Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 895
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 1, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38167129

RESUMO

Successful oral insulin administration can considerably enhance the quality of life (QOL) of diabetes patients who must frequently take insulin injections. Oral insulin administration, on the other hand, is seriously hampered by gastrointestinal enzymes, wide pH range, mucus and mucosal layers, which limit insulin oral bioavailability to ≤ 2%. Therefore, a large number of technological solutions have been proposed to increase the oral bioavailability of insulin, in which polymeric nanoparticles (PNPs) are highly promising for oral insulin delivery. The recently published research articles chosen for this review are based on applications of PNPs with strong future potential in oral insulin delivery, and do not cover all related work. In this review, we will summarize the controlled release mechanisms of oral insulin delivery, latest oral insulin delivery applications of PNPs nanocarrier, challenges and prospect. This review will serve as a guide to the future investigators who wish to engineer and study PNPs as oral insulin delivery systems.


Assuntos
Insulina , Nanopartículas , Humanos , Sistemas de Liberação de Medicamentos/métodos , Qualidade de Vida , Polímeros , Administração Oral , Portadores de Fármacos
2.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928015

RESUMO

Noise-induced hearing loss (NIHL) is a major cause of hearing impairment and is linked to dementia and mental health conditions, yet no FDA-approved drugs exist to prevent it. Downregulating the mitogen-activated protein kinase (MAPK) cellular pathway has emerged as a promising approach to attenuate NIHL, but the molecular targets and the mechanism of protection are not fully understood. Here, we tested specifically the role of the kinases ERK1/2 in noise otoprotection using a newly developed, highly specific ERK1/2 inhibitor, tizaterkib, in preclinical animal models. Tizaterkib is currently being tested in phase 1 clinical trials for cancer treatment and has high oral bioavailability and low predicted systemic toxicity in mice and humans. In this study, we performed dose-response measurements of tizaterkib's efficacy against permanent NIHL in adult FVB/NJ mice, and its minimum effective dose (0.5 mg/kg/bw), therapeutic index (>50), and window of opportunity (<48 h) were determined. The drug, administered orally twice daily for 3 days, 24 h after 2 h of 100 dB or 106 dB SPL noise exposure, at a dose equivalent to what is prescribed currently for humans in clinical trials, conferred an average protection of 20-25 dB SPL in both female and male mice. The drug shielded mice from the noise-induced synaptic damage which occurs following loud noise exposure. Equally interesting, tizaterkib was shown to decrease the number of CD45- and CD68-positive immune cells in the mouse cochlea following noise exposure. This study suggests that repurposing tizaterkib and the ERK1/2 kinases' inhibition could be a promising strategy for the treatment of NIHL.


Assuntos
Perda Auditiva Provocada por Ruído , Animais , Camundongos , Administração Oral , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Masculino , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/administração & dosagem , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Feminino , Modelos Animais de Doenças , Cóclea/efeitos dos fármacos , Cóclea/metabolismo
3.
Compr Rev Food Sci Food Saf ; 23(3): e13322, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38597567

RESUMO

Adequate intake of live probiotics is beneficial to human health and wellbeing because they can help treat or prevent a variety of health conditions. However, the viability of probiotics is reduced by the harsh environments they experience during passage through the human gastrointestinal tract (GIT). Consequently, the oral delivery of viable probiotics is a significant challenge. Probiotic encapsulation provides a potential solution to this problem. However, the production methods used to create conventional encapsulation technologies often damage probiotics. Moreover, the delivery systems produced often do not have the required physicochemical attributes or robustness for food applications. Single-cell encapsulation is based on forming a protective coating around a single probiotic cell. These coatings may be biofilms or biopolymer layers designed to protect the probiotic from the harsh gastrointestinal environment, enhance their colonization, and introduce additional beneficial functions. This article reviews the factors affecting the oral delivery of probiotics, analyses the shortcomings of existing encapsulation technologies, and highlights the potential advantages of single-cell encapsulation. It also reviews the various approaches available for single-cell encapsulation of probiotics, including their implementation and the characteristics of the delivery systems they produce. In addition, the mechanisms by which single-cell encapsulation can improve the oral bioavailability and health benefits of probiotics are described. Moreover, the benefits, limitations, and safety issues of probiotic single-cell encapsulation technology for applications in food and beverages are analyzed. Finally, future directions and potential challenges to the widespread adoption of single-cell encapsulation of probiotics are highlighted.


Assuntos
Encapsulamento de Células , Probióticos , Humanos , Trato Gastrointestinal , Biofilmes
4.
AAPS PharmSciTech ; 25(6): 145, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918292

RESUMO

The objective of the current research was to develop abietic acid (AA)-loaded hybrid polymeric nanoparticles (HNPs) for anti-inflammatory and antioxidant activity after oral administration. AAHNPs were developed by microinjection technique and optimized by 3-factor 3-level Box-Behnken design. The AAHNPs were evaluated for morphology, FTIR, X-ray diffraction, in-vitro release, ex-vivo permeation, in-vitro antioxidant, and in-vivo anti-inflammatory activity. The optimized AAHNPs (AAHNPsopt) displayed 384.5 ± 6.36nm of PS, 0.376 of PDI, 23.0 mV of ZP, and 80.01 ± 1.89% of EE. FTIR and X-ray diffraction study results revealed that AA was encapsulated into a HNPs matrix. The AAHNPsopt showed significant (P < 0.05) high and sustained release of AA (86.72 ± 4.92%) than pure AA (29.87 ± 3.11%) in 24h. AAHNPsopt showed an initial fast release of AA (20.12 ± 3.07% in 2h), which succeeded in reaching the therapeutic concentration. The AAHNPsopt showed 2.49-fold higher ex-vivo gut permeation flux than pure AA due to the presence of lipid and surfactant. The AAHNPsopt exhibited significantly (P < 0.05, P < 0.01, P < 0.001) higher antioxidant activity as compared to pure AA at each concentration. AAHNPsopt formulation displayed a significantly (P < 0.05) higher anti-inflammatory effect (21.51 ± 2.23% swelling) as compared to pure AA (46.51 ± 1.74% swelling). From the in-vitro and in-vivo finding, it was concluded that HNPs might be a suitable carrier for the improvement of the therapeutic efficacy of the drug.


Assuntos
Abietanos , Anti-Inflamatórios , Antioxidantes , Portadores de Fármacos , Lipídeos , Nanopartículas , Polímeros , Nanopartículas/química , Animais , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/administração & dosagem , Antioxidantes/farmacocinética , Ratos , Polímeros/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacocinética , Lipídeos/química , Portadores de Fármacos/química , Abietanos/farmacologia , Abietanos/administração & dosagem , Abietanos/química , Difração de Raios X/métodos , Liberação Controlada de Fármacos , Administração Oral , Masculino , Tamanho da Partícula , Ratos Wistar , Química Farmacêutica/métodos
5.
Small ; 19(48): e2302702, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37537714

RESUMO

The use of bacteria and their biotic components as therapeutics has shown great potential in the treatment of diseases. Orally delivered bacteria improve patient compliance compared with injection-administered bacteria and are considered the preferred mode. However, due to the harsh gastrointestinal environment, the viability and therapeutic efficacy of orally delivered bacteria are significantly reduced in vivo. In recent years, with the rapid development of synthetic biology and nanotechnology, bacteria and biotic components have been engineered to achieve directed genetic reprogramming for construction and precise spatiotemporal control in the gastrointestinal tract, which can improve viability and therapeutic efficiency. Herein, a state-of-the-art review on the current progress of engineered bacterial systems for oral delivery is provided. The different types of bacterial and biotic components for oral administration are first summarized. The engineering strategies of these bacteria and biotic components and their treatment of diseases are next systematically summarized. Finally, the current challenges and prospects of these bacterial therapeutics are highlighted that will contribute to the development of next-generation orally delivered bacteriotherapy.


Assuntos
Bactérias , Sistemas de Liberação de Medicamentos , Humanos , Bactérias/genética , Biologia Sintética , Administração Oral
6.
Small ; 19(36): e2301149, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37165608

RESUMO

Sorafenib is an oral-administered first-line drug for hepatocellular carcinoma (HCC) treatment. However, the therapeutic efficacy of sorafenib is relatively low. Here, an oral delivery platform that increases sorafenib uptake by HCC and induces potent ferroptosis is designed. This platform is butyrate-modified nanoparticles separately encapsulated with sorafenib and salinomycin. The multifunctional ligand butyrate interacts with monocarboxylate transporter 1 (MCT-1) to facilitate transcytosis. Specifically, MCT-1 is differentially expressed on the apical and basolateral sides of the intestine, highly expressed on the surface of HCC cells but lowly expressed on normal hepatocytes. After oral administration, this platform is revealed to boost transepithelial transport effectively and continuously in the intestine, drug accumulation in the liver, and HCC cell uptake. Following drug release in cancer cells, sorafenib depletes glutathione peroxidase 4 and glutathione, consequently initiating ferroptosis. Meanwhile, salinomycin enhances intracellular iron and lipid peroxidation, thereby accelerating ferroptosis. In vivo experiments performed on the orthotopic HCC model demonstrate that this combination strategy induces pronounced ferroptosis damage and ignites a robust systemic immune response, leading to the effective elimination of tumors and establishment of systemic immune memory. This work provides a proof-of-concept demonstration that an oral delivery strategy for ferroptosis inducers may be beneficial for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Nanopartículas , Humanos , Carcinoma Hepatocelular/patologia , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Neoplasias Hepáticas/patologia , Butiratos/farmacologia , Butiratos/uso terapêutico , Linhagem Celular Tumoral , Absorção Intestinal
7.
Small ; : e2308146, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054771

RESUMO

Probiotics-based oral therapy has become a promising way to prevent and treat various diseases, while the application of probiotics is primarily restricted by loss of viability due to adverse conditions in the gastrointestinal (GI) tract during oral delivery. Layer-by-layer (LbL) single-cell encapsulation approaches are widely employed to improve the bioavailability of probiotics. However, they are generally time- and labor-intensive owing to multistep operation. Herein, a simple yet efficient LbL technique is developed to coat a model probiotic named Escherichia coli Nissle 1917 (EcN) through polyphenol-Ca2+ network directed allyl-modified gelatin (GelAGE) adsorption followed by cross-linking of GelAGE via photoinitiated thiol-ene click reaction to protect EcN from harsh microenvironments of GI tract. LbL single-cell encapsulation can be performed within 1 h through simple operation. It is revealed that coated EcN exhibits significantly improved viability against acidic gastric fluid and bile salts, and enhanced colonization in the intestinal tract without loss of proliferation capabilities. Furthermore, oral therapy of coated EcN remarkably relieves the pathological symptoms associated with colitis in mice including down-regulating inflammation, repairing epithelial barriers, scavenging reactive oxygen species (ROS), and restoring the homeostasis of gut microbiota. This simplified LbL coating strategy has great potential for various probiotics-mediated biomedical and nutraceutical applications.

8.
Insect Mol Biol ; 32(6): 738-747, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37646607

RESUMO

Cucurbits are important economic plants that are attacked by numerous pests, among which the melon fly Zeugodacus cucurbitae is extremely problematic. New sustainable pest control strategies are necessary to replace chemical insecticides that are harmful to the environment, human health and nontarget species. The RNA interference (RNAi) technology is one of the most promising tools due to high efficiency and species specificity. We developed an RNAi strategy targeting the ecdysone receptor (ECR) of Z. cucurbitae, which plays an important role in moulting and reproduction. We identified, described and isolated the ECR gene of Z. cucurbitae and measured its expression pattern across developmental stages and tissues. ZcECR knockdown via dsZcECR ingestion caused a significant larval mortality and abnormal phenotypes in pupae and adults. About 68% of larvae fed with a dsZcECR-treated diet failed to enter the pupal stage and died. In addition, ZcECR knockdown dramatically reduced pupal weight (by 3.24 mg on average) and fecundity (by about 23%). RNAi targeting the ECR gene is therefore a promising method to control Z. cucurbitae, paving the way for the development of novel sustainable and highly specific control strategies.


Assuntos
Cucurbitaceae , Receptores de Esteroides , Tephritidae , Humanos , Animais , Cucurbitaceae/metabolismo , Tephritidae/genética , Larva , Receptores de Esteroides/genética , Pupa/metabolismo
9.
Mol Pharm ; 20(9): 4546-4558, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37578286

RESUMO

Delamanid (DLM) is a hydrophobic small molecule therapeutic used to treat drug-resistant tuberculosis (DR-TB). Due to its hydrophobicity and resulting poor aqueous solubility, formulation strategies such as amorphous solid dispersions (ASDs) have been investigated to enhance its aqueous dissolution kinetics and thereby improve oral bioavailability. However, ASD formulations are susceptible to temperature- and humidity-induced phase separation and recrystallization under harsh storage conditions typically encountered in areas with high tuberculosis incidence. Nanoencapsulation represents an alternative formulation strategy to increase aqueous dissolution kinetics while remaining stable at elevated temperature and humidity. The stabilizer layer coating the nanoparticle drug core limits the formation of large drug domains by diffusion during storage, representing an advantage over ASDs. Initial attempts to form DLM-loaded nanoparticles via precipitation-driven self-assembly were unsuccessful, as the trifluoromethyl and nitro functional groups present on DLM were thought to interfere with surface stabilizer attachment. Therefore, in this work, we investigated the nanoencapsulation of DLM via emulsification, avoiding the formation of a solid drug core and instead keeping DLM dissolved in a dichloromethane dispersed phase during nanoparticle formation. Initial emulsion formulation screening by probe-tip ultrasonication revealed that a 1:1 mass ratio of lecithin and HPMC stabilizers formed 250 nm size-stable emulsion droplets with 40% DLM loading. Scale-up studies were performed to produce nearly identical droplet size distribution at larger scale using high-pressure homogenization, a continuous and industrially scalable technique. The resulting emulsions were spray-dried to form a dried powder, and in vitro dissolution studies showed dramatically enhanced dissolution kinetics compared to both as-received crystalline DLM and micronized crystalline DLM, owing to the increased specific surface area and partially amorphous character of the DLM-loaded nanoparticles. Solid-state NMR and dissolution studies showed good physical stability of the emulsion powders during accelerated stability testing (50 °C/75% RH, open vial).


Assuntos
Nanopartículas , Tuberculose Bucal , Humanos , Emulsões , Nanopartículas/química , Solubilidade , Excipientes/química , Água/química , Tamanho da Partícula
10.
Crit Rev Food Sci Nutr ; : 1-21, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37548408

RESUMO

Extracellular vesicles (EVs) are naturally occurring non-replicating particles released from cells, known for their health-promoting effects and potential as carriers for drug delivery. Extensive research has been conducted on delivery systems based on culture-cell-derived EVs. Nevertheless, they have several limitations including low production yield, high expenses, unsuitability for oral administration, and safety concerns in applications. Conversely, food-derived EVs (FDEVs) offer unique advantages that cannot be easily substituted. This review provides a comprehensive analysis of the biogenesis pathways, composition, and health benefits of FDEVs, as well as the techniques required for constructing oral delivery systems. Furthermore, it explores the advantages and challenges associated with FDEVs as oral nanocarriers, and discusses the current research advancements in delivering active phytoconstituents. FDEVs, functioning as a nanocarrier platform for the oral delivery of active molecules, present numerous benefits such as convenient administration, high biocompatibility, low toxicity, and inherent targeting. Nevertheless, numerous unresolved issues persist in the isolation, characterization, drug loading, and application of FDEVs. Technical innovation and standardization of quality control are the key points to promote the development of FDEVs. The review aimed to provide frontier ideas and basic quality control guidelines for developing new functional food based on FDEVs oral drug delivery system.


Extracellular vesicles (EVs) are excellent nano-carriers for active molecules.Food-derived EVs (FDEVs) are better sources of EVs in delivery applications.Active phytoconstituents could be protected by loading them into FDEVs.The development of FDEVs-based delivery system is promising in new functional food.

11.
Crit Rev Food Sci Nutr ; : 1-25, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37599624

RESUMO

Nanoencapsulation has found numerous applications in the food and nutraceutical industries. Micro and nanoencapsulated forms of bioactives have proven benefits in terms of stability, release, and performance in the body. However, the encapsulated ingredient is often subjected to a wide range of processing conditions and this is followed by storage, consumption, and transit along the gastrointestinal tract. A strong understanding of the fate of nanoencapsulates in the biological system is mandatory as it provides valuable insights for ingredient selection, formulation, and application. In addition to their efficacy, there is also the need to assess the safety of ingested nanoencapsulates. Given the rising research and commercial focus of this subject, this review provides a strong focus on their interaction factors and mechanisms, highlighting their prospective biological fate. This review also covers various approaches to studying the fate of nanoencapsulates in the body. Also, with emphasis on the overall scope, the need for a new advanced integrated common methodology to evaluate the fate of nanoencapsulates post-administration is discussed.

12.
Pharm Res ; 40(1): 107-122, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36271204

RESUMO

Nucleic acid (NA) therapy has gained importance over the past decade due to its high degree of selectivity and minimal toxic effects over conventional drugs. Currently, intravenous (IV) or intramuscular (IM) formulations constitute majority of the marketed formulations containing nucleic acids. However, oral administration is traditionally preferred due to ease of administration as well as higher patient compliance. To leverage the benefits of oral delivery for NA therapy, the NA of interest must be delivered to the target site avoiding all degrading and inhibiting factors during its transition through the gastrointestinal tract. The oral route presents myriad of challenges to NA delivery, making formulation development challenging. Researchers in the last few decades have formulated various delivery systems to overcome such challenges and several reviews summarize and discuss these strategies in detail. However, there is a need to differentiate between the approaches based on target so that in future, delivery strategies can be developed according to the goal of the study and for efficient delivery to the desired site. The goal of this review is to summarize the mechanisms for target specific delivery, list and discuss the formulation strategies used for oral delivery of NA therapies and delineate the similarities and differences between local and systemic targeting oral delivery systems and current challenges.


Assuntos
Sistemas de Liberação de Medicamentos , Ácidos Nucleicos , Humanos , Administração Oral , Trato Gastrointestinal
13.
BMC Vet Res ; 19(1): 81, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391757

RESUMO

The objective of this study was to synthesize and characterize pharmaceutical characteristics of florfenicol sustained-release granules (FSRGs) in vitro and in vivo. FSRGs were synthesized using monostearate, polyethylene glycol 4000 and starch. In vitro dissolution profiles were studied using the rotating basket method in pH 1.2 HCl solution and pH 4.3 acetate buffer. Twenty-four male healthy Landrace×Yorkshire pigs were equally divided into three groups and administered a 20 mg/kg i.v bolus of florfenicol solution and dosed orally with FSRGs in the fasting and fed states. The Higuchi model was the best fit for the drug release profile in pH 1.2 and pH 4.3 media, and the mechanism of drug dissolution was governed by both diffusion and dissolution. We established a level A in vitro - in vivo correlation for FSRGs and the in vivo profile of the FSRGs can be estimated by the in vitro drug release.


Assuntos
Projetos de Pesquisa , Tianfenicol , Masculino , Animais , Suínos , Correlação de Dados , Preparações de Ação Retardada
14.
J Nanobiotechnology ; 21(1): 263, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37559085

RESUMO

Oral administration is preferred over other drug delivery methods due to its safety, high patient compliance, ease of ingestion without discomfort, and tolerance of a wide range of medications. However, oral drug delivery is limited by the poor oral bioavailability of many drugs, caused by extreme conditions and absorption challenges in the gastrointestinal tract. This review thoroughly discusses the targeted drug vehicles to the intestinal lymphatic system (ILS). It explores the structure and physiological barriers of the ILS, highlighting its significance in dietary lipid and medication absorption and transport. The review presents various approaches to targeting the ILS using spatially precise vehicles, aiming to enhance bioavailability, achieve targeted delivery, and reduce first-pass metabolism with serve in clinic. Furthermore, the review outlines several methods for leveraging these vehicles to open the ILS window, paving the way for potential clinical applications in cancer treatment and oral vaccine delivery. By focusing on targeted drug vehicles to the ILS, this article emphasizes the critical role of these strategies in improving therapeutic efficacy and patient outcomes. Overall, this article emphasizes the critical role of targeted drug vehicles to the ILS and the potential impact of these strategies on improving therapeutic efficacy and patient outcomes.


Assuntos
Trato Gastrointestinal , Sistema Linfático , Humanos , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos , Disponibilidade Biológica , Administração Oral
15.
Mar Drugs ; 21(10)2023 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-37888481

RESUMO

The purpose of the study was to investigate the stability and oral delivery of DHA-encapsulated Pickering emulsions stabilized by soy protein isolate-chitosan (SPI-CS) nanoparticles (SPI-CS Pickering emulsions) under various conditions and in the simulated gastrointestinal (GIT) model. The stability of DHA was characterized by the retention rate under storage, ionic strength, and thermal conditions. The oral delivery efficiency was characterized by the retention and release rate of DHA in the GIT model and cell viability and uptake in the Caco-2 model. The results showed that the content of DHA was above 90% in various conditions. The retention rate of DHA in Pickering emulsions containing various nanoparticle concentrations (1.5 and 3.5%) decreased to 80%, while passing through the mouth to the stomach, and DHA was released 26% in 1.5% Pickering emulsions, which was faster than that of 3.5% in the small intestine. After digestion, DHA Pickering emulsions proved to be nontoxic and effectively absorbed by cells. These findings helped to develop a novel delivery system for DHA.


Assuntos
Quitosana , Nanopartículas , Humanos , Proteínas de Soja , Emulsões , Células CACO-2 , Digestão , Tamanho da Partícula
16.
J Insect Sci ; 23(4)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37527468

RESUMO

The Mormon cricket, Anabrus simplex, is a flightless katydid, one of the major devastating rangeland pests in several states of the western United States. During the past few years, their sudden and periodic outbreaks into massive migratory bands caused significant economic losses to the rangeland forage and agricultural crops, particularly grain crops. Current population management methods rely heavily on broad-spectrum chemical insecticides, which could be toxic to nontargets, and even the targeted species might develop resistance in the long run. Therefore, we assessed the potential of RNA interference (RNAi)-based alternative management strategies that could supplement the current methods. In insects, RNAi efficiency varies with the method of double-stranded RNA (dsRNA) delivery. We tested 2 different methods of dsRNA delivery: injection and oral feeding of dsRNA. The results showed that Mormon crickets are sensitive to injection of dsRNA in a dose-dependent manner, but refractory to the oral feeding of dsRNA. Further, we confirmed the high nuclease activity in the insect midgut. In order to protect the dsRNA from the dsRNase activity and facilitate its uptake in the midgut, we encapsulated dsRNA inside poly lactic-co-glycolic acid (PLGA) nanoparticles and studied its release kinetics and RNAi efficiency by oral feeding. The release kinetics clearly suggested that the PLGA nanoparticle permeates from the insect digestive system to the hemolymph; however, it failed to induce an efficient RNAi response of the targeted genes. In conclusion, our findings suggest the different responses to dsRNA delivery methods in Mormon crickets, and further investigations involving dsRNA stability and its uptake mechanism are required to use RNAi as an alternative Mormon cricket population management strategy.


Assuntos
Gryllidae , Animais , Gryllidae/genética , RNA de Cadeia Dupla , Insetos/genética , Interferência de RNA
17.
Drug Dev Ind Pharm ; 49(5): 377-391, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37216496

RESUMO

OBJECTIVE: The present study aimed to identify a safe and effective non-oncology drug cocktail as an alternative to toxic chemotherapeutics for hepatocellular carcinoma (HCC) treatment. The assessment of cytotoxicity of cocktail (as co-adjuvant) in combination with chemotherapeutic docetaxel (DTX) is also aimed. Further, we aimed to develop an oral solid self-emulsifying drug delivery system (S-SEDDS) for the simultaneous delivery of identified drugs. SIGNIFICANCE: The identified non-oncology drug cocktail could overcome the shortage of anticancer therapeutics and help to reduce cancer-related mortality. Moreover, the developed S-SEDDS could be an ideal system for concurrent oral delivery of non-oncology drug combinations. METHODS: The non-oncology drugs (alone and in combinations) were screened in vitro for anticancer effect (against HepG2 cells) using (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide; MTT) dye assay, and cell cycle arresting and apoptotic behaviors using the fluorescence-activated cell sorting (FACS) technique. The S-SEDDS is composed of drugs such as ketoconazole (KCZ), disulfiram (DSR), tadalafil (TLF), and excipients like span-80, tween-80, soybean oil, Leciva S-95, Poloxamer F108 (PF-108), and Neusilin® US2 (adsorbent carrier), which was developed and characterized. RESULTS: The cocktail composed of KCZ, DSR, and TLF has showed substantial cytotoxicity (at the lowest concentration of 3.3 pmol), HepG2 cell arrest at G0/G1 and S phases, and substantial cell death via apoptosis. The DTX inclusion into this cocktail has further resulted in increased cytotoxicity, cell arrest at the G2/M phase, and cell necrosis. The optimized blank liquid SEDDS that remains transparent without phase separation for more than 6 months is used for the preparation of drug-loaded liquid SEDDS (DL-SEDDS). The optimized DL-SEDDS with low viscosity, good dispersibility, considerable drug retention upon dilution, and smaller particle size is further converted into drug-loaded solid SEDDS (DS-SEDDS). The final DS-SEDDS demonstrated acceptable flowability and compression characteristics, significant drug retention (more than 93%), particle size in nano range (less than 500 nm), and nearly spherical morphology following dilutions. The DS-SEDDS showed substantially increased cytotoxicity and Caco-2 cell permeability than plain drugs. Furthermore, DS-SEDDS containing only non-oncology drugs caused lower in vivo toxicity (only 6% body weight loss) than DS-SEDDS containing non-oncology drugs with DTX (about 10% weight loss). CONCLUSION: The current study revealed a non-oncology drug combination effective against HCC. Further, it is concluded that the developed S-SEDDS containing non-oncology drug combination alone and in combination with DTX could be a promising alternative to toxic chemotherapeutics for the effective oral treatment of hepatic cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Emulsões , Células CACO-2 , Reposicionamento de Medicamentos , Neoplasias Hepáticas/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Excipientes , Docetaxel/farmacologia , Administração Oral , Solubilidade
18.
Int J Mol Sci ; 24(18)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37762192

RESUMO

Zr-based metal-organic framework materials (Zr-MOFs) with increased specific surface area and pore volume were obtained using chemical (two materials, Zr-MOF1 and Zr-MOF3) and solvothermal (Zr-MOF2) synthesis methods and investigated via FT-IR spectroscopy, TGA, SANS, PXRD, and SEM methods. The difference between Zr-MOF1 and Zr-MOF3 lies in the addition of reactants during synthesis. Nitrogen porosimetry data indicated the presence of pores with average dimensions of ~4 nm; using SANS, the average size of the Zr-MOF nanocrystals was suggested to be approximately 30 nm. The patterns obtained through PXRD were characterized by similar features that point to well-crystallized phases specific for the UIO-66 type materials; SEM also revealed that the materials were composed of small and agglomerate crystals. Thermogravimetric analysis revealed that both materials had approximately two linker deficiencies per Zr6 formula unit. Captopril and ibuprofen loading and release experiments in different buffered solutions were performed using the obtained Zr-based metal-organic frameworks as drug carriers envisaged for controlled drug release. The carriers demonstrated enhanced drug-loading capacity and showed relatively good results in drug delivery. The cumulative percentage of drug release in phosphate-buffered solution at pH 7.4 was higher than that in buffered solution at pH 1.2. The release rate could be controlled by changing the pH of the releasing solution. Different captopril release behaviors were observed when the experiments were performed using a permeable dialysis membrane.

19.
Int J Mol Sci ; 24(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36614233

RESUMO

Curcumin (Cur) is a hydrophobic polyphenol from the rhizome of Curcuma spp., while hydroxytyrosol (HT) is a water-soluble polyphenol from Olea europaea. Both show outstanding antioxidant properties but suffer from scarce bioavailability and low stability in biological fluids. In this work, the co-encapsulation of Cur and HT into liposomes was realized, and the liposomal formulation was improved using polymers to increase their survival in the gastrointestinal tract. Liposomes with different compositions were formulated: Type 1, composed of phospholipids and cholesterol; Type 2, also with a PEG coating; and Type 3 providing an additional shell of Eudragit® S100, a gastro-resistant polymer. Samples were characterized in terms of size, morphology, ζ-potential, encapsulation efficiency, and loading capacity. All samples were subjected to a simulated in vitro digestion and their stability was investigated. The Eudragit®S100 coating demonstrated prevention of early releases of HT in the mouth and gastric phases, while the PEG shell reduced bile salts and pancreatin effects during the intestinal digestion. In vitro antioxidant activity showed a cumulative effect for Cur and HT loaded in vesicles. Finally, liposomes with HT concentrations up to 40 µM and Cur up to 4.7 µM, alone or in combination, did not show cytotoxicity against Caco-2 cells.


Assuntos
Curcumina , Lipossomos , Humanos , Lipossomos/química , Curcumina/química , Polímeros/química , Células CACO-2 , Antioxidantes/farmacologia , Tamanho da Partícula
20.
Molecules ; 28(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37049704

RESUMO

Selenium methionine (SeMet) is an essential micronutrient required for normal body function and is associated with additional health benefits. However, oral administration of SeMet can be challenging due to its purported narrow therapeutic index, low oral bioavailability, and high susceptibility to oxidation. To address these issues, SeMet was entrapped in zein-coated nanoparticles made from chitosan using an ionic gelation formulation. The high stability of both the SeMet and selenomethionine nanoparticles (SeMet-NPs) was established using cultured human intestinal and liver epithelial cells, rat liver homogenates, and rat intestinal homogenates and lumen washes. Minimal cytotoxicity to Caco-2 and HepG2 cells was observed for SeMet and SeMet-NPs. Antioxidant properties of SeMet were revealed using a Reactive Oxygen Species (ROS) assay, based on the observation of a concentration-dependent reduction in the build-up of peroxides, hydroxides and hydroxyl radicals in Caco-2 cells exposed to SeMet (6.25-100 µM). The basal apparent permeability coefficient (Papp) of SeMet across isolated rat jejunal mucosae mounted in Ussing chambers was low, but the Papp was increased when presented in NP. SeMet had minimal effects on the electrogenic ion secretion of rat jejunal and colonic mucosae in Ussing chambers. Intra-jejunal injections of SeMet-NPs to rats yielded increased plasma levels of SeMet after 3 h for the SeMet-NPs compared to free SeMet. Overall, there is potential to further develop SeMet-NPs for oral supplementation due to the increased intestinal permeability, versus free SeMet, and the low potential for toxicity.


Assuntos
Nanopartículas , Selênio , Ratos , Humanos , Animais , Selenometionina/farmacologia , Células CACO-2 , Antioxidantes/farmacologia , Suplementos Nutricionais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA