populations during the study period. CONCLUSIONS: The scale-up of multi-interventions in Niger has significantly reduced malaria incidence, but the rise in mortality rate and CFR addresses the challenges in malaria control and elimination. Malaria endemic countries should enhance surveillance of malaria cases and drug resistance in Plasmodium, improve diagnosis and treatment, expand the population coverage of insecticide-treated bed nets and seasonal malaria chemoprevention, and strengthen the management of severe malaria cases.


Assuntos
Mosquiteiros Tratados com Inseticida , Malária , Humanos , Criança , Adolescente , Adulto Jovem , Adulto , Níger/epidemiologia , Malária/epidemiologia , Malária/prevenção & controle , Projetos de Pesquisa , Incidência
13.
Malar J ; 23(1): 144, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741101

RESUMO

BACKGROUND: Monitoring therapeutic efficacy is important to ensure the efficacy of artemisinin-based combination therapy (ACT) for malaria. The current first-line treatment for uncomplicated malaria recommended by the National Malaria Control Program in Niger is artemether-lumefantrine (AL). In 2020, an in vivo study was carried out to evaluate clinical and parasitological responses to AL as well as the molecular resistance to the drug in three sentinel sites: Agadez, Tessaoua and Gaya, in Niger. METHODS: A multi-center, single-arm trial was conducted according to the 28-day World Health Organization (WHO) 2009 therapeutic efficacy study protocol. Children between 6 months and 15 years with confirmed uncomplicated Plasmodium falciparum infection and 1000-200,000 asexual parasites/µL of blood were enrolled and followed up for 28 days. Uncorrected and PCR-corrected efficacy results at day 28 were calculated, and molecular correction was performed by genotyping the msp1, msp2, and glurp genes. The pfk13, pfdhfr, pfdhps, pfcrt and pfmdr genes were analyzed by PCR and Sanger sequencing. The Kaplan-Meier curve assessed parasite clearance. RESULTS: A total of 255 patients were enrolled in the study. The adequate clinical and parasitological response after PCR correction was 98.9% (95% CI 96.4-101.0%), 92.2% (85.0-98.5%) and 97.1% (93.1-101.0%) in Gaya, Tessaoua and Agadez, respectively. No adverse events were observed. Ten mutations (SNP) were found, including 7 synonyms (K248K, G690G, E691E, E612E, C469C, G496G, P718P) and 3 non-synonyms (N594K, R255K, V714S). Two mutations emerged: N594K and V714S. The R255K mutation detected in Southeast Asia was also detected. The pfdhpsK540E and pfdhfrI164L mutations associated with high levels of resistance are absent. There is a reversal of chloroquine resistance. CONCLUSION: The study findings indicate that AL is effective and well tolerated for the treatment of uncomplicated malaria in three sites in Niger. The emergence of a pfk13 mutation requires additional testing such as the Ring Stage Assay and CRISPR/Cas9 to confirm the role of these emerging mutations. Trial registration NCT05070520, October 7, 2021.


Assuntos
Antimaláricos , Combinação Arteméter e Lumefantrina , Malária Falciparum , Plasmodium falciparum , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária Falciparum/tratamento farmacológico , Antimaláricos/uso terapêutico , Antimaláricos/efeitos adversos , Pré-Escolar , Humanos , Níger , Criança , Lactente , Adolescente , Masculino , Feminino , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Resistência a Medicamentos/genética
14.
Int Microbiol ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506948

RESUMO

Ten fungal species were isolated from soil in the Western Desert and Wadi El-Natron in Egypt. All fungal isolates were morphologically recognized down to the species level. Methanol extracts of fungal mycelia and ethyl acetate extracts of culture filtrate from the isolated fungi were evaluated for antimicrobial activity against six pathogenic bacteria and one pathogenic yeast (Candida albicans ATCC20231). Only ethyl acetate extracts of Fusarium circinatum, Aspergillus niger, and Aspergillus terreus culture filtrates showed significant antimicrobial activity against the majority of the investigated pathogens. The culture filtrate extract of Aspergillus niger exhibited notable cytotoxicity towards the breast cancer (MCF-7) cell line, with the lowest detected IC50 recorded at 8 µg/µl. Whereas Fusarium circinatum and Aspergillus terreus had IC50s of 15.91 µg/µl and 18 µg/µl, respectively. A gas chromatography-mass spectroscopy (GC-MS) investigation of A. niger's potent extract revealed 23 compounds with different biological activities. Glycidyleoleate was found to be the main extract component. Aspergillus niger extract was chosen to study its possible cytotoxic mechanism. The extract was found to induce apoptosis and cell cycle arrest at the < 2n stage. Despite a significant increase in caspases 8 and 9, the production levels of tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6) have shown a significant decrease. The high interaction of glycidyleoleate against the studied cytokines' binding receptors was demonstrated via docking studies. In conclusion, the available data revealed that the culture filtrate extract of A. niger possesses promising antimicrobial, cytotoxic, and immunomodulatory properties.

15.
Microb Cell Fact ; 23(1): 229, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152399

RESUMO

Epothilones are one of the common prescribed anticancer drugs for solid tumors, for their exceptional binding affinity with ß-tubulin microtubule, stabilizing their disassembly, causing an ultimate arrest to the cellular growth. Epothilones were initially isolated from Sornagium cellulosum, however, their extremely slow growth rate and low yield of epothilone is the challenge. So, screening for a novel fungal endophyte dwelling medicinal plants, with higher epothilone productivity and feasibility of growth manipulation was the objective. Aspergillus niger EFBL-SR OR342867, an endophyte of Latania loddegesii, has been recognized as the heady epothilone producer (140.2 µg/L). The chemical structural identity of the TLC-purified putative sample of A. niger was resolved from the HPLC, FTIR and LC-ESI-MS/MS analyses, with an identical molecular structure of the authentic epothilone B. The purified A. niger epothilone B showed a resilient activity against MCF-7 (0.022 µM), HepG-2 (0.037 µM), and HCT-116 (0.12 µM), with selectivity indices 21.8, 12.9 and 4, respectively. The purified epothilone B exhibited a potential anti-wound healing activity to HepG-2 and MCF-7 cells by ~ 54.07 and 60.0%, respectively, after 24 h, compared to the untreated cells. The purified epothilone has a significant antiproliferative effect by arresting the cellular growth of MCF-7 at G2/M phase by ~ 2.1 folds, inducing the total apoptosis by ~ 12.2 folds, normalized to the control cells. The epothilone B productivity by A. niger was optimized by the response surface methodology, with ~ 1.4 fold increments (266.9 µg/L), over the control. The epothilone productivity by A. niger was reduced by ~ 2.4 folds by 6 months storage as a slope culture at 4 °C, however, the epothilone productivity was slightly restored with ethylacetate extracts of L. loddegesii, confirming the plant-derived chemical signals that partially triggers the biosynthetic genes of A. niger epothilones. So, this is the first report emphasizing the metabolic potency of A. niger, an endophyte of L. loddegesii, to produce epothilone B, that could be a new platform for industrial production of this drug.


Assuntos
Antineoplásicos , Aspergillus niger , Endófitos , Epotilonas , Cicatrização , Epotilonas/farmacologia , Epotilonas/biossíntese , Epotilonas/química , Epotilonas/metabolismo , Humanos , Endófitos/metabolismo , Endófitos/química , Aspergillus niger/efeitos dos fármacos , Aspergillus niger/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Cicatrização/efeitos dos fármacos , Células MCF-7 , Células Hep G2 , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos
16.
Microb Cell Fact ; 23(1): 262, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39367393

RESUMO

D-Xylitol is a naturally occurring sugar alcohol present in diverse plants that is used as an alternative sweetener based on a sweetness similar to sucrose and several health benefits compared to conventional sugar. However, current industrial methods for D-xylitol production are based on chemical hydrogenation of D-xylose, which is energy-intensive and environmentally harmful. However, efficient conversion of L-arabinose as an additional highly abundant pentose in lignocellulosic materials holds great potential to broaden the range of applicable feedstocks. Both pentoses D-xylose and L-arabinose are converted to D-xylitol as a common metabolic intermediate in the native fungal pentose catabolism.To engineer a strain capable of accumulating D-xylitol from arabinan-rich agricultural residues, pentose catabolism was stopped in the ascomycete filamentous fungus Aspergillus niger at the stage of D-xylitol by knocking out three genes encoding enzymes involved in D-xylitol degradation (ΔxdhA, ΔsdhA, ΔxkiA). Additionally, to facilitate its secretion into the medium, an aquaglyceroporin from Saccharomyces cerevisiae was tested. In S. cerevisiae, Fps1 is known to passively transport glycerol and is regulated to convey osmotic stress tolerance but also exhibits the ability to transport other polyols such as D-xylitol. Thus, a constitutively open version of this transporter was introduced into A. niger, controlled by multiple promoters with varying expression strengths. The strain expressing the transporter under control of the PtvdA promoter in the background of the pentose catabolism-deficient triple knock-out yielded the most favorable outcome, producing up to 45% D-xylitol from L-arabinose in culture supernatants, while displaying minimal side effects during osmotic stress. Due to its additional ability to extract D-xylose and L-arabinose from lignocellulosic material via the production of highly active pectinases and hemicellulases, A. niger emerges as an ideal candidate cell factory for D-xylitol production from lignocellulosic biomasses rich in both pentoses.In summary, we are showing for the first time an efficient biosynthesis of D-xylitol from L-arabinose utilizing a filamentous ascomycete fungus. This broadens the potential resources to include also arabinan-rich agricultural waste streams like sugar beet pulp and could thus help to make alternative sweetener production more environmentally friendly and cost-effective.


Assuntos
Arabinose , Aspergillus niger , Engenharia Metabólica , Xilitol , Aspergillus niger/metabolismo , Aspergillus niger/genética , Arabinose/metabolismo , Xilitol/metabolismo , Xilitol/biossíntese , Engenharia Metabólica/métodos , Xilose/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética
17.
Microb Cell Fact ; 23(1): 76, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461254

RESUMO

BACKGROUND: Aspergillus niger ATCC 20611 is an industrially important fructooligosaccharides (FOS) producer since it produces the ß-fructofuranosidase with superior transglycosylation activity, which is responsible for the conversion of sucrose to FOS accompanied by the by-product (glucose) generation. This study aims to consume glucose to enhance the content of FOS by heterologously expressing glucose oxidase and peroxidase in engineered A. niger. RESULTS: Glucose oxidase was successfully expressed and co-localized with ß-fructofuranosidase in mycelia. These mycelia were applied to synthesis of FOS, which possessed an increased purity of 60.63% from 52.07%. Furthermore, peroxidase was expressed in A. niger and reached 7.70 U/g, which could remove the potential inhibitor of glucose oxidase to facilitate the FOS synthesis. Finally, the glucose oxidase-expressing strain and the peroxidase-expressing strain were jointly used to synthesize FOS, which content achieved 71.00%. CONCLUSIONS: This strategy allows for obtaining high-content FOS by the multiple enzymes expressed in the industrial fungus, avoiding additional purification processes used in the production of oligosaccharides. This study not only facilitated the high-purity FOS synthesis, but also demonstrated the potential of A. niger ATCC 20611 as an enzyme-producing cell factory.


Assuntos
Aspergillus niger , Aspergillus , beta-Frutofuranosidase , Aspergillus niger/genética , Glucose Oxidase/genética , Oligossacarídeos , Peroxidases , Glucose
18.
Microb Cell Fact ; 23(1): 78, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475853

RESUMO

The biosynthetic potency of Taxol by fungi raises their prospective to be a platform for commercial production of Taxol, nevertheless, the attenuation of its productivity with the fungal storage, is the challenge. Thus, screening for a novel fungal isolate inhabiting ethnopharmacological plants, with a plausible metabolic stability for Taxol production could be one of the most affordable approaches. Aspergillus niger OR414905.1, an endophyte of Encephalartos whitelockii, had the highest Taxol productivity (173.9 µg/L). The chemical identity of the purified Taxol was confirmed by HPLC, FTIR, and LC-MS/MS analyses, exhibiting the same molecular mass (854.5 m/z) and molecular fragmentation pattern of the authentic Taxol. The purified Taxol exhibited a potent antiproliferative activity against HepG-2, MCF-7 and Caco-2, with IC50 values 0.011, 0.016, and 0.067 µM, respectively, in addition to a significant activity against A. flavus, as a model of human fungal pathogen. The purified Taxol displayed a significant effect against the cellular migration of HepG-2 and MCF-7 cells, by ~ 52-59% after 72 h, compared to the control, confirming its interference with the cellular matrix formation. Furthermore, the purified Taxol exhibited a significant ability to prompt apoptosis in MCF-7 cells, by about 11-fold compared to control cells, suppressing their division at G2/M phase. Taxol productivity by A. niger has been optimized by the response surface methodology with Plackett-Burman Design and Central Composite Design, resulting in a remarkable ~ 1.6-fold increase (279.8 µg/L), over the control. The biological half-life time of Taxol productivity by A. niger was ~ 6 months of preservation at 4 â„ƒ, however, the Taxol yield by A. niger was partially restored in response to ethyl acetate extracts of E. whitelockii, ensuring the presence of plant-derived signals that triggers the cryptic Taxol encoding genes.


Assuntos
Aspergillus , Paclitaxel , Zamiaceae , Humanos , Aspergillus niger , Endófitos/metabolismo , Células CACO-2 , Cromatografia Líquida , Estudos Prospectivos , Espectrometria de Massas em Tandem , Ciclo Celular
19.
J Anim Ecol ; 93(3): 319-332, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38155266

RESUMO

Ants are important bioturbators that actively produce biopores and move soil particles. They could be particularly affected by global warming as they are ectotherms. Nevertheless, they can indirectly regulate their temperature, through changes in their circadian cycles and the architecture of their nests (e.g. digging deep nests or using insulating materials). Nest architecture has been considered an expanded functional trait of ant colonies and thus sensitive to environmental changes such as increasing temperatures. This work aimed to study the nest architecture of ants as a functional trait and its effects on soil bioturbation. We hypothesized that, when exposed to increased surface temperatures, ants would increase their excavation activities, build deeper nests and alter the layout of chambers to maintain their preferred temperature and humidity, thus enhancing soil porosity. We allowed 17 young Lasius niger ant colonies to excavate nests in soil columns exposed to three surface temperatures (mild, n = 5; medium, n = 6; and high, n = 6) for 100 days. We measured the amount of soil excavated weekly and took X-ray scans of the soil column on Days 7, 14, 28, and 88 to characterize the three-dimensional structure of the nests (depth, shape, volume of chambers and tunnels). We then collected the colonies and measured their growth during the experiment, and the size and weight of workers. Ants reacted to surface temperature. Colonies exposed to medium and high temperatures excavated larger and deeper nests than those exposed to mild temperature. Nests excavated under high and medium temperatures had the same maximal depth, but chambers were located deeper in the former, which were further characterized by the refiling of some of the upper chambers. Colonies grew well in all treatments, although less under mild temperature. They produced normal-sized workers despite differences in surface temperature. Overall, these results suggest that ants exposed to higher temperatures live in deeper chambers. This study shows that surface temperature affects ant nest architecture, confirming its status as extended phenotype and highlighting its flexibility over time, which has in turn consequences on soil porosity.


Assuntos
Formigas , Animais , Temperatura , Formigas/fisiologia , Comportamento de Nidação/fisiologia , Solo/química
20.
Med Mycol ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39327022

RESUMO

Azole resistance has emerged as a new therapeutic challenge in patients with aspergillosis. Various resistance mutations are attributed to the widespread use of triazole-based fungicides in agriculture. This study explored the prevalence of azole-resistant Aspergillus fumigatus (ARAF) and other aspergilli in the Argentine environment. A collection of A. fumigatus and other aspergilli strains isolated from soil of growing crops, compost, corn, different animal feedstuffs, soybean and chickpea seeds were screened for azole resistance. No ARAF was detected in any of the environmental samples studied. However, five A. flavus, one A. ostianus, one A. niger and one A. tamarii recovered from soybean and chickpea seeds showed reduced susceptibility to medical azole antifungals (MAA). The susceptibility profiles of five A. flavus isolates, showing reduced susceptibility to demethylase inhibitors (DMIs), were compared with those of 10 isolates that exhibited susceptibility to MAA. A. flavus isolates that showed reduced MAA susceptibility exhibited different susceptibility profile to DMIs. Prothioconazole and tebuconazole were the only DMIs significantly less active against isolates with reduced susceptibility to MAA. Although no ARAF isolates were found in the samples analysed, other aspergilli with reduced susceptibility profile to MAA being also important human pathogens causing allergic, chronic and invasive aspergillosis, are present in the environment in Argentina. Although a definitive link between triazole-based fungicide use and isolation of azole-resistant human pathogenic aspergilli from agricultural fields in Argentina remains elusive, this study unequivocally highlights the magnitude of the environmental spread of azole resistance among other Aspergillus species.


This study intended to inform about the prevalence of Aspergillus species showing triazole resistance in the Argentinian environment. Since azole fungicides are used for crop protection, it was expected that azole resistance in this species with cross-resistance to medical azoles can occur.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA