Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Nano Lett ; 24(5): 1660-1666, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38266180

RESUMO

Scalable and addressable integrated manipulation of qubits is crucial for practical quantum information applications. Different waveguides have been used to transport the optical and electrical driving pulses, which are usually required for qubit manipulation. However, the separated multifields may limit the compactness and efficiency of manipulation and introduce unwanted perturbation. Here, we develop a tapered fiber-nanowire-electrode hybrid structure to realize integrated optical and microwave manipulation of solid-state spins at nanoscale. Visible light and microwave driving pulses are simultaneously transported and concentrated along an Ag nanowire. Studied with spin defects in diamond, the results show that the different driving fields are aligned with high accuracy. The spatially selective spin manipulation is realized. And the frequency-scanning optically detected magnetic resonance (ODMR) of spin qubits is measured, illustrating the potential for portable quantum sensing. Our work provides a new scheme for developing compact, miniaturized quantum sensors and quantum information processing devices.

2.
Nano Lett ; 24(22): 6474-6479, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38767585

RESUMO

Experimental noise often contains information about the interactions of a system with its environment, but establishing a relation between the measured time fluctuations and the underlying physical observables is rarely apparent. Here, we leverage a multidimensional and multisensor analysis of spectral diffusion to investigate the dynamics of trapped carriers near subdiffraction clusters of nitrogen-vacancy (NV) centers in diamond. We establish statistical correlations in the spectral fluctuations we measure as we recursively probe the cluster optical resonances, which we then exploit to reveal proximal traps. Further, we deterministically induce Stark shifts in the cluster spectrum, ultimately allowing us to pinpoint the relative three-dimensional positions of interacting NVs as well as the location and charge sign of surrounding traps. Our results can be generalized to other color centers and provide opportunities for the characterization of photocarrier dynamics in semiconductors and the manipulation of nanoscale spin-qubit clusters connected via electric fields.

3.
Nano Lett ; 23(2): 422-428, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36602464

RESUMO

A broad effort is underway to understand and harness the interaction between superconductors and spin-active color centers with an eye on hybrid quantum devices and novel imaging modalities of superconducting materials. Most work, however, overlooks the interplay between either system and the environment created by the color center host. Here we use a diamond scanning probe to investigate the spin dynamics of a single nitrogen-vacancy (NV) center proximal to a superconducting film. We find that the presence of the superconductor increases the NV spin coherence lifetime, a phenomenon we tentatively rationalize as a change in the electric noise due to a superconductor-induced redistribution of charge carriers near induced redistribution of charge carriers near the NV. We then build on these findings to demonstrate transverse-relaxation-time-weighted imaging of the superconductor film. These results shed light on the dynamics governing the spin coherence of shallow NVs, and promise opportunities for new forms of noise spectroscopy and imaging of superconductors.

4.
Proc Natl Acad Sci U S A ; 117(26): 14636-14641, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32541064

RESUMO

Understanding the coordination of cell-division timing is one of the outstanding questions in the field of developmental biology. One active control parameter of the cell-cycle duration is temperature, as it can accelerate or decelerate the rate of biochemical reactions. However, controlled experiments at the cellular scale are challenging, due to the limited availability of biocompatible temperature sensors, as well as the lack of practical methods to systematically control local temperatures and cellular dynamics. Here, we demonstrate a method to probe and control the cell-division timing in Caenorhabditis elegans embryos using a combination of local laser heating and nanoscale thermometry. Local infrared laser illumination produces a temperature gradient across the embryo, which is precisely measured by in vivo nanoscale thermometry using quantum defects in nanodiamonds. These techniques enable selective, controlled acceleration of the cell divisions, even enabling an inversion of division order at the two-cell stage. Our data suggest that the cell-cycle timing asynchrony of the early embryonic development in C. elegans is determined independently by individual cells rather than via cell-to-cell communication. Our method can be used to control the development of multicellular organisms and to provide insights into the regulation of cell-division timings as a consequence of local perturbations.


Assuntos
Temperatura Corporal/fisiologia , Divisão Celular/fisiologia , Desenvolvimento Embrionário/fisiologia , Pontos Quânticos/química , Termometria , Animais , Caenorhabditis elegans/embriologia , Nanodiamantes/química , Termometria/instrumentação , Termometria/métodos
5.
Nano Lett ; 22(18): 7714-7723, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35946594

RESUMO

Measuring the mechanical interplay between cells and their surrounding microenvironment is vital in cell biology and disease diagnosis. Most current methods can only capture the translational motion of fiduciary markers in the deformed matrix, but their rotational motions are normally ignored. Here, by utilizing single nitrogen-vacancy (NV) centers in nanodiamonds (NDs) as fluorescent markers, we propose a linear polarization modulation (LPM) method to monitor in-plane rotational and translational motions of the substrate caused by cell traction forces. Specifically, precise orientation measurement and localization with background suppression were achieved via optical polarization selective excitation of single NV centers with precisions of ∼0.5°/7.5 s and 2 nm/min, respectively. Additionally, we successfully applied this method to monitor the multidimensional movements of NDs attached to the vicinity of cell focal adhesions. The experimental results agreed well with our theoretical calculations, demonstrating the practicability of the NV-based LPM method in studying mechanobiology and cell-material interactions.


Assuntos
Nanodiamantes , Movimento (Física) , Nitrogênio , Tração
6.
Nano Lett ; 22(10): 3889-3896, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35507005

RESUMO

Nanoindentation based on atomic force microscopy (AFM) can measure the elasticity of biomaterials and cells with high spatial resolution and sensitivity, but relating the data to quantitative mechanical properties depends on information on the local contact, which is unclear in most cases. Here, we demonstrate nonlocal deformation sensing on biorelevant soft matters upon AFM indentation by using nitrogen-vacancy centers in nanodiamonds, providing data for studying both the elasticity and capillarity without requiring detailed knowledge about the local contact. Using fixed HeLa cells for demonstration, we show that the apparent elastic moduli of the cells would have been overestimated if the capillarity was not considered. In addition, we observe that both the elastic moduli and the surface tensions are reduced after depolymerization of the actin cytoskeleton in cells. This work demonstrates that the nanodiamond sensing of nonlocal deformation with nanometer precision is particularly suitable for studying mechanics of soft biorelevant materials.


Assuntos
Nanodiamantes , Ação Capilar , Elasticidade , Células HeLa , Humanos , Microscopia de Força Atômica
7.
Nano Lett ; 22(24): 9876-9882, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36480706

RESUMO

Atomic-scale magnetic field sensors based on nitrogen vacancy (NV) defects in diamonds are an exciting platform for nanoscale nuclear magnetic resonance (NMR) spectroscopy. The detection of NMR signals from a few zeptoliters to single molecules or even single nuclear spins has been demonstrated using NV centers close to the diamond surface. However, fast molecular diffusion of sample molecules in and out of the nanoscale detection volumes impedes their detection and limits current experiments to solid-state or highly viscous samples. Here, we show that restricting diffusion by confinement enables nanoscale NMR spectroscopy of liquid samples. Our approach uses metal-organic frameworks (MOF) with angstrom-sized pores on a diamond chip to trap sample molecules near the NV centers. This enables the detection of NMR signals from a liquid sample, which would not be detectable without confinement. These results set the route for nanoscale liquid-phase NMR with high spectral resolution.


Assuntos
Estruturas Metalorgânicas , Nitrogênio/química , Espectroscopia de Ressonância Magnética/métodos , Imageamento por Ressonância Magnética , Diamante/química
8.
Nanotechnology ; 34(1)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36170794

RESUMO

The recently-developed ability to control phosphorous-doping of silicon at an atomic level using scanning tunneling microscopy, a technique known as atomic precision advanced manufacturing (APAM), has allowed us to tailor electronic devices with atomic precision, and thus has emerged as a way to explore new possibilities in Si electronics. In these applications, critical questions include where current flow is actually occurring in or near APAM structures as well as whether leakage currents are present. In general, detection and mapping of current flow in APAM structures are valuable diagnostic tools to obtain reliable devices in digital-enhanced applications. In this paper, we used nitrogen-vacancy (NV) centers in diamond for wide-field magnetic imaging (with a few-mm field of view and micron-scale resolution) of magnetic fields from surface currents flowing in an APAM test device made of a P delta-doped layer on a Si substrate, a standard APAM witness material. We integrated a diamond having a surface NV ensemble with the device (patterned in two parallel mm-sized ribbons), then mapped the magnetic field from the DC current injected in the APAM device in a home-built NV wide-field microscope. The 2D magnetic field maps were used to reconstruct the surface current densities, allowing us to obtain information on current paths, device failures such as choke points where current flow is impeded, and current leakages outside the APAM-defined P-doped regions. Analysis on the current density reconstructed map showed a projected sensitivity of ∼0.03 A m-1, corresponding to a smallest-detectable current in the 200µm wide APAM ribbon of ∼6µA. These results demonstrate the failure analysis capability of NV wide-field magnetometry for APAM materials, opening the possibility to investigate other cutting-edge microelectronic devices.

9.
Proc Natl Acad Sci U S A ; 116(37): 18334-18340, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31451667

RESUMO

Color-center-hosting semiconductors are emerging as promising source materials for low-field dynamic nuclear polarization (DNP) at or near room temperature, but hyperfine broadening, susceptibility to magnetic field heterogeneity, and nuclear spin relaxation induced by other paramagnetic defects set practical constraints difficult to circumvent. Here, we explore an alternate route to color-center-assisted DNP using nitrogen-vacancy (NV) centers in diamond coupled to substitutional nitrogen impurities, the so-called P1 centers. Working near the level anticrossing condition-where the P1 Zeeman splitting matches one of the NV spin transitions-we demonstrate efficient microwave-free 13C DNP through the use of consecutive magnetic field sweeps and continuous optical excitation. The amplitude and sign of the polarization can be controlled by adjusting the low-to-high and high-to-low magnetic field sweep rates in each cycle so that one is much faster than the other. By comparing the 13C DNP response for different crystal orientations, we show that the process is robust to magnetic field/NV misalignment, a feature that makes the present technique suitable to diamond powders and settings where the field is heterogeneous. Applications to shallow NVs could capitalize on the greater physical proximity between surface paramagnetic defects and outer nuclei to efficiently polarize target samples in contact with the diamond crystal.

10.
Proc Natl Acad Sci U S A ; 116(7): 2512-2520, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30679282

RESUMO

A broad effort is underway to improve the sensitivity of NMR through the use of dynamic nuclear polarization. Nitrogen vacancy (NV) centers in diamond offer an appealing platform because these paramagnetic defects can be optically polarized efficiently at room temperature. However, work thus far has been mainly limited to single crystals, because most polarization transfer protocols are sensitive to misalignment between the NV and magnetic field axes. Here we study the spin dynamics of NV-13C pairs in the simultaneous presence of optical excitation and microwave frequency sweeps at low magnetic fields. We show that a subtle interplay between illumination intensity, frequency sweep rate, and hyperfine coupling strength leads to efficient, sweep-direction-dependent 13C spin polarization over a broad range of orientations of the magnetic field. In particular, our results strongly suggest that finely tuned, moderately coupled nuclear spins are key to the hyperpolarization process, which makes this mechanism distinct from other known dynamic polarization channels. These findings pave the route to applications where powders are intrinsically advantageous, including the hyperpolarization of target fluids in contact with the diamond surface or the use of hyperpolarized particles as contrast agents for in vivo imaging.

11.
Nano Lett ; 21(19): 8213-8219, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34597058

RESUMO

Controlling magnon densities in magnetic materials enables driving spin transport in magnonic devices. We demonstrate the creation of large, out-of-equilibrium magnon densities in a thin-film magnetic insulator via microwave excitation of coherent spin waves and subsequent multimagnon scattering. We image both the coherent spin waves and the resulting incoherent magnon gas using scanning-probe magnetometry based on electron spins in diamond. We find that the gas extends unidirectionally over hundreds of micrometers from the excitation stripline. Surprisingly, the gas density far exceeds that expected for a boson system following a Bose-Einstein distribution with a maximum value of the chemical potential. We characterize the momentum distribution of the gas by measuring the nanoscale spatial decay of the magnetic stray fields. Our results show that driving coherent spin waves leads to a strong out-of-equilibrium occupation of the spin-wave band, opening new possibilities for controlling spin transport and magnetic dynamics in target directions.

12.
Nano Lett ; 21(16): 6960-6966, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34339601

RESUMO

Control over the charge states of color centers in solids is necessary to fully utilize them in quantum technologies. However, the microscopic charge dynamics of deep defects in wide-band-gap semiconductors are complex, and much remains unknown. We utilize a single-shot charge-state readout of an individual nitrogen-vacancy (NV) center to probe the charge dynamics of the surrounding defects in diamond. We show that the NV center charge state can be converted through the capture of holes produced by optical illumination of defects many micrometers away. With this method, we study the optical charge conversion of silicon-vacancy (SiV) centers and provide evidence that the dark state of the SiV center under optical illumination is SiV2-. These measurements illustrate that charge carrier generation, transport, and capture are important considerations in the design and implementation of quantum devices with color centers and provide a novel way to probe and control charge dynamics in diamond.


Assuntos
Diamante , Nitrogênio , Iluminação , Semicondutores , Silício
13.
Nano Lett ; 21(8): 3393-3400, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33847115

RESUMO

Correlated translation-orientation tracking of single particles can provide important information for understanding the dynamics of live systems and their interaction with the probes. However, full six-dimensional (6D) motion tracking has yet to be achieved. Here, we developed synchronized 3D translation and 3D rotation tracking of single diamond particles based on nitrogen-vacancy center sensing. We first performed 6D tracking of diamond particles attached to a giant plasma membrane vesicle to demonstrate the method. Quantitative analysis of diamond particles' motion allowed elimination of the geometric effect and revealed the net rotation on the vesicle. 6D tracking was then applied to measure live cell dynamics. Motion characteristics of nanodiamonds on cell membranes under various controlled physiological conditions suggest that the nanodiamonds' rotation is associated with cell metabolic activities. Our technique extends the toolbox of single particle tracking and provides a unique solution to problems where correlated analysis of translation and rotation is critical.


Assuntos
Nanodiamantes , Diamante , Nitrogênio , Rotação
14.
Proc Natl Acad Sci U S A ; 115(42): 10576-10581, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30279178

RESUMO

Dynamic nuclear polarization (DNP) has enabled enormous gains in magnetic resonance signals and led to vastly accelerated NMR/MRI imaging and spectroscopy. Unlike conventional cw-techniques, DNP methods that exploit the full electron spectrum are appealing since they allow direct participation of all electrons in the hyperpolarization process. Such methods typically entail sweeps of microwave radiation over the broad electron linewidth to excite DNP but are often inefficient because the sweeps, constrained by adiabaticity requirements, are slow. In this paper, we develop a technique to overcome the DNP bottlenecks set by the slow sweeps, using a swept microwave frequency comb that increases the effective number of polarization transfer events while respecting adiabaticity constraints. This allows a multiplicative gain in DNP enhancement, scaling with the number of comb frequencies and limited only by the hyperfine-mediated electron linewidth. We demonstrate the technique for the optical hyperpolarization of 13C nuclei in powdered microdiamonds at low fields, increasing the DNP enhancement from 30 to 100 measured with respect to the thermal signal at 7T. For low concentrations of broad linewidth electron radicals [e.g., TEMPO ((2,2,6,6-tetramethylpiperidin-1-yl)oxyl)], these multiplicative gains could exceed an order of magnitude.

15.
Nano Lett ; 20(5): 3192-3198, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32356992

RESUMO

We introduce and demonstrate a new approach for nitrogen-vacancy (NV) patterning in diamond, achieving a deterministic, nanometer-thin, and dense delta-doped layer of negatively charged NV centers in diamond. We employed a pure nitridation stage using microwave plasma and a subsequent in situ diamond overgrowth. We present the highest reported nitrogen concentration in a delta-doped layer (1.8 × 1020 cm-3) while maintaining the pristine diamond crystal quality. This result combined with the large optically detected magnetic resonance contrast can pave the way toward highly sensitive NV-based magnetometers. We further employed this delta-doping technique on high-quality fabricated diamond nanostructures for realizing a topographic NV patterning in order to enhance the sensing and hyperpolarization capabilities of NV-based devices.

16.
Nano Lett ; 19(4): 2389-2396, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30884227

RESUMO

Optically pumped color centers in semiconductor powders can potentially induce high levels of nuclear spin polarization in surrounding solids or fluids at or near ambient conditions, but complications stemming from the random orientation of the particles and the presence of unpolarized paramagnetic defects hinder the flow of polarization beyond the defect's host material. Here, we theoretically study the spin dynamics of interacting nitrogen-vacancy (NV) and substitutional nitrogen (P1) centers in diamond to show that outside protons spin-polarize efficiently upon a magnetic field sweep across the NV-P1 level anticrossing. The process can be interpreted in terms of an NV-P1 spin ratchet, whose handedness, and hence the sign of the resulting nuclear polarization, depends on the relative timing of the optical excitation pulse. Further, we find that the polarization transfer mechanism is robust to NV misalignment relative to the external magnetic field, and efficient over a broad range of electron-electron and electron-nuclear spin couplings, even if proxy spins feature short coherence or spin-lattice relaxation times. Therefore, these results pave the route toward the dynamic nuclear polarization of arbitrary spin targets brought in proximity with a diamond powder under ambient conditions.

17.
Nano Lett ; 19(10): 7342-7348, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31549847

RESUMO

Sensing the local environment through the motional response of small molecules lays the foundation of many fundamental technologies. The information on local viscosity, for example, is contained in the random rotational Brownian motions of molecules. However, detection of the motions is challenging for molecules with sub-nanometer scale or high motional rates. Here we propose and experimentally demonstrate a novel method of detecting fast rotational Brownian motions of small magnetic molecules. With electronic spins as sensors, we are able to detect changes in motional rates, which yield different noise spectra and therefore different relaxation signals of the sensors. As a proof-of-principle demonstration, we experimentally implemented this method to detect the motions of gadolinium (Gd) complex molecules with nitrogen-vacancy (NV) centers in nanodiamonds. With all-optical measurements of the NV centers' longitudinal relaxation, we distinguished binary solutions with varying viscosities. Our method paves a new way for detecting fast motions of sub-nanometer sized magnetic molecules with better spatial resolution than conventional optical methods. It also provides a new tool in designing better contrast agents in magnetic resonance imaging.

18.
Nano Lett ; 18(6): 4046-4052, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29733616

RESUMO

Although the spin properties of superficial shallow nitrogen-vacancy (NV) centers have been the subject of extensive scrutiny, considerably less attention has been devoted to studying the dynamics of NV charge conversion near the diamond surface. Using multicolor confocal microscopy, here we show that near-surface point defects arising from high-density ion implantation dramatically increase the ionization and recombination rates of shallow NVs compared to those in bulk diamond. Further, we find that these rates grow linearly, not quadratically, with laser intensity, indicative of single-photon processes enabled by NV state mixing with other defect states. Accompanying these findings, we observe NV ionization and recombination in the dark, likely the result of charge transfer to neighboring traps. Despite the altered charge dynamics, we show that one can imprint rewritable, long-lasting patterns of charged-initialized, near-surface NVs over large areas, an ability that could be exploited for electrochemical biosensing or to optically store digital data sets with subdiffraction resolution.

19.
Nano Lett ; 18(5): 2787-2793, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29601205

RESUMO

Quantum emitters in solids are being developed for a range of quantum technologies, including quantum networks, computing, and sensing. However, a remaining challenge is the poor photon collection due to the high refractive index of most host materials. Here we overcome this limitation by introducing monolithic parabolic reflectors as an efficient geometry for broadband photon extraction from quantum emitter and experimentally demonstrate this device for the nitrogen-vacancy (NV) center in diamond. Simulations indicate a photon collection efficiency exceeding 75% across the visible spectrum and experimental devices, fabricated using a high-throughput gray scale lithography process, demonstrating a photon extraction efficiency of (41 ± 5)%. This device enables a raw experimental detection efficiency of (12 ± 1)% with fluorescence detection rates as high as (4.114 ± 0.003) × 106 counts per second (cps) from a single NV center. Enabled by our deterministic emitter localization and fabrication process, we find a high number of exceptional devices with an average count rate of (3.1 ± 0.9) × 106 cps.

20.
Nano Lett ; 18(8): 4837-4844, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29969274

RESUMO

Solid-state quantum emitters are in high demand for emerging technologies such as advanced sensing and quantum information processing. Generally, these emitters are not sufficiently bright for practical applications, and a promising solution consists in coupling them to plasmonic nanostructures. Plasmonic nanostructures support broadband modes, making it possible to speed up the fluorescence emission in room-temperature emitters by several orders of magnitude. However, one has not yet achieved such a fluorescence lifetime shortening without a substantial loss in emission efficiency, largely because of strong absorption in metals and emitter bleaching. Here, we demonstrate ultrabright single-photon emission from photostable nitrogen-vacancy (NV) centers in nanodiamonds coupled to plasmonic nanocavities made of low-loss single-crystalline silver. We observe a 70-fold difference between the average fluorescence lifetimes and a 90-fold increase in the average detected saturated intensity. The nanocavity-coupled NVs produce up to 35 million photon counts per second, several times more than the previously reported rates from room-temperature quantum emitters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA