Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 226: 112849, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34627044

RESUMO

Several studies have indicated metabolic function disruption effects of bisphenol analogues through peroxisome proliferator-activated receptor (PPAR) alpha and gamma pathways. In the present study, we found for the first time that PPARß/δ might be a novel cellular target of bisphenol analogues. By using the fluorescence competitive binding assay, we found seven bisphenol analogues could bind to PPARß/δ directly, among which tetrabromobisphenol A (TBBPA, 18.38-fold) and tetrachlorobisphenol A (TCBPA, 12.06-fold) exhibited stronger binding affinity than bisphenol A (BPA). In PPARß/δ-mediated luciferase reporter gene assay, the seven bisphenol analogues showed transcriptional activity toward PPARß/δ. Bisphenol AF (BPAF), bisphenol F (BPF) and bisphenol B (BPB) even showed higher transcriptional activity than BPA, while TBBPA and TCBPA showed comparable activity with BPA. Moreover, in human liver HL-7702 cells, the bisphenol analogues promoted the expression of two PPARß/δ target genes PDK4 and ANGPTL4. Molecular docking simulation indicated the binding potency of bisphenol analogues to PPARß/δ might depend on halogenation and hydrophobicity and the transcriptional activity might depend on their binding affinity and hydrogen bond interactions. Overall, the PPARß/δ pathway may provide a new mechanism for the metabolic function disruption of bisphenol analogues, and TBBPA and TCBPA might exert higher metabolic disruption effects than BPA via PPARß/δ pathway.


Assuntos
PPAR delta , Compostos Benzidrílicos , Halogenação , Humanos , Simulação de Acoplamento Molecular , PPAR alfa , PPAR delta/genética , PPAR delta/metabolismo , Fenóis
2.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924880

RESUMO

The altered function of adipose tissue can result in obesity, insulin resistance, and its metabolic complications. Leptin, acting on the central nervous system, modifies the composition and function of adipose tissue. To date, the molecular changes that occur in epididymal white adipose tissue (eWAT) during chronic leptin treatment are not fully understood. Herein we aimed to address whether PPARß/δ could mediate the metabolic actions induced by leptin in eWAT. To this end, male 3-month-old Wistar rats, infused intracerebroventricularly (icv) with leptin (0.2 µg/day) for 7 days, were daily co-treated intraperitoneally (ip) without or with the specific PPARß/δ receptor antagonist GSK0660 (1 mg/kg/day). In parallel, we also administered GSK0660 to control rats fed ad libitum without leptin infusion. Leptin, acting at central level, prevented the starvation-induced increase in circulating levels of FGF21, while induced markedly the endogenous expression of FGF21 and browning markers of eWAT. Interestingly, GSK0660 abolished the anorectic effects induced by icv leptin leading to increased visceral fat mass and reduced browning capacity. In addition, the pharmacological inhibition of PPARß/δ alters the immunomodulatory actions of central leptin on eWAT. In summary, our results demonstrate that PPARß/δ is involved in the up-regulation of FGF21 expression induced by leptin in visceral adipose tissue.


Assuntos
Tecido Adiposo Branco/fisiologia , Fatores de Crescimento de Fibroblastos/metabolismo , Leptina/fisiologia , PPAR gama/metabolismo , PPAR beta/metabolismo , Animais , Hipotálamo/metabolismo , Infusões Intraventriculares , Proteínas Klotho , Masculino , Proteínas de Membrana/metabolismo , PPAR gama/antagonistas & inibidores , PPAR beta/antagonistas & inibidores , Ratos Wistar , Sulfonas , Tiofenos
3.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203800

RESUMO

Accumulating evidence support the cardioprotective properties of the nuclear receptor peroxisome proliferator activated receptor ß/δ (PPARß/δ); however, the underlying mechanisms are not yet fully elucidated. The aim of the study was to further investigate the mechanisms underlying PPARß/δ-mediated cardioprotection in the setting of myocardial ischemia/reperfusion (I/R). For this purpose, rats were treated with PPARß/δ agonist GW0742 and/or antagonist GSK0660 in vivo and hearts were subjected to ex vivo global ischemia followed by reperfusion. PPARß/δ activation improved left ventricular developed pressure recovery, reduced infarct size (IS) and incidence of reperfusion-induced ventricular arrhythmias while it also up-regulated superoxide dismutase 2, catalase and uncoupling protein 3 resulting in attenuation of oxidative stress as evidenced by the reduction in 4-hydroxy-2-nonenal protein adducts and protein carbonyl formation. PPARß/δ activation also increased both mRNA expression and enzymatic activity of aldehyde dehydrogenase 2 (ALDH2); inhibition of ALDH2 abrogated the IS limiting effect of PPARß/δ activation. Furthermore, upregulation of PGC-1α and isocitrate dehydrogenase 2 mRNA expression, increased citrate synthase activity as well as mitochondrial ATP content indicated improvement in mitochondrial content and energy production. These data provide new mechanistic insight into the cardioprotective properties of PPARß/δ in I/R pointing to ALDH2 as a direct downstream target and suggesting that PPARß/δ activation alleviates myocardial I/R injury through coordinated stimulation of the antioxidant defense of the heart and preservation of mitochondrial function.


Assuntos
Aldeído-Desidrogenase Mitocondrial/metabolismo , Cardiotônicos/uso terapêutico , Metabolismo Energético , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Estresse Oxidativo , PPAR delta/metabolismo , PPAR beta/metabolismo , Proteína 4 Semelhante a Angiopoietina/metabolismo , Animais , Antioxidantes/metabolismo , Caderinas/metabolismo , Cardiotônicos/administração & dosagem , Cardiotônicos/farmacologia , Catalase/metabolismo , Metabolismo Energético/efeitos dos fármacos , Masculino , Mitocôndrias Cardíacas/efeitos dos fármacos , Modelos Biológicos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Estresse Oxidativo/efeitos dos fármacos , PPAR delta/agonistas , PPAR beta/agonistas , Ratos Wistar , Superóxido Dismutase/metabolismo , Tiazóis/administração & dosagem , Tiazóis/farmacologia , Tiazóis/uso terapêutico , Proteína Desacopladora 3/metabolismo , Regulação para Cima/efeitos dos fármacos
4.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34445261

RESUMO

The current treatment options for type 2 diabetes mellitus do not adequately control the disease in many patients. Consequently, there is a need for new drugs to prevent and treat type 2 diabetes mellitus. Among the new potential pharmacological strategies, activators of peroxisome proliferator-activated receptor (PPAR)ß/δ show promise. Remarkably, most of the antidiabetic effects of PPARß/δ agonists involve AMP-activated protein kinase (AMPK) activation. This review summarizes the recent mechanistic insights into the antidiabetic effects of the PPARß/δ-AMPK pathway, including the upregulation of glucose uptake, muscle remodeling, enhanced fatty acid oxidation, and autophagy, as well as the inhibition of endoplasmic reticulum stress and inflammation. A better understanding of the mechanisms underlying the effects resulting from the PPARß/δ-AMPK pathway may provide the basis for the development of new therapies in the prevention and treatment of insulin resistance and type 2 diabetes mellitus.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/prevenção & controle , Resistência à Insulina , PPAR delta/metabolismo , PPAR beta/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Diabetes Mellitus Tipo 2/genética , Humanos , PPAR delta/genética , PPAR beta/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
5.
Int J Mol Sci ; 22(6)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808880

RESUMO

Peroxisome proliferator activated receptor beta/delta (PPARß/δ) is a nuclear receptor ubiquitously expressed in cells, whose signaling controls inflammation. There are large discrepancies in understanding the complex role of PPARß/δ in disease, having both anti- and pro-effects on inflammation. After ligand activation, PPARß/δ regulates genes by two different mechanisms; induction and transrepression, the effects of which are difficult to differentiate directly. We studied the PPARß/δ-regulation of lipopolysaccharide (LPS) induced inflammation (indicated by release of nitrite and IL-6) of rat pulmonary artery, using different combinations of agonists (GW0742 or L-165402) and antagonists (GSK3787 or GSK0660). LPS induced release of NO and IL-6 is not significantly reduced by incubation with PPARß/δ ligands (either agonist or antagonist), however, co-incubation with an agonist and antagonist significantly reduces LPS-induced nitrite production and Nos2 mRNA expression. In contrast, incubation with LPS and PPARß/δ agonists leads to a significant increase in Pdk-4 and Angptl-4 mRNA expression, which is significantly decreased in the presence of PPARß/δ antagonists. Docking using computational chemistry methods indicates that PPARß/δ agonists form polar bonds with His287, His413 and Tyr437, while antagonists are more promiscuous about which amino acids they bind to, although they are very prone to bind Thr252 and Asn307. Dual binding in the PPARß/δ binding pocket indicates the ligands retain similar binding energies, which suggests that co-incubation with both agonist and antagonist does not prevent the specific binding of each other to the large PPARß/δ binding pocket. To our knowledge, this is the first time that the possibility of binding two ligands simultaneously into the PPARß/δ binding pocket has been explored. Agonist binding followed by antagonist simultaneously switches the PPARß/δ mode of action from induction to transrepression, which is linked with an increase in Nos2 mRNA expression and nitrite production.


Assuntos
PPAR delta/química , PPAR beta/química , Animais , Benzamidas/química , Benzamidas/farmacologia , Sítios de Ligação , Biomarcadores , Expressão Gênica , Mediadores da Inflamação/metabolismo , Ligantes , Lipopolissacarídeos/efeitos adversos , Lipopolissacarídeos/imunologia , Masculino , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Óxido Nítrico/metabolismo , PPAR delta/agonistas , PPAR delta/antagonistas & inibidores , PPAR delta/genética , PPAR beta/agonistas , PPAR beta/antagonistas & inibidores , PPAR beta/genética , Ligação Proteica , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Ratos , Relação Estrutura-Atividade , Sulfonas/química , Sulfonas/farmacologia , Tiazóis/química , Tiazóis/farmacologia
6.
Acta Vet Hung ; 68(4): 374-379, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33459615

RESUMO

The Wilms' tumour gene (WT1) has previously been described as an oncogene in several neoplasms of humans, including melanoma, and its expression increases cancer cell proliferation. Recent reports associate the expression of the PPARß/δ gene (peroxisome proliferator-activated receptor beta/delta) with the downregulation of WT1 in human melanoma and murine melanoma cell lines. The aim of this work was to analyse the expression of WT1 and its association with PPARß/δ in samples of healthy and melanoma-affected skin of horses by immunohistochemistry. WT1 protein expression was detected in healthy skin, mainly in the epidermis, hair follicle, sebaceous gland and sweat gland, while no expression was observed in equine melanoma tissues. Moreover, it was observed that PPARß/δ has a basal expression in healthy skin and that it is overexpressed in melanoma. These results were confirmed by a densitometric analysis, where a significant increase of the WT1-positive area was observed in healthy skin (128.66 ± 19.84 pixels 106) compared with that observed in melanoma (1.94 ± 0.04 pixels 106). On the other hand, a positive area with an expression of PPARß/δ in healthy skin (214.94 ± 11.85 pixels 106) was significantly decreased compared to melanoma (624.86 ± 181.93 pixels 106). These data suggest that there could be a regulation between WT1 and PPARß/δ in this disease in horses.


Assuntos
Doenças dos Cavalos , Melanoma , PPAR delta , PPAR beta , Doenças dos Roedores , Animais , Genes do Tumor de Wilms , Cavalos , Melanoma/genética , Melanoma/veterinária , Camundongos , PPAR delta/genética , PPAR beta/genética , Pele
7.
Mol Cell Biochem ; 471(1-2): 113-127, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32519230

RESUMO

N-cadherin is a transmembrane glycoprotein expressed by mesenchymal origin cells and is located at the adherens junctions. It regulates also cell motility and contributes to cell signaling. In previous studies, we identified that its anomalous expression in bladder carcinoma was a tumor progression marker. A pharmacological approach to inhibit N-cadherin expression or to block its function could be relevant to prevent disease progression and metastasis development. The morphological exploration of T24 invasive bladder cancer cells by atomic force microscopy (AFM) revealed a spindle-like shape with fibrous structures. By engaging force spectroscopy with AFM tip functionalized with anti-E or anti-N-cadherin antibodies, results showed that T24 cells expressed only N-cadherin as also demonstrated by Western blotting and confocal microscopy. For the first time, we demonstrated by RTqPCR and Western blotting analyses that the peroxisome proliferator-activated receptor ß/δ (PPARß/δ) agonist GW501516 significantly decreased N-cadherin expression in T24 cells. Moreover, high non-cytotoxic doses of GW501516 inhibited confluent T24 cell wound healing closure. By using AFM, a more sensitive nanoanalytical method, we showed that the treatment modified the cellular morphology and diminished N-cadherin cell surface coverage through the decreasing of these adhesion molecule-mediated interaction forces. We observed a greater decrease of N-cadherin upon GW501516 exposure with AFM than that detected with molecular biology techniques. AFM was a complementary tool to biochemical techniques to perform measurements on living cells at the nanometer resolution level. Taken together, our data suggest that GW501516 could be an interesting therapeutic strategy to avoid bladder cancer cell spreading through N-cadherin decrease.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Transição Epitelial-Mesenquimal , Microscopia de Força Atômica/métodos , PPAR delta/agonistas , PPAR beta/agonistas , Tiazóis/farmacologia , Neoplasias da Bexiga Urinária/metabolismo , Antígenos CD/ultraestrutura , Caderinas/ultraestrutura , Linhagem Celular Tumoral , Movimento Celular , Humanos , Transdução de Sinais , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/ultraestrutura
8.
Clin Exp Pharmacol Physiol ; 47(5): 798-808, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31909493

RESUMO

The present investigation aimed to characterize the effect of a short-time treatment with a new thiazolidinedione (TZD) derivative, GQ-130, on metabolic alterations in rats fed a high-fat diet (HFD). We investigated whether metabolic alterations induced by GQ-130 were mediated though a mechanism that involves PPARß/δ transactivation. Potential binding and transactivation of PPARα, PPARß/δ or PPARγ by GQ-130 were examined through cell transactivation, 8-anilino-1-naphthalenesulfonic acid (ANS) fluorescence quenching assays and thermal shift assay. For in vivo experiments, male 8-week-old Wistar rats were divided into three groups fed for 6 weeks with: (a) a standard rat chow (14% fat) (control group), (b) a HFD (57.8% fat) alone (HFD group), or (c) a HFD associated with an oral treatment with GQ-130 (10 mg/kg/d) during the last week (HFD-GQ group). In 293T cells, unlike rosiglitazone, GQ-130 did not cause significant transactivation of PPARγ but was able to activate PPARß/δ by 153.9 folds in comparison with control values (DMSO). Surprisingly, ANS fluorescence quenching assay reveals that GQ-130 does not bind directly to PPARß/δ binding site, a finding that was further corroborated by thermal shift assay which evaluates the thermal stability of PPARß/δ in the presence of GQ-130. Compared to the control group, rats of the HFD group showed obesity, increased systolic blood pressure (SBP), insulin resistance, impaired glucose intolerance, hyperglycaemia, and dyslipidaemia. GQ-130 treatment abolished the increased SBP and improved all metabolic dysfunctions observed in the HFD group. Oral treatment with GQ-130 was effective in improving HFD-induced metabolic alterations probably through a mechanism that involves PPARß/δ activation.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Síndrome Metabólica/tratamento farmacológico , Obesidade/tratamento farmacológico , PPAR delta/agonistas , PPAR beta/agonistas , Tiazolidinedionas/farmacologia , Animais , Biomarcadores/sangue , Pressão Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Células HEK293 , Humanos , Resistência à Insulina , Masculino , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Síndrome Metabólica/fisiopatologia , Obesidade/complicações , Obesidade/metabolismo , Obesidade/fisiopatologia , PPAR delta/genética , PPAR delta/metabolismo , PPAR beta/genética , PPAR beta/metabolismo , Ratos Wistar , Transdução de Sinais , Fatores de Tempo
9.
Int J Mol Sci ; 21(12)2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32575793

RESUMO

Peroxisome proliferator-activated receptor (PPAR)ß/δ is a member of the nuclear receptor superfamily of transcription factors, which plays fundamental roles in cell proliferation and differentiation, inflammation, adipogenesis, and energy homeostasis. Previous studies demonstrated a reduced choroidal neovascularization (CNV) in Pparß/δ-deficient mice. However, PPARß/δ's role in physiological blood vessel formation and vessel remodeling in the retina has yet to be established. Our study showed that PPARß/δ is specifically required for disordered blood vessel formation in the retina. We further demonstrated an increased arteriovenous crossover and wider venous caliber in Pparß/δ-haplodeficient mice. In summary, these results indicated a critical role of PPARß/δ in pathological angiogenesis and blood vessel remodeling in the retina.


Assuntos
Neovascularização de Coroide/genética , Receptores Citoplasmáticos e Nucleares/deficiência , Remodelação Vascular/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Haploinsuficiência , Humanos , Lasers/efeitos adversos , Camundongos , Vasos Retinianos/citologia , Vasos Retinianos/metabolismo
10.
Int J Mol Sci ; 21(15)2020 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-32722564

RESUMO

The effects of peroxisome proliferator-activated receptor (PPAR)ß/δ ophthalmic solution were investigated in a rat corneal alkali burn model. After alkali injury, GW501516 (PPARß/δ agonist) or vehicle ophthalmic solution was topically instilled onto the rat's cornea twice a day until day 7. Pathological findings were evaluated, and real-time reverse transcription polymerase chain reaction was performed. GW501516 strongly suppressed infiltration of neutrophils and pan-macrophages, and reduced the mRNA expression of interleukin-6, interleukin-1ß, tumor necrosis factor alpha, and nuclear factor-kappa B. On the other hand, GW501516 promoted infiltration of M2 macrophages, infiltration of vascular endothelial cells associated with neovascularization in the wounded area, and expression of vascular endothelial growth factor A mRNA. However, 7-day administration of GW501516 did not promote neovascularization in uninjured normal corneas. Thus, the PPARß/δ ligand suppressed inflammation and promoted neovascularization in the corneal wound healing process. These results will help to elucidate the role of PPARß/δ in the field of ophthalmology.


Assuntos
Lesões da Córnea/patologia , Neovascularização Fisiológica/efeitos dos fármacos , PPAR delta/agonistas , PPAR beta/agonistas , Tiazóis/farmacologia , Animais , Lesões da Córnea/tratamento farmacológico , Lesões da Córnea/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1beta/biossíntese , Interleucina-6/biossíntese , Masculino , Ratos , Ratos Wistar , Fator A de Crescimento do Endotélio Vascular/biossíntese
11.
Glia ; 67(1): 146-159, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30453390

RESUMO

Astrocytes are the gatekeepers of neuronal energy supply. In neurodegenerative diseases, bioenergetics demand increases and becomes reliant upon fatty acid oxidation as a source of energy. Defective fatty acid oxidation and mitochondrial dysfunctions correlate with hippocampal neurodegeneration and memory deficits in Alzheimer's disease (AD), but it is unclear whether energy metabolism can be targeted to prevent or treat the disease. Here we show for the first time an impairment in fatty acid oxidation in human astrocytes derived from induced pluripotent stem cells of AD patients. The impairment was corrected by treatment with a synthetic peroxisome proliferator activated receptor delta (PPARß/δ) agonist GW0742 which acts to regulate an array of genes governing cellular metabolism. GW0742 enhanced the expression of CPT1a, the gene encoding for a rate-limiting enzyme of fatty acid oxidation. Similarly, treatment of a mouse model of AD, the APP/PS1-mice, with GW0742 increased the expression of Cpt1a and concomitantly reversed memory deficits in a fear conditioning test. Although the GW0742-treated mice did not show altered astrocytic glial fibrillary acidic protein-immunoreactivity or reduction in amyloid beta (Aß) load, GW0742 treatment increased hippocampal neurogenesis and enhanced neuronal differentiation of neuronal progenitor cells. Furthermore, GW0742 prevented Aß-induced impairment of long-term potentiation in hippocampal slices. Collectively, these data suggest that PPARß/δ-agonism alleviates AD related deficits through increasing fatty acid oxidation in astrocytes and improves cognition in a transgenic mouse model of AD.


Assuntos
Astrócitos/metabolismo , Ácidos Graxos/metabolismo , PPAR delta/metabolismo , PPAR beta/metabolismo , Presenilina-1/metabolismo , Tiazóis/farmacologia , Adulto , Animais , Astrócitos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Células Cultivadas , Éxons/efeitos dos fármacos , Éxons/fisiologia , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Oxirredução/efeitos dos fármacos , PPAR delta/agonistas , PPAR beta/agonistas , Distribuição Aleatória
12.
Biochem Biophys Res Commun ; 510(4): 621-628, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30739791

RESUMO

Previous reports have shown that PPARß/δ agonists ameliorate insulin resistance associated with type 2 diabetes mellitus (T2DM). To determine the role of PPARß/δ in tumor necrosis factor α (TNFα)-mediated insulin resistance, we investigated expression levels of adiponectin and insulin receptor (IR) in response to treatment with the PPARß/δ agonist GW501516 with or without TNFα, a proinflammatory cytokine, in differentiated 3T3-L1 adipocytes. GW501516 induced adipocyte differentiation and the expression of adiponectin in a dose-dependent manner in differentiated adipocytes. TNFα treatment reduced adiponectin expression at the end of differentiation. This effect was reversed by GW501516 co-treatment with TNFα. TNFα treatment decreased adipogenic marker genes such as PPARγ, aP2, resistin, and GLUT4, and GW501516 reversed the effects of TNFα. GW501516 treatment increased the expression of insulin receptor and inhibited TNFα-mediated repression of insulin receptor. Our results showed that GW501516 abrogated TNFα-induced insulin resistance. In summary, our study demonstrated that the PPARß/δ agonist, GW501516 reversed TNFα-induced decreases in adipocyte differentiation and adiponectin expression, and improved insulin sensitivity by increasing the expression of insulin receptor. Therefore, PPARδ may be a promising therapeutic target for treatment of insulin resistance in patients with T2DM.


Assuntos
Adiponectina/metabolismo , PPAR delta/agonistas , PPAR beta/agonistas , Receptor de Insulina/metabolismo , Tiazóis/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Resistência à Insulina , Camundongos , PPAR delta/metabolismo , PPAR beta/metabolismo
13.
Adv Exp Med Biol ; 1127: 39-57, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31140170

RESUMO

Peroxisome proliferator-activated receptors (PPARs) are multi-domains proteins, belonging to the superfamily of nuclear receptors, which mainly act as ligand-activated transcription factors. A variety of lipophilic molecules, including long-chain polyunsaturated fatty acids and eicosanoids, are capable of binding to PPAR, although the nature of the physiological ligands is still under debate. PPARs regulate the expression of a set of genes involved in glucose and lipid metabolism as well as in the control of inflammatory responses. Herein we review the main molecular and cellular events associated with the activation of PPARs and their effects on metabolism.


Assuntos
Ácidos Graxos Insaturados/química , Metabolismo dos Lipídeos , Receptores Ativados por Proliferador de Peroxissomo/química , Eicosanoides/química , Ligantes
14.
Int J Neurosci ; 129(11): 1053-1065, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31215291

RESUMO

Aim: Alzheimer's disease (AD) is characterized by oxidative stress, neuroinflammation and progressive cognitive decline. Abscisic acid (ABA) is produced in a variety of mammalian tissues, including brain. It has anti-inflammatory and antioxidant effects and elicits a positive effect on spatial learning and memory performance. Here, the possible protective effect of ABA was evaluated in streptozotocin (STZ)-induced AD rat model which were injected intracerebroventriculary (i.c.v.) with STZ (3 mg/kg). Material and Methods: The STZ-treated animals received ABA (10 µg/rat, i.c.v.), ABA plus PPARß/δ receptor antagonist (GSK0660, 80 nM/rat) or ABA plus selective inhibitor of PKA (KT5720, 0.5 µg/rat) for 14 d. Learning and memory were determined using Morris water maze (MWM) and passive avoidance (PA) tests. Results: The data showed that STZ produced a significant learning and memory deficit in both MWM and PA tests. ABA significantly prevented the learning and memory impairment in STZ-treated rats. However, ABA effects were blocked by GSK0660 and KT5720. Conclusion: The data indicated that ABA attenuates STZ-induced learning and memory impairment and PPAR-ß/δ receptors and PKA signaling are involved, at least in part, in the ABA mechanism.


Assuntos
Ácido Abscísico/farmacologia , Doença de Alzheimer/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Aprendizagem/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , PPAR delta/antagonistas & inibidores , PPAR beta/antagonistas & inibidores , Reguladores de Crescimento de Plantas/farmacologia , Ácido Abscísico/administração & dosagem , Doença de Alzheimer/induzido quimicamente , Animais , Antibióticos Antineoplásicos/farmacologia , Aprendizagem da Esquiva/efeitos dos fármacos , Carbazóis/farmacologia , Modelos Animais de Doenças , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Pirróis/farmacologia , Ratos , Ratos Wistar , Estreptozocina/farmacologia , Sulfonas/farmacologia , Tiofenos/farmacologia
15.
Cell Physiol Biochem ; 46(1): 187-202, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29587291

RESUMO

BACKGROUND/AIMS: All-trans retinoic acid (ATRA) has protective effects against obesity and metabolic syndrome. We here aimed to gain further insight into the interaction of ATRA with skeletal muscle metabolism and secretory activity as important players in metabolic health. METHODS: Cultured murine C2C12 myocytes were used to study direct effects of ATRA on cellular fatty acid oxidation (FAO) rate (using radioactively-labelled palmitate), glucose uptake (using radioactively-labelled 2-deoxy-D-glucose), triacylglycerol levels (by an enzymatic method), and the expression of genes related to FAO and glucose utilization (by RT-real time PCR). We also studied selected myokine production (using ELISA and immunohistochemistry) in ATRA-treated myocytes and intact mice. RESULTS: Exposure of C2C12 myocytes to ATRA led to increased fatty acid consumption and decreased cellular triacylglycerol levels without affecting glucose uptake, and induced the expression of the myokine irisin at the mRNA and secreted protein level in a dose-response manner. ATRA stimulatory effects on FAO-related genes and the Fndc5 gene (encoding irisin) were reproduced by agonists of peroxisome proliferator-activated receptor ß/δ and retinoid X receptors, but not of retinoic acid receptors, and were partially blocked by an AMP-dependent protein kinase inhibitor. Circulating irisin levels were increased by 5-fold in ATRA-treated mice, linked to increased Fndc5 transcription in liver and adipose tissues, rather than skeletal muscle. Immunohistochemistry analysis of FNDC5 suggested that ATRA treatment enhances the release of FNDC5/irisin from skeletal muscle and the liver and its accumulation in interscapular brown and inguinal white adipose depots. CONCLUSION: These results provide new mechanistic insights on how ATRA globally stimulates FAO and enhances irisin secretion, thereby contributing to leaning effects and improved metabolic status.


Assuntos
Fibronectinas/metabolismo , Tretinoína/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Ácidos Graxos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Fibronectinas/sangue , Fibronectinas/genética , Glucose/metabolismo , Interleucina-6/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Neuropeptídeos/análise , Neuropeptídeos/metabolismo , PPAR delta/agonistas , PPAR delta/metabolismo , PPAR beta/agonistas , PPAR beta/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Receptores X de Retinoides/agonistas , Receptores X de Retinoides/metabolismo , Triglicerídeos/metabolismo
16.
Cytokine ; 103: 127-132, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28969938

RESUMO

INTRODUCTION: PPARß/δ agonists are known to modulate the systemic inflammatory response after sepsis. In this study, inflammation modulation effects of PPARß/δ are investigated using the selective PPARß/δ agonist (GW0742) in a model of haemorrhagic shock (HS)-induced sterile systemic inflammation. METHODS: Blood pressure-controlled (35±5mmHg) HS was performed in C57/BL6 mice for 90min. Low-dose GW0742 (0.03mg/kg/BW) and high-dose GW0742 (0.3mg/kg/BW) were then administered at the beginning of resuscitation. Mice were sacrificed 6h after induction of HS. Plasma levels of IL-6, IL-1ß, IL-10, TNFα, KC, MCP-1, and GM-CSF were determined by ELISA. Myeloperoxidase (MPO) activity in pulmonary and liver tissues was analysed with standardised MPO kits. RESULTS: In mice treated with high-dose GW0742, plasma levels of IL-6, IL-1ß, and MCP-1 were significantly increased compared to the control group mice. When compared to mice treated with low-dose GW0742 plasma levels of IL-6, IL-1ß, GM-CSF, KC, and MCP-1 were significantly elevated in high-dose-treated mice. Low-dose GW0742 treatment was associated with a non-significant downtrend of inflammatory factors in mice with HS. No significant changes of MPO activity in lung and liver were observed between the control group and the GW0742 treatment groups. CONCLUSION: This study identified dose-dependent effects of GW0742 on systemic inflammation after HS. While high-dose GW0742 substantially enhanced the systemic inflammatory response, low-dose GW0742 led to a downtrend of pro-inflammation cytokine expression. The exact mechanisms are yet unknown and need to be assessed in further studies.


Assuntos
PPAR delta/agonistas , PPAR beta/agonistas , Choque Hemorrágico/tratamento farmacológico , Síndrome de Resposta Inflamatória Sistêmica/tratamento farmacológico , Tiazóis/farmacologia , Animais , Citocinas/imunologia , Relação Dose-Resposta a Droga , Masculino , Camundongos , PPAR delta/imunologia , PPAR beta/imunologia , Choque Hemorrágico/complicações , Choque Hemorrágico/imunologia , Síndrome de Resposta Inflamatória Sistêmica/etiologia , Síndrome de Resposta Inflamatória Sistêmica/imunologia
17.
Int J Mol Sci ; 19(6)2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895749

RESUMO

Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor superfamily and they are essential regulators of cell differentiation, tissue development, and energy metabolism. Given their central roles in sensing the cellular metabolic state and controlling metabolic homeostasis, PPARs became important targets of drug development for the management of metabolic disorders. The function of PPARs is mainly regulated through ligand binding, which induces structural changes, further affecting the interactions with co-activators or co-repressors to stimulate or inhibit their functions. In addition, PPAR functions are also regulated by various Post-translational modifications (PTMs). These PTMs include phosphorylation, SUMOylation, ubiquitination, acetylation, and O-GlcNAcylation, which are found at numerous modification sites. The addition of these PTMs has a wide spectrum of consequences on protein stability, transactivation function, and co-factor interaction. Moreover, certain PTMs in PPAR proteins have been associated with the status of metabolic diseases. In this review, we summarize the PTMs found on the three PPAR isoforms PPARα, PPARß/δ, and PPARγ, and their corresponding modifying enzymes. We also discuss the functional roles of these PTMs in regulating metabolic homeostasis and provide a perspective for future research in this intriguing field.


Assuntos
Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Humanos , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR delta/genética , PPAR delta/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , PPAR beta/genética , PPAR beta/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/genética , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/fisiologia , Receptores Citoplasmáticos e Nucleares/genética
18.
Int J Mol Sci ; 19(7)2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29954129

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a major health issue in developed countries. Although usually associated with obesity, NAFLD is also diagnosed in individuals with low body mass index (BMI) values, especially in Asia. NAFLD can progress from steatosis to non-alcoholic steatohepatitis (NASH), which is characterized by liver damage and inflammation, leading to cirrhosis and hepatocellular carcinoma (HCC). NAFLD development can be induced by lipid metabolism alterations; imbalances of pro- and anti-inflammatory molecules; and changes in various other factors, such as gut nutrient-derived signals and adipokines. Obesity-related metabolic disorders may be improved by activation of the nuclear receptor peroxisome proliferator-activated receptor (PPAR)ß/δ, which is involved in metabolic processes and other functions. This review is focused on research findings related to PPARß/δ-mediated regulation of hepatic lipid and glucose metabolism and NAFLD development. It also discusses the potential use of pharmacological PPARß/δ activation for NAFLD treatment.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , PPAR delta/metabolismo , PPAR beta/metabolismo , Animais , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , PPAR delta/uso terapêutico , PPAR beta/uso terapêutico
19.
Int J Mol Sci ; 19(7)2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29996502

RESUMO

In contrast to the general belief that regeneration is a rare event, mainly occurring in simple organisms, the ability of regeneration is widely distributed in the animal kingdom. Yet, the efficiency and extent of regeneration varies greatly. Humans can recover from blood loss as well as damage to tissues like bone and liver. Yet damage to the heart and brain cannot be reversed, resulting in scaring. Thus, there is a great interest in understanding the molecular mechanisms of naturally occurring regeneration and to apply this knowledge to repair human organs. During regeneration, injury-activated immune cells induce wound healing, extracellular matrix remodeling, migration, dedifferentiation and/or proliferation with subsequent differentiation of somatic or stem cells. An anti-inflammatory response stops the regenerative process, which ends with tissue remodeling to achieve the original functional state. Notably, many of these processes are associated with enhanced glycolysis. Therefore, peroxisome proliferator-activated receptor (PPAR) ß/δ­which is known to be involved for example in lipid catabolism, glucose homeostasis, inflammation, survival, proliferation, differentiation, as well as mammalian regeneration of the skin, bone and liver­appears to be a promising target to promote mammalian regeneration. This review summarizes our current knowledge of PPARß/δ in processes associated with wound healing and regeneration.


Assuntos
Metabolismo dos Lipídeos , PPAR delta/metabolismo , PPAR beta/metabolismo , Cicatrização , Animais , Diferenciação Celular , Glicólise , Humanos , Regeneração , Via de Sinalização Wnt
20.
Int J Mol Sci ; 19(3)2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29558390

RESUMO

Research in recent years on peroxisome proliferator-activated receptor (PPAR)ß/δ indicates that it plays a key role in the maintenance of energy homeostasis, both at the cellular level and within the organism as a whole. PPARß/δ activation might help prevent the development of metabolic disorders, including obesity, dyslipidaemia, type 2 diabetes mellitus and non-alcoholic fatty liver disease. This review highlights research findings on the PPARß/δ regulation of energy metabolism and the development of diseases related to altered cellular and body metabolism. It also describes the potential of the pharmacological activation of PPARß/δ as a treatment for human metabolic disorders.


Assuntos
Doenças Metabólicas/genética , PPAR delta/agonistas , PPAR beta/agonistas , Animais , Humanos , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/metabolismo , Terapia de Alvo Molecular/métodos , PPAR delta/genética , PPAR delta/metabolismo , PPAR beta/genética , PPAR beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA