Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 988
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(16): e2208450120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37036985

RESUMO

Average ambient concentrations of nitrogen dioxide (NO2), an important air pollutant, have declined in the United States since the enactment of the Clean Air Act. Despite evidence that NO2 disproportionately affects racial/ethnic minority groups, it remains unclear what drives the exposure disparities and how they have changed over time. Here, we provide evidence by integrating high-resolution (1 km × 1 km) ground-level NO2 estimates, sociodemographic information, and source-specific emission intensity and location for 217,740 block groups across the contiguous United States from 2000 to 2016. We show that racial/ethnic minorities are disproportionately exposed to higher levels of NO2 pollution compared with Whites across the United States and within major metropolitan areas. These inequities persisted over time and have worsened in many cases, despite a significant decrease in the national average NO2 concentration over the 17-y study period. Overall, traffic contributes the largest fraction of NO2 disparity. Contributions of other emission sources to exposure disparities vary by location. Our analyses offer insights into policies aimed at reducing air pollution exposure disparities among races/ethnicities and locations.


Assuntos
Poluição do Ar , Disparidades nos Níveis de Saúde , Dióxido de Nitrogênio , Estados Unidos/etnologia , Dióxido de Nitrogênio/toxicidade , Disparidades Socioeconômicas em Saúde , Análise Espaço-Temporal , Grupos Raciais , Etnicidade , Fatores de Tempo , Humanos
2.
Artigo em Inglês | MEDLINE | ID: mdl-38940605

RESUMO

RATIONALE: Few studies have examined the effects of long-term childhood air pollution exposure on adult respiratory health, including whether childhood respiratory effects underlie this relation. OBJECTIVES: To evaluate associations between childhood air pollution exposure and self-reported adult bronchitic symptoms, while considering child respiratory health, in the Southern California Children's Health Study. METHODS: Nitrogen dioxide (NO2), ozone, particulate matter<2.5µm (PM2.5) and <10µm (PM10) exposures assessed using inverse-distance-squared spatial interpolation based on childhood (birth-17 years) residential histories. Bronchitic symptoms (bronchitis, cough, or phlegm in last 12 months) were ascertained via questionnaire in adulthood. Associations between mean air pollution exposure across childhood and self-reported adult bronchitic symptoms were estimated using logistic regression. We further adjusted for childhood bronchitic symptoms and asthma to understand whether associations operated beyond childhood respiratory health impacts. Effect modification was assessed for family history of asthma, childhood asthma, and adult allergies. MEASUREMENTS AND MAIN RESULTS: 1308 participants were included (mostly non-Hispanic White [56%] or Hispanic [32%]). At adult assessment (age mean=32.0 years, standard deviation [SD]=4.7) 25% reported bronchitic symptoms. Adult bronchitic symptoms were associated with NO2 and PM10 childhood exposures. Odds ratios per SD increase: 1.69 (95%CI:1.14,2.49) for NO2 (SD=11.1ppb); 1.51 (95%CI:1.00,2.27) for PM10 (SD=14.2µg/m3). Adjusting for childhood bronchitic symptoms or asthma produced similar results. NO2 and PM10 associations were modified by childhood asthma, with larger associations among asthmatics. CONCLUSION: Childhood NO2 and PM10 exposures were associated with adult bronchitic symptoms. Associations were not explained by childhood respiratory health impacts; however, participants with childhood asthma had stronger associations.

3.
Int J Cancer ; 154(11): 1900-1910, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339851

RESUMO

Air pollution has been shown to significantly impact human health including cancer. Gastric and upper aerodigestive tract (UADT) cancers are common and increased risk has been associated with smoking and occupational exposures. However, the association with air pollution remains unclear. We pooled European subcohorts (N = 287,576 participants for gastric and N = 297,406 for UADT analyses) and investigated the association between residential exposure to fine particles (PM2.5), nitrogen dioxide (NO2), black carbon (BC) and ozone in the warm season (O3w) with gastric and UADT cancer. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. During 5,305,133 and 5,434,843 person-years, 872 gastric and 1139 UADT incident cancer cases were observed, respectively. For gastric cancer, we found no association with PM2.5, NO2 and BC while for UADT the hazard ratios (95% confidence interval) were 1.15 (95% CI: 1.00-1.33) per 5 µg/m3 increase in PM2.5, 1.19 (1.08-1.30) per 10 µg/m3 increase in NO2, 1.14 (1.04-1.26) per 0.5 × 10-5 m-1 increase in BC and 0.81 (0.72-0.92) per 10 µg/m3 increase in O3w. We found no association between long-term ambient air pollution exposure and incidence of gastric cancer, while for long-term exposure to PM2.5, NO2 and BC increased incidence of UADT cancer was observed.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Neoplasias Gástricas , Humanos , Material Particulado/efeitos adversos , Material Particulado/análise , Dióxido de Nitrogênio/efeitos adversos , Neoplasias Gástricas/epidemiologia , Neoplasias Gástricas/etiologia , Incidência , Exposição Ambiental/efeitos adversos , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise
4.
Planta ; 260(2): 42, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958765

RESUMO

MAIN CONCLUSION: Ambient concentrations of atmospheric nitrogen dioxide (NO2) inhibit the binding of PIF4 to promoter regions of auxin pathway genes to suppress hypocotyl elongation in Arabidopsis. Ambient concentrations (10-50 ppb) of atmospheric nitrogen dioxide (NO2) positively regulate plant growth to the extent that organ size and shoot biomass can nearly double in various species, including Arabidopsis thaliana (Arabidopsis). However, the precise molecular mechanism underlying NO2-mediated processes in plants, and the involvement of specific molecules in these processes, remain unknown. We measured hypocotyl elongation and the transcript levels of PIF4, encoding a bHLH transcription factor, and its target genes in wild-type (WT) and various pif mutants grown in the presence or absence of 50 ppb NO2. Chromatin immunoprecipitation assays were performed to quantify binding of PIF4 to the promoter regions of its target genes. NO2 suppressed hypocotyl elongation in WT plants, but not in the pifq or pif4 mutants. NO2 suppressed the expression of target genes of PIF4, but did not affect the transcript level of the PIF4 gene itself or the level of PIF4 protein. NO2 inhibited the binding of PIF4 to the promoter regions of two of its target genes, SAUR46 and SAUR67. In conclusion, NO2 inhibits the binding of PIF4 to the promoter regions of genes involved in the auxin pathway to suppress hypocotyl elongation in Arabidopsis. Consequently, PIF4 emerges as a pivotal participant in this regulatory process. This study has further clarified the intricate regulatory mechanisms governing plant responses to environmental pollutants, thereby advancing our understanding of how plants adapt to changing atmospheric conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Regulação da Expressão Gênica de Plantas , Hipocótilo , Dióxido de Nitrogênio , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/genética , Hipocótilo/efeitos dos fármacos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Dióxido de Nitrogênio/farmacologia , Dióxido de Nitrogênio/metabolismo , Regiões Promotoras Genéticas/genética , Ácidos Indolacéticos/metabolismo , Mutação
5.
Environ Sci Technol ; 58(2): 1097-1108, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38175714

RESUMO

Associations between gaseous pollutant exposure and stillbirth have focused on exposures averaged over trimesters or gestation. We investigated the association between short-term increases in nitrogen dioxide (NO2) and ozone (O3) concentrations and stillbirth risk among a national sample of 116 788 Medicaid enrollees from 2000 to 2014. A time-stratified case-crossover design was used to estimate distributed (lag 0-lag 6) and cumulative lag effects, which were adjusted for PM2.5 concentration and temperature. Effect modification by race/ethnicity and proximity to hydraulic fracturing (fracking) wells was assessed. Short-term increases in the NO2 and O3 concentrations were not associated with stillbirth in the overall sample. Among American Indian individuals (n = 1694), a 10 ppb increase in NO2 concentrations was associated with increased stillbirth odds at lag 0 (5.66%, 95%CI: [0.57%, 11.01%], p = 0.03) and lag 1 (4.08%, 95%CI: [0.22%, 8.09%], p = 0.04) but not lag 0-6 (7.12%, 95%CI: [-9.83%, 27.27%], p = 0.43). Among participants living in zip codes within 15 km of active fracking wells (n = 9486), a 10 ppb increase in NO2 concentration was associated with increased stillbirth odds in single-day lags (2.42%, 95%CI: [0.37%, 4.52%], p = 0.02 for lag 0 and 1.83%, 95%CI: [0.25%, 3.43%], p = 0.03 for lag 1) but not the cumulative lag (lag 0-6) (4.62%, 95%CI: [-2.75%, 12.55%], p = 0.22). Odds ratios were close to the null in zip codes distant from fracking wells. Future studies should investigate the role of air pollutants emitted from fracking and potential racial disparities in the relationship between short-term increases in NO2 concentrations and stillbirth.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Gravidez , Feminino , Humanos , Poluição do Ar/análise , Estudos Cross-Over , Dióxido de Nitrogênio/análise , Material Particulado/análise , Natimorto/epidemiologia , Poluentes Atmosféricos/análise , Ozônio/análise , Exposição Ambiental/análise
6.
Int J Equity Health ; 23(1): 22, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321458

RESUMO

BACKGROUND: Together with rapid urbanization, ambient nitrogen dioxide (NO2) exposure has become a growing health threat. However, little is known about the urban-rural disparities in the health implications of short-term NO2 exposure. This study aimed to compare the association between short-term NO2 exposure and hospitalization for cardiovascular disease (CVD) among urban and rural residents in Shandong Province, China. Then, this study further explored the urban-rural disparities in the economic burden attributed to NO2 and the explanation for the disparities. METHODS: Daily hospitalization data were obtained from an electronic medical records dataset covering a population of 5 million. In total, 303,217 hospital admissions for CVD were analyzed. A three-stage time-series analytic approach was used to estimate the county-level association and the attributed economic burden. RESULTS: For every 10-µg/m3 increase in NO2 concentrations, this study observed a significant percentage increase in hospital admissions on the day of exposure of 1.42% (95% CI 0.92 to 1.92%) for CVD. The effect size was slightly higher in urban areas, while the urban-rural difference was not significant. However, a more pronounced displacement phenomenon was found in rural areas, and the economic burden attributed to NO2 was significantly higher in urban areas. At an annual average NO2 concentration of 10 µg/m3, total hospital days and expenses in urban areas were reduced by 81,801 (44,831 to 118,191) days and 60,121 (33,002 to 86,729) thousand CNY, respectively, almost twice as much as in rural areas. Due to disadvantages in socioeconomic status and medical resources, despite similar air pollution levels in the urban and rural areas of our sample sites, the rural population tended to spend less on hospitalization services. CONCLUSIONS: Short-term exposure to ambient NO2 could lead to considerable health impacts in either urban or rural areas of Shandong Province, China. Moreover, urban-rural differences in socioeconomic status and medical resources contributed to the urban-rural disparities in the economic burden attributed to NO2 exposure. The health implications of NO2 exposure are a social problem in addition to an environmental problem. Thus, this study suggests a coordinated intervention system that targets environmental and social inequality factors simultaneously.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Cardiovasculares , Humanos , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio/análise , População Rural , Estresse Financeiro , Poluição do Ar/análise , China/epidemiologia
7.
Environ Res ; 241: 117634, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37977272

RESUMO

It is widely recognized that air pollution exerts substantial detrimental effects in human health and the economy. The potential for harm is closely linked to the concentrations of pollutants like nitrogen dioxide (NO2) and ozone (O3), as well as their collective oxidative potential (OX). Yet, due to the challenges of directly monitoring OX as an independent factor and the influences of different substances' varying ability to contain or convey OX, uncertainties persist regarding its actual impact. To provide further evidence to the association between short-term exposures to NO2, O3, and OX and mortality, this study conducted multi-county time-series analyses with over-dispersed generalized additive models and random-effects meta-analyses to estimate the mortality data from 2014 to 2020 in Jiangsu, China. The findings reveal that short-term exposures to these pollutants are linked to increased risks of all-cause, cardiovascular, and respiratory mortality, where NO2 demonstrates 2.11% (95% confidence interval: 1.79%, 2.42%), 2.28% (1.91%, 2.66%), and 2.91% (2.13%, 3.69%) respectively per every 10 ppb increase in concentration, and the effect of O3 is 1.11% (0.98%, 1.24%), 1.39% (1.19%, 1.59%), and 1.82% (1.39%, 2.26%), and OX is 1.77% (1.58%, 1.97%), 2.19% (1.90%, 2.48%), and 2.90% (2.29%, 3.52%). Notably, women and individuals aged over 75 years exhibit higher susceptibility to these pollutants, with NO2 showing a greater impact, especially during the warm seasons. The elevated mortality rates associated with NO2, O3, and OX underscore the significance of addressing air pollution as a pressing public health issue, especially in controlling NO2 and O3 together. Further research is needed to explore the underlying mechanisms and possible influential factors of these effects.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Ozônio , Humanos , Feminino , Idoso , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio/toxicidade , Dióxido de Nitrogênio/análise , Fatores de Tempo , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Ozônio/toxicidade , Ozônio/análise , Poluentes Ambientais/análise , Estresse Oxidativo , Material Particulado/análise
8.
Environ Res ; 259: 119552, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964584

RESUMO

BACKGROUND: Long-term exposure to ambient air pollution has been linked with all-cause mortality and cardiovascular and respiratory diseases. Suggestive associations between ambient air pollutants and neurodegeneration have also been reported, but due to the small effect and relatively rare outcomes evidence is yet inconclusive. Our aim was to investigate the associations between long-term air pollution exposure and mortality from neurodegenerative diseases. METHODS: A Dutch national cohort of 10.8 million adults aged ≥30 years was followed from 2013 until 2019. Annual average concentrations of air pollutants (ultra-fine particles (UFP), nitrogen dioxide (NO2), fine particles (PM2.5 and PM10) and elemental carbon (EC)) were estimated at the home address at baseline, using land-use regression models. The outcome variables were mortality due to amyotrophic lateral sclerosis (ALS), Parkinson's disease, non-vascular dementia, Alzheimer's disease, and multiple sclerosis (MS). Hazard ratios (HR) were estimated using Cox models, adjusting for individual and area-level socio-economic status covariates. RESULTS: We had a follow-up of 71 million person-years. The adjusted HRs for non-vascular dementia were significantly increased for NO2 (1.03; 95% confidence interval (CI) 1.02-1.05) and PM2.5 (1.02; 95%CI 1.01-1.03) per interquartile range (IQR; 6.52 and 1.47 µg/m3, respectively). The association with PM2.5 was also positive for ALS (1.02; 95%CI 0.97-1.07). These associations remained positive in sensitivity analyses and two-pollutant models. UFP was not associated with any outcome. No association with air pollution was found for Parkinson's disease and MS. Inverse associations were found for Alzheimer's disease. CONCLUSION: Our findings, using a cohort of more than 10 million people, provide further support for associations between long-term exposure to air pollutants (PM2.5 and particularly NO2) and mortality of non-vascular dementia. No associations were found for Parkinson and MS and an inverse association was observed for Alzheimer's disease.

9.
Environ Res ; 243: 117831, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38052354

RESUMO

Ambient air pollution has been associated with asthma onset and exacerbation in children. Whether improvement in air quality due to reduced industrial emissions has resulted in improved health outcomes such as asthma in some localities has usually been assessed indirectly with studies on between-subject comparisons of air pollution from all sources and health outcomes. In this study we directly assessed, within small areas in the province of Quebec (Canada), the influence of changes in local industrial fine particulate matter (PM2.5), nitrogen dioxide (NO2), and sulfur dioxide (SO2) concentrations, on changes in annual asthma onset rates in children (≤12 years old) with a longitudinal ecological design. We identified the yearly number of new cases of childhood asthma in 1282 small areas (census tracts or local community service centers) for the years 2002, 2004, 2005, 2006, and 2015. Annual average concentrations of industrial air pollutants for each of the geographic areas, and three sectors (i.e., pulp and paper mills, petroleum refineries, and metal smelters) were estimated by the Polair3D chemical transport model. Fixed-effects negative binomial models adjusted for household income were used to assess associations; additional adjustments for environmental tobacco smoke, background pollutant concentrations, vegetation coverage, and sociodemographic characteristics were conducted in sensitivity analyses. The incidence rate ratios (IRR) for childhood asthma onset for the interquartile increase in total industrial PM2.5, NO2, and SO2 were 1.016 (95% confidence interval, CI: 1.006-1.026), 1.063 (1.045-1.090), and 1.048 (1.031-1.080), respectively. Positive associations were also found with pollutant concentrations from most individual sectors. Results suggest that changes in industrial pollutant concentrations influence childhood asthma onset rates in small localities.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Asma , Poluentes Ambientais , Criança , Humanos , Quebeque/epidemiologia , Dióxido de Nitrogênio/análise , Exposição Ambiental/análise , Poluição do Ar/análise , Asma/induzido quimicamente , Asma/epidemiologia , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Canadá , Material Particulado/toxicidade , Material Particulado/análise , Poluentes Ambientais/análise
10.
Environ Res ; 257: 119328, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38851369

RESUMO

The growing effects of climate change on Malaysia's coastal ecology heighten worries about air pollution, specifically caused by urbanization and industrial activity in the maritime sector. Trucks and vessels are particularly noteworthy for their substantial contribution to gas emissions, including nitrogen dioxide (NO2), which is the primary gas released in port areas. The application of advanced analysis techniques was spurred by the air pollution resulting from the combustion of fossil fuels such as fuel oil, natural gas and gasoline in vessels. The study utilized satellite photos captured by the Tropospheric Monitoring Instrument (TROPOMI) on the Sentinel-5P satellite to evaluate the levels of NO2 gas pollution in Malaysia's port areas and exclusive economic zone. Before the COVID-19 pandemic, unrestricted gas emissions led to persistently high levels of NO2 in the analyzed areas. The temporary cessation of marine industry operations caused by the pandemic, along with the halting of vessels to prevent the spread of COVID-19, resulted in a noticeable decrease in NO2 gas pollution. In light of these favourable advancements, it is imperative to emphasize the need for continuous investigation and collaborative endeavours to further alleviate air contamination in Malaysian port regions, while simultaneously acknowledging the wider consequences of climate change on the coastal ecology. The study underscores the interdependence of air pollution, maritime activities and climate change. It emphasizes the need for comprehensive strategies that tackle both immediate environmental issues and the long-term sustainability and resilience of coastal ecosystems in the context of global climate challenges.

11.
Environ Res ; 249: 118381, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38331142

RESUMO

Surface NO2 pollution can result in serious health consequences such as cardiovascular disease, asthma, and premature mortality. Due to the extensive spatial variation in surface NO2, the spatial resolution of a NO2 dataset has a significant impact on the exposure and health impact assessment. There is currently no long-term, high-resolution, and publicly available NO2 dataset for China. To fill this gap, this study generated a NO2 dataset named RBE-DS-NO2 for China during 2005-2020 at 1 km and daily resolution. We employed the robust back-extrapolation via a data augmentation approach (RBE-DA) to ensure the predictive accuracy in back-extrapolation before 2013, and utilized an improved spatial downscaling technique (DS) to refine the spatial resolution from 10 km to 1 km. Back-extrapolation validation based on 2005-2012 observations from sites in Taiwan province yielded an R2 of 0.72 and RMSE of 10.7 µg/m3, while cross-validation across China during 2013-2020 showed an R2 of 0.73 and RMSE of 9.6 µg/m3. RBE-DS-NO2 better captured spatiotemporal variation of surface NO2 in China compared to the existing publicly available datasets. Exposure assessment using RBE-DS-NO2 show that the population living in non-attainment areas (NO2 ≥ 30 µg/m3) grew from 376 million in 2005 to 612 million in 2012, then declined to 404 million by 2020. Unlike this national trend, exposure levels in several major cities (e.g., Shanghai and Chengdu) continued to increase during 2012-2020, driven by population growth and urban migration. Furthermore, this study revealed that low-resolution dataset (i.e., the 10 km intermediate dataset before the downscaling) overestimated NO2 levels, due to the limited specificity of the low-resolution model in simulating the relationship between NO2 and the predictor variables. Such limited specificity likely biased previous long-term NO2 exposure and health impact studies employing low-resolution datasets. The RBE-DS-NO2 dataset enables robust long-term assessments of NO2 exposure and health impacts in China.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Dióxido de Nitrogênio , China , Dióxido de Nitrogênio/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Humanos , Exposição Ambiental/análise , Análise Espaço-Temporal , Poluição do Ar/análise
12.
Environ Res ; 246: 118067, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38157969

RESUMO

Spontaneous abortion (SAB), defined as a pregnancy loss before 20 weeks of gestation, affects up to 30% of conceptions, yet few modifiable risk factors have been identified. We estimated the effect of ambient air pollution exposure on SAB incidence in Pregnancy Study Online (PRESTO), a preconception cohort study of North American couples who were trying to conceive. Participants completed questionnaires at baseline, every 8 weeks during preconception follow-up, and in early and late pregnancy. We analyzed data on 4643 United States (U.S.) participants and 851 Canadian participants who enrolled during 2013-2019 and conceived during 12 months of follow-up. We used country-specific national spatiotemporal models to estimate concentrations of particulate matter <2.5 µm (PM2.5), nitrogen dioxide (NO2), and ozone (O3) during the preconception and prenatal periods at each participant's residential address. On follow-up and pregnancy questionnaires, participants reported information on pregnancy status, including SAB incidence and timing. We fit Cox proportional hazards regression models with gestational weeks as the time scale to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for the association of time-varying prenatal concentrations of PM2.5, NO2, and O3 with rate of SAB, adjusting for individual- and neighborhood-level factors. Nineteen percent of pregnancies ended in SAB. Greater PM2.5 concentrations were associated with a higher incidence of SAB in Canada, but not in the U.S. (HRs for a 5 µg/m3 increase = 1.29, 95% CI: 0.99, 1.68 and 0.94, 95% CI: 0.83, 1.08, respectively). NO2 and O3 concentrations were not appreciably associated with SAB incidence. Results did not vary substantially by gestational weeks or season at risk. In summary, we found little evidence for an effect of residential ambient PM2.5, NO2, and O3 concentrations on SAB incidence in the U.S., but a moderate positive association of PM2.5 with SAB incidence in Canada.


Assuntos
Aborto Espontâneo , Poluentes Atmosféricos , Poluição do Ar , Feminino , Humanos , Gravidez , Estados Unidos/epidemiologia , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Estudos de Coortes , Dióxido de Nitrogênio/toxicidade , Dióxido de Nitrogênio/análise , Aborto Espontâneo/induzido quimicamente , Aborto Espontâneo/epidemiologia , Canadá/epidemiologia , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Material Particulado/toxicidade , Material Particulado/análise , Exposição Ambiental/análise
13.
Environ Res ; 257: 119241, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38810827

RESUMO

Understanding and managing the health effects of Nitrogen Dioxide (NO2) requires high resolution spatiotemporal exposure maps. Here, we developed a multi-stage multi-resolution ensemble model that predicts daily NO2 concentration across continental France from 2005 to 2022. Innovations of this work include the computation of daily predictions at a 200 m resolution in large urban areas and the use of a spatio-temporal blocking procedure to avoid data leakage and ensure fair performance estimation. Predictions were obtained after three cascading stages of modeling: (1) predicting NO2 total column density from Ozone Monitoring Instrument satellite; (2) predicting daily NO2 concentrations at a 1 km spatial resolution using a large set of potential predictors such as predictions obtained from stage 1, land-cover and road traffic data; and (3) predicting residuals from stage 2 models at a 200 m resolution in large urban areas. The latter two stages used a generalized additive model to ensemble predictions of three decision-tree algorithms (random forest, extreme gradient boosting and categorical boosting). Cross-validated performances of our ensemble models were overall very good, with a ten-fold cross-validated R2 for the 1 km model of 0.83, and of 0.69 for the 200 m model. All three basis learners participated in the ensemble predictions to various degrees depending on time and space. In sum, our multi-stage approach was able to predict daily NO2 concentrations with a relatively low error. Ensembling the predictions maximizes the chance of obtaining accurate values if one basis learner fails in a specific area or at a particular time, by relying on the other learners. To the best of our knowledge, this is the first study aiming to predict NO2 concentrations in France with such a high spatiotemporal resolution, large spatial extent, and long temporal coverage. Exposure estimates are available to investigate NO2 health effects in epidemiological studies.

14.
Environ Health ; 23(1): 43, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654228

RESUMO

BACKGROUND: Chronic kidney disease (CKD) affects more than 38 million people in the United States, predominantly those over 65 years of age. While CKD etiology is complex, recent research suggests associations with environmental exposures. METHODS: Our primary objective is to examine creatinine-based estimated glomerular filtration rate (eGFRcr) and diagnosis of CKD and potential associations with fine particulate matter (PM2.5), ozone (O3), and nitrogen dioxide (NO2) using a random sample of North Carolina electronic healthcare records (EHRs) from 2004 to 2016. We estimated eGFRcr using the serum creatinine-based 2021 CKD-EPI equation. PM2.5 and NO2 data come from a hybrid model using 1 km2 grids and O3 data from 12 km2 CMAQ grids. Exposure concentrations were 1-year averages. We used linear mixed models to estimate eGFRcr per IQR increase of pollutants. We used multiple logistic regression to estimate associations between pollutants and first appearance of CKD. We adjusted for patient sex, race, age, comorbidities, temporality, and 2010 census block group variables. RESULTS: We found 44,872 serum creatinine measurements among 7,722 patients. An IQR increase in PM2.5 was associated with a 1.63 mL/min/1.73m2 (95% CI: -1.96, -1.31) reduction in eGFRcr, with O3 and NO2 showing positive associations. There were 1,015 patients identified with CKD through e-phenotyping and ICD codes. None of the environmental exposures were positively associated with a first-time measure of eGFRcr < 60 mL/min/1.73m2. NO2 was inversely associated with a first-time diagnosis of CKD with aOR of 0.77 (95% CI: 0.66, 0.90). CONCLUSIONS: One-year average PM2.5 was associated with reduced eGFRcr, while O3 and NO2 were inversely associated. Neither PM2.5 or O3 were associated with a first-time identification of CKD, NO2 was inversely associated. We recommend future research examining the relationship between air pollution and impaired renal function.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Registros Eletrônicos de Saúde , Exposição Ambiental , Taxa de Filtração Glomerular , Dióxido de Nitrogênio , Ozônio , Material Particulado , Insuficiência Renal Crônica , Humanos , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Estudos Transversais , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Material Particulado/análise , Material Particulado/efeitos adversos , Dióxido de Nitrogênio/análise , Dióxido de Nitrogênio/efeitos adversos , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/induzido quimicamente , Ozônio/análise , Ozônio/efeitos adversos , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , North Carolina/epidemiologia , Adulto , Idoso de 80 Anos ou mais , Creatinina/sangue
15.
Eur J Pediatr ; 183(5): 2431-2442, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38470521

RESUMO

This case-control study aimed to investigate the association between short-term (1 to 5 days) and medium-term (31 days) exposure to air pollutants (PM2.5, PM10, BC, NO2) at home/daycare and the risk of 'severe bronchiolitis' (defined as 'requiring hospitalization for bronchiolitis') in children under 2 years in Antwerp, Belgium. We included 118 cases and 79 controls admitted to three general hospitals from October 2020 to June 2021. Exposure levels were predicted using an interpolation model based on fixed measuring stations. We used unconditional logistic regression analysis to assess associations, with adjustment for potential confounders. There were hardly any significant differences in the day-to-day air pollution values between cases and controls. Medium-term (31 days) exposure to PM2.5, PM10, and NO2 was however significantly higher in cases than controls in univariate analysis. Logistic regression revealed an association between severe bronchiolitis and interquartile range (IQR) increases of PM2.5 and PM10 at home and in daycare, as well as IQR increases of NO2 in daycare. Controls were however overrepresented in low pollution periods. Time-adjustment reduced the odds ratios significantly at home for PM2.5 and PM10 (aOR 1.54, 95%CI 0.51-4.65; and 2.69, 95%CI 0.94-7.69 respectively), and in daycare for. PM2.5 (aOR 2.43, 95%CI 0.58-10.1). However, the association between severe bronchiolitis and medium-term air pollution was retained in daycare for IQR increases of PM10 (aOR 5.13, 95%CI 1.24-21.28) and NO2 (aOR 3.88, 95%CI 1.56-9.61) in the time-adjusted model.  Conclusion: This study suggests a possible link between severe bronchiolitis and medium-term (31 days) air pollution exposure (PM10 and NO2), particularly in daycare. Larger studies are warranted to confirm these findings. What is Known: • Bronchiolitis is a leading cause of hospitalization in infants globally and causes a yearly seasonal wave of admissions in paediatric departments worldwide. • Existing studies, mainly from the USA, show heterogeneous outcomes regarding the association between air pollution and bronchiolitis. What is New: • There is a possible link between severe bronchiolitis and medium-term (31 days) air pollution exposure (PM10 and NO2), particularly in daycare. • Larger studies are needed to validate these trends.


Assuntos
Poluição do Ar , Bronquiolite , Exposição Ambiental , Material Particulado , Humanos , Bronquiolite/epidemiologia , Bronquiolite/etiologia , Bélgica/epidemiologia , Estudos de Casos e Controles , Lactente , Masculino , Feminino , Poluição do Ar/efeitos adversos , Exposição Ambiental/efeitos adversos , Material Particulado/efeitos adversos , Material Particulado/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Hospitalização/estatística & dados numéricos , Recém-Nascido , Fatores de Risco , Modelos Logísticos
16.
Soc Psychiatry Psychiatr Epidemiol ; 59(1): 87-98, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37470830

RESUMO

BACKGROUND: Air pollution has been linked to a variety of childhood mental health problems, but results are inconsistent across studies and the effect of exposure timing is unclear. We examined the associations between air pollution exposure at two time-points in early development and psychotic-like experiences (PLEs), and emotional and conduct symptoms, assessed in middle childhood (mean age 11.5 years). METHODS: Participants were 19,932 children selected from the NSW Child Development Study (NSW-CDS) with available linked multi-agency data from birth, and self-reported psychotic-like experiences (PLEs) and psychopathology at age 11-12 years (middle childhood). We used binomial logistic regression to examine associations between exposure to nitrogen dioxide (NO2) and particulate matter less than 2.5 µm (PM2.5) at two time-points (birth and middle childhood) and middle childhood PLEs, and emotional and conduct symptoms, with consideration of socioeconomic status and other potential confounding factors in adjusted models. RESULTS: In fully adjusted models, NO2 exposure in middle childhood was associated with concurrent PLEs (OR = 1.10, 95% CI = 1.02-1.20). Similar associations with PLEs were found for middle childhood exposure to PM2.5 (OR = 1.05, 95% CI = 1.01-1.09). Neither NO2 nor PM2.5 exposure was associated with emotional symptoms or conduct problems in this study. CONCLUSIONS: This study highlights the need for a better understanding of potential mechanisms of action of NO2 in the brain during childhood.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Transtornos Mentais , Humanos , Criança , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , Exposição Ambiental/efeitos adversos , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Material Particulado/efeitos adversos , Material Particulado/análise
17.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34285070

RESUMO

The unequal spatial distribution of ambient nitrogen dioxide ([Formula: see text]), an air pollutant related to traffic, leads to higher exposure for minority and low socioeconomic status communities. We exploit the unprecedented drop in urban activity during the COVID-19 pandemic and use high-resolution, remotely sensed [Formula: see text] observations to investigate disparities in [Formula: see text] levels across different demographic subgroups in the United States. We show that, prior to the pandemic, satellite-observed [Formula: see text] levels in the least White census tracts of the United States were nearly triple the [Formula: see text] levels in the most White tracts. During the pandemic, the largest lockdown-related [Formula: see text] reductions occurred in urban neighborhoods that have 2.0 times more non-White residents and 2.1 times more Hispanic residents than neighborhoods with the smallest reductions. [Formula: see text] reductions were likely driven by the greater density of highways and interstates in these racially and ethnically diverse areas. Although the largest reductions occurred in marginalized areas, the effect of lockdowns on racial, ethnic, and socioeconomic [Formula: see text] disparities was mixed and, for many cities, nonsignificant. For example, the least White tracts still experienced ∼1.5 times higher [Formula: see text] levels during the lockdowns than the most White tracts experienced prior to the pandemic. Future policies aimed at eliminating pollution disparities will need to look beyond reducing emissions from only passenger traffic and also consider other collocated sources of emissions such as heavy-duty vehicles.


Assuntos
Poluentes Atmosféricos/análise , COVID-19/epidemiologia , Dióxido de Nitrogênio/análise , COVID-19/prevenção & controle , Demografia , Monitoramento Ambiental , Humanos , SARS-CoV-2 , Fatores Socioeconômicos , Poluição Relacionada com o Tráfego/análise , Poluição Relacionada com o Tráfego/prevenção & controle , Estados Unidos/epidemiologia , Emissões de Veículos/análise , Emissões de Veículos/prevenção & controle
18.
Ecotoxicol Environ Saf ; 281: 116627, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925032

RESUMO

BACKGROUND: Evidence linking nitrogen dioxide (NO2) air pollution to life span of high-vulnerability older adults is extensively scarce in low- and middle-income countries. This study seeks to quantify mortality risk, excess deaths, and loss of life expectancy (LLE) associated with long-term exposure to NO2 among elderly individuals in China. METHODS: A nationwide dynamic cohort of 20352 respondents ≥65 years old were enrolled from the China Longitudinal Health and Longevity Survey during 2005-2018. Residential exposures to NO2 and co-pollutants were assessed by well-validated spatiotemporal prediction models. A Cox regression model with time-dependent covariates was utilized to quantify the association of all-cause mortality with NO2 exposure, controlling for confounders such as demographics, lifestyle, health status, and ambient temperature. NO2-attributable deaths and LLE were evaluated for the years 2010 and 2020 based on the pooled NO2-mortality relation derived from multi-national cohort investigations. Decomposition analyses were conducted to dissociate net shift in NO2-related deaths between 2010 and 2020 into four primary contributing factors. RESULTS: A total of 14313 deaths were recorded during follow-up of approximately 100 hundred person-years (median 3.6 years). We observed an approximately linear relationship (nonlinear P = 0.882) of NO2 exposure with all-cause death across a broad range from 6.6 to 95.7 µg/m3. Every 10-µg/m3 rise in yearly average NO2 concentration was linked to a hazard ratio (HR) of 1.045 (95% confidence interval [CI]: 1.031-1.059). In the updated meta-analysis of this study and 9 existing cohorts, we estimated a pooled HR of 1.043 (95% CI: 1.023-1.063) for each 10-µg/m3 growth in NO2. Reaching a 10 -µg/m3 counterfactual target of NO2 concentration in China could avoid 0.33 (95% empirical CI: 0.19-0.49) million premature deaths and an LLE of 0.40 (95% empirical CI: 0.23-0.59) years in 2010, which greatly dropped to 0.24 (95% empirical CI: 0.14-0.36) million deaths and 0.21 (95% empirical CI: 0.12-0.31) years of LLE in 2020. The net fall in NO2-attributable deaths (-26.8%) between 2010 and 2020 was primarily driven by the declines in both NO2 concentration (-41.6%) and mortality rate (-27.1%) under population growth (+41.0%) and age structure transition (+0.9%). CONCLUSIONS: Our findings provide national evidence for increased risk of premature death and loss of life expectancy attributed to later-life NO2 exposure among the elderly in China. In an accelerated aging society, strengthened clean air actions should be formulated to minimize the health burden and regional inequality in NO2-attributable mortality.

19.
Ecotoxicol Environ Saf ; 275: 116245, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38520807

RESUMO

BACKGROUND: Information on the relation of air pollution with non-alcoholic fatty liver disease (NAFLD) is scarce. We thus conducted a large cross-sectional study in Asia to investigate the role of air pollution in NAFLD. METHODS: We recruited 329,048 adults (mean age: 41.0 years) without other liver disease (hepatitis and cirrhosis) or excessive alcohol consumption in Taiwan and Hong Kong from 2001 to 2018. The concentrations of nitrogen dioxide (NO2) and ozone (O3) were estimated using a space-time regression model, and the concentrations of fine particulate matter (PM2.5) was evaluated using a satellite-based spatio-temporal model. NAFLD was determined using either the fatty liver index (FLI) or the hepatic steatosis index (HSI). The NAFLD-related advanced fibrosis was defined according to BARD score or the fibrosis-4 (FIB-4). A logistic regression model was adopted to explore the relationships of ambient air pollution with the odds of NAFLD and NAFLD-related advanced fibrosis. RESULTS: We found positive relationships between PM2.5 and the odds of NAFLD and advanced fibrosis, with every standard deviation (SD, 7.5 µg/m3) increases in PM2.5 exposure being associated with a 10% (95% confidence interval [CI]: 9%-11%) increment in the prevalence of NAFLD and an 8% (95% CI: 7%-9%) increment in the prevalence of advanced fibrosis. Similarly, the prevalence of NAFLD and advanced fibrosis increased by 8% (95% CI: 7%-9%) and 7% (95% CI: 6%-8%) with per SD (18.9 µg/m3) increasement in NO2 concentration, respectively. Additionally, for every SD (9.9 µg/m3) increasement in O3 concentration, the prevalence of NAFLD and advanced fibrosis decreased by 12% (95% CI: 11%-13%) and 11% (95% CI: 9%-12%), respectively. CONCLUSION: Higher ambient PM2.5 and NO2 are linked with higher odds of NAFLD and advanced fibrosis. Our findings indicate that reducing PM2.5 and NO2 concentrations may be an effective way for preventing NAFLD. Further studies on O3 are warranted.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Hepatopatia Gordurosa não Alcoólica , Adulto , Humanos , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Estudos Transversais , Hong Kong/epidemiologia , Taiwan/epidemiologia , Dióxido de Nitrogênio , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Cirrose Hepática/epidemiologia , Cirrose Hepática/etiologia , Material Particulado/efeitos adversos , Material Particulado/análise , Poluentes Atmosféricos/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise
20.
Int J Biometeorol ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607561

RESUMO

Previous studies have suggested that exposure to air pollutants may be associated with specific blood indicators or anemia in certain populations. However, there is insufficient epidemiological data and prospective evidence to evaluate the relationship between environmental air pollution and specific types of anemia. We conducted a large-scale prospective cohort study based on the UK Biobank. Annual average concentrations of NO2, PM2.5, PM2.5-10, and PM10 were obtained from the ESCAPE study using the Land Use Regression (LUR) model. The association between atmospheric pollutants and different types of anemia was investigated using the Cox proportional hazards model. Furthermore, restricted cubic splines were used to explore exposure-response relationships for positive associations, followed by stratification and effect modification analyses by gender and age. After adjusting for demographic characteristics, 3-4 of the four types of air pollution were significantly associated with an increased risk of iron deficiency, vitamin B12 deficiency and folate deficiency anemia, while there was no significant association with other defined types of anemia. After full adjustment, we estimated that the hazard ratios (HRs) of iron deficiency anemia associated with each 10 µg/m3 increase in NO2, PM2.5, and PM10 were 1.04 (95%CI: 1.02, 1.07), 2.00 (95%CI: 1.71, 2.33), and 1.10 (95%CI: 1.02, 1.20) respectively. The HRs of folate deficiency anemia with each 10 µg/m3 increase in NO2, PM2.5, PM2.5-10, and PM10 were 1.25 (95%CI: 1.12, 1.40), 4.61 (95%CI: 2.03, 10.47), 2.81 (95%CI: 1.11, 7.08), and 1.99 (95%CI: 1.25, 3.15) respectively. For vitamin B12 deficiency anemia, no significant association with atmospheric pollution was found. Additionally, we estimated almost linear exposure-response curves between air pollution and anemia, and interaction analyses suggested that gender and age did not modify the association between air pollution and anemia. Our research provided reliable evidence for the association between long-term exposure to PM10, PM2.5, PM2.5-10, NO2, and several types of anemia. NO2, PM2.5, and PM10 significantly increased the risk of iron deficiency anemia and folate deficiency anemia. Additionally, we found that the smaller the PM diameter, the higher the risk, and folate deficiency anemia was more susceptible to air pollution than iron deficiency anemia. No association was observed between the four types of air pollution and hemolytic anemia, aplastic anemia, and other types of anemia. Although the mechanisms are not well understood, we emphasize the need to limit the levels of PM and NO2 in the environment to reduce the potential impact of air pollution on folate and iron deficiency anemia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA