Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Yeast ; 37(9-10): 505-513, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32307750

RESUMO

Nonconventional yeast Candida famata and Ogataea polymorpha are interesting organisms for basic and applied studies. O. polymorpha is methylotrophic thermotolerant yeast capable of xylose alcoholic fermentation whereas C. famata is capable of riboflavin overproduction. Still, the new tools for molecular research of these species are needed. The aim of this study was to develop the new dominant selective markers for C. famata and O. polymorpha usable in metabolic engineering experiments. In this work, the BSD gene from Aspergillus terreus coding for blasticidin S deaminase, O. polymorpha AUR1 gene required for sphingolipid synthesis and IMH3 gene, which encodes IMP dehydrogenase, were tested as the new dominant selective marker genes. Our results showed that AUR1 and IMH3 genes could be used as dominant selective markers for O. polymorpha with frequencies of transformation of 40 and 20 transformants per microgram of DNA, respectively. The IMH3 gene was successfully used as the marker for construction of O. polymorpha strains with increased ethanol production from xylose due to overexpression of TAL1, TKL1 and AOX1 genes. The BSD gene from A. terreus, conferring resistance to blasticidin, was found to be efficient for selection of C. famata transformants.


Assuntos
Aspergillus/genética , Candida/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Engenharia Metabólica/métodos , Saccharomycetales/genética , Etanol/metabolismo , Marcadores Genéticos , Transformação Genética , Xilose/metabolismo
2.
Microb Cell Fact ; 19(1): 96, 2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-32334587

RESUMO

BACKGROUND: Xylose transport is one of the bottlenecks in the conversion of lignocellulosic biomass to ethanol. Xylose consumption by the wild-type strains of xylose-utilizing yeasts occurs once glucose is depleted resulting in a long fermentation process and overall slow and incomplete conversion of sugars liberated from lignocellulosic hydrolysates. Therefore, the engineering of endogenous transporters for the facilitation of glucose-xylose co-consumption is an important prerequisite for efficient ethanol production from lignocellulosic hydrolysates. RESULTS: In this study, several engineering approaches formerly used for the low-affinity glucose transporters in Saccharomyces cerevisiae, were successfully applied for earlier identified transporter Hxt1 in Ogataea polymorpha to improve xylose consumption (engineering involved asparagine substitution to alanine at position 358 and replacement of N-terminal lysine residues predicted to be the target of ubiquitination for arginine residues). Moreover, the modified versions of S. cerevisiae Hxt7 and Gal2 transporters also led to improved xylose fermentation when expressed in O. polymorpha. CONCLUSIONS: The O. polymorpha strains with modified Hxt1 were characterized by simultaneous utilization of both glucose and xylose, in contrast to the wild-type and parental strain with elevated ethanol production from xylose. When the engineered Hxt1 transporter was introduced into constructed earlier advanced ethanol producer form xylose, the resulting strain showed further increase in ethanol accumulation during xylose fermentation. The overexpression of heterologous S. cerevisiae Gal2 had a less profound positive effects on sugars uptake rate, while overexpression of Hxt7 revealed the least impact on sugars consumption.


Assuntos
Fermentação , Proteínas Fúngicas/metabolismo , Temperatura Alta , Pichia/metabolismo , Engenharia de Proteínas , Xilose/metabolismo , Álcoois/química , Álcoois/metabolismo , Proteínas Fúngicas/química , Pichia/química , Xilose/química
3.
BMC Microbiol ; 19(1): 100, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101012

RESUMO

BACKGROUND: Thermotolerance is a highly desirable trait of microbial cell factories and has been the focus of extensive research. Yeast usually tolerate only a narrow temperature range and just two species, Kluyveromyces marxianus and Ogataea polymorpha have been described to grow at reasonable rates above 40 °C. However, the complex mechanisms of thermotolerance in yeast impede its full comprehension and the rare physiological data at elevated temperatures has so far not been matched with corresponding metabolic analyses. RESULTS: To elaborate on the metabolic network response to increased fermentation temperatures of up to 49 °C, comprehensive physiological datasets of several Kluyveromyces and Ogataea strains were generated and used for 13C-metabolic flux analyses. While the maximum growth temperature was very similar in all investigated strains, the metabolic network response to elevated temperatures was not conserved among the different species. In fact, metabolic flux distributions were remarkably irresponsive to increasing temperatures in O. polymorpha, while the K. marxianus strains exhibited extensive flux rerouting at elevated temperatures. CONCLUSIONS: While a clear mechanism of thermotolerance is not deducible from the fluxome level alone, the generated data can be valued as a knowledge repository for using temperature to modulate the metabolic activity towards engineering goals.


Assuntos
Temperatura Alta , Redes e Vias Metabólicas , Termotolerância , Leveduras/fisiologia , Fermentação , Kluyveromyces/fisiologia , Pichia/fisiologia , Saccharomyces cerevisiae/fisiologia , Leveduras/classificação
4.
Microb Cell Fact ; 16(1): 36, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28245828

RESUMO

BACKGROUND: Efficient xylose alcoholic fermentation is one of the key to a successful lignocellulosic ethanol production. However, regulation of this process in the native xylose-fermenting yeasts is poorly understood. In this work, we paid attention to the transcriptional factor Cat8 and its possible role in xylose alcoholic fermentation in Ogataea (Hansenula) polymorpha. In Saccharomyces cerevisiae, organism, which does not metabolize xylose, gene CAT8 encodes a Zn-cluster transcriptional activator necessary for expression of genes involved in gluconeogenesis, respiration, glyoxylic cycle and ethanol utilization. Xylose is a carbon source that could be fermented to ethanol and simultaneously could be used in gluconeogenesis for hexose synthesis. This potentially suggests involvement of CAT8 in xylose metabolism. RESULTS: Here, the role of CAT8 homolog in the natural xylose-fermenting thermotolerant yeast O. polymorpha was characterized. The CAT8 ortholog was identified in O. polymorpha genome and deleted both in the wild-type strain and in advanced ethanol producer from xylose. Constructed cat8Δ strain isolated from wild strain showed diminished growth on glycerol, ethanol and xylose as well as diminished respiration on the last substrate. At the same time, cat8Δ mutant isolated from the best available O. polymorpha ethanol producer showed only visible defect in growth on ethanol. CAT8 deletant was characterized by activated transcription of genes XYL3, DAS1 and RPE1 and slight increase in the activity of several enzymes involved in xylose metabolism and alcoholic fermentation. Ethanol production from xylose in cat8Δ mutants in the background of wild-type strain and the best available ethanol producer from xylose increased for 50 and 30%, respectively. The maximal titer of ethanol during xylose fermentation was 12.5 g ethanol/L at 45 °C. Deletion of CAT8 did not change ethanol production from glucose. Gene CAT8 was also overexpressed under control of the strong constitutive promoter GAP of glyceraldehyde-3-phosphate dehydrogenase. Corresponding strains showed drop in ethanol production in xylose medium whereas glucose alcoholic fermentation remained unchanged. Available data suggest on specific role of Cat8 in xylose alcoholic fermentation. CONCLUSIONS: The CAT8 gene is one of the first identified genes specifically involved in regulation of xylose alcoholic fermentation in the natural xylose-fermenting yeast O. polymorpha.


Assuntos
Fermentação , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Pichia/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Xilose/metabolismo , Etanol/metabolismo , Proteínas Fúngicas/metabolismo , Engenharia Genética , Gliceraldeído-3-Fosfato Desidrogenases/genética , Glicerol/metabolismo , Temperatura Alta , Mutação , Pichia/crescimento & desenvolvimento , Pichia/metabolismo
5.
Adv Exp Med Biol ; 896: 137-53, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27165323

RESUMO

Protein complexes can be produced in multimilligram quantities using nonmethylotrophic and methylotrophic yeasts such as Saccharomyces cerevisiae and Komagataella (Pichia) pastoris. Yeasts have distinct advantages as hosts for recombinant protein production owing to their cost efficiency, ease of cultivation and genetic manipulation, fast growth rates, capacity to introduce post-translational modifications, and high protein productivity (yield) of correctly folded protein products. Despite those advantages, yeasts have surprisingly lagged behind other eukaryotic hosts in their use for the production of multisubunit complexes. As our knowledge of the metabolic and genomic bottlenecks that yeast microorganisms face when overexpressing foreign proteins expands, new possibilities emerge for successfully engineering yeasts as superb expression hosts. In this chapter, we describe the current state of the art and discuss future possibilities for the development of yeast-based systems for the production of protein complexes.


Assuntos
Metanol/metabolismo , Pichia/metabolismo , Engenharia de Proteínas/métodos , Proteínas Recombinantes/biossíntese , Proteínas de Saccharomyces cerevisiae/biossíntese , Saccharomyces cerevisiae/metabolismo , Yarrowia/metabolismo , Animais , Regulação Fúngica da Expressão Gênica , Vetores Genéticos , Humanos , Complexos Multiproteicos , Pichia/genética , Multimerização Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade , Transcrição Gênica , Yarrowia/genética
6.
Front Bioeng Biotechnol ; 11: 1223726, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456718

RESUMO

Introduction: Lactate has gained increasing attention as a platform chemical, particularly for the production of the bioplastic poly-lactic acid (PLA). While current microbial lactate production processes primarily rely on the use of sugars as carbon sources, it is possible to envision a future where lactate can be produced from sustainable, non-food substrates. Methanol could be such a potential substrate, as it can be produced by (electro)chemical hydrogenation from CO2. Methods: In this study, the use of the methylotrophic yeast Ogataea polymorpha as a host organism for lactate production from methanol was explored. To enable lactate production in Ogataea polymorpha, four different lactate dehydrogenases were expressed under the control of the methanol-inducible MOX promoter. The L-lactate dehydrogenase of Lactobacillus helveticus performed well in the yeast, and the lactate production of this engineered strain could additionally be improved by conducting methanol fed-batch experiments in shake flasks. Further, the impact of different nitrogen sources and the resulting pH levels on production was examined more closely. In order to increase methanol assimilation of the lactate-producing strain, an adaptive laboratory evolution experiment was performed. Results and Discussion: The growth rate of the lactate-producing strain on methanol was increased by 55%, while at the same time lactate production was preserved. The highest lactate titer of 3.8 g/L in this study was obtained by cultivating this evolved strain in a methanol fed-batch experiment in shake flasks with urea as nitrogen source. This study provides a proof of principle that Ogataea polymorpha is a suitable host organism for the production of lactate using methanol as carbon source. In addition, it offers guidance for the engineering of methylotrophic organisms that produce platform chemicals from CO2-derived substrates. With reduced land use, this technology will promote the development of a sustainable industrial biotechnology in the future.

7.
Biotechnol Biofuels ; 11: 197, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30034524

RESUMO

BACKGROUND: Ogataea (Hansenula) polymorpha is one of the most thermotolerant xylose-fermenting yeast species reported to date. Several metabolic engineering approaches have been successfully demonstrated to improve high-temperature alcoholic fermentation by O. polymorpha. Further improvement of ethanol production from xylose in O. polymorpha depends on the identification of bottlenecks in the xylose conversion pathway to ethanol. RESULTS: Involvement of peroxisomal enzymes in xylose metabolism has not been described to date. Here, we found that peroxisomal transketolase (known also as dihydroxyacetone synthase) and peroxisomal transaldolase (enzyme with unknown function) in the thermotolerant methylotrophic yeast, Ogataea (Hansenula) polymorpha, are required for xylose alcoholic fermentation, but not for growth on this pentose sugar. Mutants with knockout of DAS1 and TAL2 coding for peroxisomal transketolase and peroxisomal transaldolase, respectively, normally grow on xylose. However, these mutants were found to be unable to support ethanol production. The O. polymorpha mutant with the TAL1 knockout (coding for cytosolic transaldolase) normally grew on glucose and did not grow on xylose; this defect was rescued by overexpression of TAL2. The conditional mutant, pYNR1-TKL1, that expresses the cytosolic transketolase gene under control of the ammonium repressible nitrate reductase promoter did not grow on xylose and grew poorly on glucose media supplemented with ammonium. Overexpression of DAS1 only partially restored the defects displayed by the pYNR1-TKL1 mutant. The mutants defective in peroxisome biogenesis, pex3Δ and pex6Δ, showed normal growth on xylose, but were unable to ferment this sugar. Moreover, the pex3Δ mutant of the non-methylotrophic yeast, Scheffersomyces (Pichia) stipitis, normally grows on and ferments xylose. Separate overexpression or co-overexpression of DAS1 and TAL2 in the wild-type strain increased ethanol synthesis from xylose 2 to 4 times with no effect on the alcoholic fermentation of glucose. Overexpression of TKL1 and TAL1 also elevated ethanol production from xylose. Finally, co-overexpression of DAS1 and TAL2 in the best previously isolated O. polymorpha xylose to ethanol producer led to increase in ethanol accumulation up to 16.5 g/L at 45 °C; or 30-40 times more ethanol than is produced by the wild-type strain. CONCLUSIONS: Our results indicate the importance of the peroxisomal enzymes, transketolase (dihydroxyacetone synthase, Das1), and transaldolase (Tal2), in the xylose alcoholic fermentation of O. polymorpha.

8.
Microbiol Res ; 169(5-6): 378-87, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24135445

RESUMO

We describe the cloning, sequencing and functional characterization of gene PUR2,5, involved in de novo purine biosynthesis of the yeast Ogataea (Hansenula) polymorpha. This gene (2369 bp) was cloned by genetic complementation of adenine requiring mutation. It encodes a bifunctional enzyme of 789 amino acids (85 kDa) that catalyzes the second and the fifth steps of de novo purine biosynthesis pathway and shows dual enzymatic activity - of glycinamide ribotide synthetase (GARS, EC 6.3.4.13) and of aminoimidazole ribotide synthetase (AIRS, EC 6.3.3.1). Nucleotide sequence analysis revealed the presence of putative regulatory elements located in the adjacent 5' region. Canonical motives that function as binding sites for BAS1 transcription activator were found at positions (-593) and (-389). The putative TAATTA-box was located at (-20) to (-14) and AT-rich heteroduplex was found in the 3'-non-translated region. We compared the amino acid sequence of OpPUR2,5p with those of the corresponding enzymes of other yeast species as well as with distant organisms like bacteria Escherichia coli and human Homo sapiens. A successful disruption of OpPUR2,5 gene was done. It was found that OpPUR2,5::LEU2 replacement affects both mating and sporulation processes. OpPUR2,5 sequence is deposited in the GenBank of NCBI with accession no. JF967633.


Assuntos
Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/metabolismo , Pichia/enzimologia , Pichia/genética , Purinas/biossíntese , Sítios de Ligação , Carbono-Nitrogênio Ligases/química , Clonagem Molecular , DNA Fúngico/química , DNA Fúngico/genética , Escherichia coli/genética , Técnicas de Inativação de Genes , Teste de Complementação Genética , Humanos , Dados de Sequência Molecular , Peso Molecular , Regiões Promotoras Genéticas , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , TATA Box
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA