Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Genomics ; 18(1): 10, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38303015

RESUMO

BACKGROUND: Human viruses released into the environment can be detected and characterized in wastewater. The study of wastewater virome offers a consolidated perspective on the circulation of viruses within a population. Because the occurrence and severity of viral infections can vary across a person's lifetime, studying the virome in wastewater samples contributed by various demographic segments can provide valuable insights into the prevalence of viral infections within these segments. In our study, targeted enrichment sequencing was employed to characterize the human virome in wastewater at a building-level scale. This was accomplished through passive sampling of wastewater in schools, university settings, and nursing homes in two cities in Catalonia. Additionally, sewage from a large urban wastewater treatment plant was analysed to serve as a reference for examining the collective excreted human virome. RESULTS: The virome obtained from influent wastewater treatment plant samples showcased the combined viral presence from individuals of varying ages, with astroviruses and human bocaviruses being the most prevalent, followed by human adenoviruses, polyomaviruses, and papillomaviruses. Significant variations in the viral profiles were observed among the different types of buildings studied. Mamastrovirus 1 was predominant in school samples, salivirus and human polyomaviruses JC and BK in the university settings while nursing homes showed a more balanced distribution of viral families presenting papillomavirus and picornaviruses and, interestingly, some viruses linked to immunosuppression. CONCLUSIONS: This study shows the utility of building-level wastewater-based epidemiology as an effective tool for monitoring the presence of viruses circulating within specific age groups. It provides valuable insights for public health monitoring and epidemiological studies.


Assuntos
Viroses , Vírus , Humanos , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias , Viroma/genética , Vírus/genética
2.
Environ Sci Technol ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39031616

RESUMO

Polycyclic aromatic hydrocarbons (PAHs), released from petrogenic, pyrogenic or diagenetic sources (degradation of wood materials), are of global concern due to their adverse effects, and potential for long-range transport. While dissolved PAHs have been frequently reported in the literature, there has been no consistent approach of sampling across water bodies. Passive samplers from the AQUA/GAPS-MONET initiative were deployed at 46 sites (28 marine and 18 freshwater), and analyzed for 28 PAHs and six polycyclic musks (PCMs) centrally. Freely dissolved PAH concentrations were dominated by phenanthrene (mean concentration 1500 pg L-1; median 530 pg L-1) and other low molecular weight compounds. Greatest concentrations of phenanthrene, fluoranthene, and pyrene were typically from the same sites, mostly in Europe and North America. Of the PCMs, only galaxolide (72% of samples) and tonalide (61%) were regularly detected, and were significantly cross-correlated. Benchmarking of PAHs relative to penta- and hexachlorobenzene confirmed that the most remote sites (Arctic, Antarctic, and mountain lakes) displayed below average PAH concentrations. Concentrations of 11 of 28 PAHs, galaxolide and tonalide were positively correlated (P < 0.05) with population density within a radius of 5 km of the sampling site. Characteristic PAH ratios gave conflicting results, likely reflecting multiple PAH sources and postemission changes.

3.
Environ Sci Technol ; 58(15): 6499-6508, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38572580

RESUMO

A social housing estate in Denmark was designated for demolition due to exceedance of guidance values for polychlorinated biphenyls (PCBs) in indoor air. Here, we deployed precleaned silicone wristbands (n = 46) among demolition workers of these contaminated buildings during single workdays while conducting various work tasks. We established a method to analyze all 209 PCBs in wristbands to identify prominent congeners of exposure and evaluate differences between tasks. Wristbands were extracted using microwave-assisted extraction and then concentrated for gas chromatography-tandem mass spectrometry (GC-MS/MS) analysis. Twenty-nine chromatographic peaks representing 37 congeners were detected in every wristband, and tetra-CBs were the dominant homologue group. PCB-66, -44, and -70 were the most abundant congeners measured in worker wristbands, none of which are included within the typical seven indicator or WHO 12 PCBs. Workers who cut PCB-containing sealants had wristbands with the highest PCB concentrations (geometric mean ∑209PCBs = 1963 ng/g wristband), which were followed by those handling concrete elements on the building roof. Additionally, wristbands captured a broader range of PCBs than has been previously measured in air and serum samples. Taken together, our results highlight the importance of total congener analysis in assessing current PCB exposure in demolition work and the utility of wristbands for assessing these exposures.


Assuntos
Bifenilos Policlorados , Humanos , Bifenilos Policlorados/análise , Monitoramento Ambiental , Espectrometria de Massas em Tandem , Silicones
4.
Environ Sci Technol ; 58(3): 1709-1720, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38181227

RESUMO

Mercury (Hg)-impaired aquatic ecosystems often receive multiple inputs of different Hg species with varying potentials for transformation and bioaccumulation. Over time, these distinct input pools of Hg homogenize in their relative distributions and bioaccumulation potentials as a result of biogeochemical processes and other aging processes within the ecosystem. This study sought to evaluate the relative time scale for homogenization of multiple Hg inputs to wetlands, information that is relevant for ecosystem management strategies that consider Hg source apportionment. We performed experiments in simulated freshwater wetland mesocosms that were dosed with four isotopically labeled mercury forms: two dissolved forms (Hg2+ and Hg-humic acid) and two particulate forms (nano-HgS and Hg adsorbed to FeS). Over the course of one year, we monitored the four Hg isotope endmembers for their relative distribution between surface water, sediment, and fish in the mesocosms, partitioning between soluble and particulate forms, and conversion to methylated mercury (MeHg). We also evaluated the reactivity and mobility of Hg through sequential selective extractions of sediment and the uptake flux of aqueous Hg in a diffusive gradient in thin-film (DGT) passive samplers. We observed that the four isotope spikes were relatively similar in surface water concentration (ca. 3000 ng/L) immediately after spike addition. At 1-3 months after dosing, Hg concentrations were 1-50 ng/L and were greater for the initially dissolved isotope endmembers than the initially particulate endmembers. In contrast, the Hg isotope endmembers in surface sediments were similar in relative concentration within 2 months after spike addition. However, the uptake fluxes of Hg in DGT samplers, deployed in both the water column and surface sediment, were generally greater for initially dissolved Hg endmembers and lower for initially particulate endmembers. At one year postdosing, the DGT-uptake fluxes were converging toward similar values between the Hg isotope endmembers. However, the relative distribution of isotope endmembers was still significantly different in both the water column and sediment (p < 0.01 according to one-way ANOVA analysis). In contrast, selective sequential extractions resulted in a homogeneous distribution, with >90% of each endmember extracted in the KOH fraction, suggesting that Hg species were associated with sediment organic matter. For MeHg concentrations in surface sediment and fish, the relative contributions from each endmember were significantly different at all sampling time points. Altogether, these results provide insights into the time scales of distribution for different Hg species that enter a wetland ecosystem. While these inputs attain homogeneity in concentration in primary storage compartments (i.e., sediments) within weeks after addition, these input pools remain differentiated for more than one year in terms of reactivity for passive samplers, MeHg concentration, and bioaccumulation.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Mercúrio/análise , Compostos de Metilmercúrio/análise , Áreas Alagadas , Ecossistema , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Água Doce , Peixes , Água , Isótopos/análise
5.
J Environ Manage ; 351: 119692, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38039589

RESUMO

Chemical contaminants, such as pesticides, pharmaceuticals and industrial compounds are ubiquitous in surface water and sediment in areas subject to human activity. While targeted chemical analysis is typically used for water and sediment quality monitoring, there is growing interest in applying effect-based methods with in vitro bioassays to capture the effects of all active contaminants in a sample. The current study evaluated the biological effects in surface water and sediment from two contrasting catchments in Aotearoa New Zealand, the highly urbanised Whau River catchment in Tamaki Makaurau (Auckland) and the urban and mixed agricultural Koreti (New River) Estuary catchment. Two complementary passive sampling devices, Chemcatcher for polar chemicals and polyethylene (PED) for non-polar chemicals, were applied to capture a wide range of contaminants in water, while composite sediment samples were collected at each sampling site. Bioassays indicative of induction of xenobiotic metabolism, receptor-mediated effects, genotoxicity, cytotoxicity and apical effects were applied to the water and sediment extracts. Most sediment extracts induced moderate to strong estrogenic and aryl hydrocarbon (AhR) activity, along with moderate toxicity to bacteria. The water extracts showed similar patterns to the sediment extracts, but with lower activity. Generally, the polar Chemcatcher extracts showed greater estrogenic activity, photosynthesis inhibition and algal growth inhibition than the non-polar PED extracts, though the PED extracts showed greater AhR activity. The observed effects in the water extracts were compared to available ecological effect-based trigger values (EBT) to evaluate the potential risk. For the polar extracts, most sites in both catchments exceeded the EBT for estrogenicity, with many sites exceeding the EBTs for AhR activity and photosynthesis inhibition. Of the wide range of endpoints considered, estrogenic activity, AhR activity and herbicidal activity appear to be the primary risk drivers in both the Whau and Koreti Estuary catchments.


Assuntos
Rios , Poluentes Químicos da Água , Humanos , Rios/química , Água/análise , Poluentes Químicos da Água/análise , Agricultura , Bioensaio , Polietileno , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química
6.
Environ Sci Technol ; 57(35): 13114-13123, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37607349

RESUMO

Current understanding of atmospheric transport of polycyclic aromatic hydrocarbons (PAHs) is limited in alpine areas due to complex meteorology and topography. To better understand atmospheric transport in these areas, we measured 16 PAHs in lichens, biomonitors of atmospheric PAHs, along three transects extending from a highway into otherwise remote alpine valleys. While the valleys neighbored one another and were morphologically similar, they differed in their orientation relative to regional winds. In the valley characterized by regional winds oriented up-valley, PAH concentrations in lichens remained consistent across the transect. In the other two valleys, where regional winds were oriented down or across the valley, 3-6 ring PAHs declined rapidly with increasing distance from the highway, and PAH concentrations in the lichens declined more rapidly for higher molecular weight PAHs than lower molecular weight PAHs. We hypothesize that this trend was driven by differences in gas-particle partitioning and vegetative scavenging between PAH congeners. These results illustrate the importance of both physical transport and chemical partitioning in alpine areas where small differences in topography can lead to significant differences in chemical transport.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Vento , Meio Ambiente , Meteorologia , Peso Molecular
7.
Environ Sci Technol ; 57(15): 6284-6295, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37013483

RESUMO

Since the wide occurrence of endocrine disrupting chemicals (EDCs) in water is associated with various adverse effects in aquatic organisms, it is urgent to identify key bioconcentratable EDCs. Currently, bioconcentration is generally ignored during the identification of key EDCs. Thus, a methodology for effect-based identification of bioconcentratable EDCs was established in Microcosm, validated in the field, and applied to typical surface water in Taihu Lake. In Microcosm, an inverted U-shaped relationship between logBCFs and logKows was observed for typical EDCs, with medium hydrophobic EDCs (3 ≤ logKow ≤ 7) exhibiting the greatest bioconcentration potentials. On this basis, enrichment methods for bioconcentratable EDCs were established using POM and LDPE, which better fitted the bioconcentration characteristics and enabled the enrichment of 71 ± 8% and 69 ± 6% bioconcentratable compounds. The enrichment methods were validated in the field, where LDPE exhibited a more significant correlation with the bioconcentration characteristics than POM, with mean correlation coefficients of 0.36 and 0.15, respectively, which was selected for further application. By application of the new methodology in Taihu Lake, 7 EDCs were prioritized from 79 identified EDCs as key bioconcentratable EDCs on consideration of their great abundance, bioconcentration potentials, and anti-androgenic potencies. The established methodology could support the evaluation and identification of bioconcentratable contaminants.


Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Disruptores Endócrinos/análise , Água , Polietileno , Monitoramento Ambiental/métodos
8.
Environ Sci Technol ; 56(12): 7810-7819, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35537062

RESUMO

The use of low-density polyethylene (PE) sheets as equilibrium passive soil gas samplers to quantify volatile organic compounds (VOCs) such as benzene, toluene, ethylbenzene, and xylenes, and chlorinated solvents (e.g., trichloroethene and tetrachloroethene) in unsaturated subsurface environments was evaluated via modeling and benchtop testing. Two methods were devised to quantify such VOCs in PE. Key chemical properties, including PE-water (KPEw) and PE-air (KPEa) partition coefficients and diffusivities in the PE (Dpe), were determined. These KPEw, KPEa, and Dpe values were consistent with extrapolations of data based on larger compounds. Using these parameter values, field equilibration times of less than 1 day were estimated for such VOCs when using 70-100 µm thick PE sheets. Further, benchtop batch tests carried out in jars filled with VOC-contaminated soils, after 1 or 2 days, showed concentrations in soil air deduced from PE that were consistent with concentrations deduced by analyzing either water or headspace gases recovered from the same tests. Thus, PE-based measurements may overcome inaccuracies from using total soil concentrations and equilibrium partitioning models that may overestimate vapor phase concentrations up to 2 orders of magnitude.


Assuntos
Polietileno , Compostos Orgânicos Voláteis , Monitoramento Ambiental/métodos , Gases , Polietileno/química , Solo , Compostos Orgânicos Voláteis/química , Água/química
9.
Environ Res ; 204(Pt B): 112058, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34516976

RESUMO

In search of practical and affordable tools for wastewater-based surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), three independent field experiments were conducted using three passive sampler sorbents (electronegative membrane, cotton bud, and gauze) in Guelph, Ontario, Canada. Total daily cases during this study ranged from 2 to 17/100,000 people and 43/54 traditionally collected wastewater samples were positive for SARS-CoV-2 with mean detectable concentrations ranging from 8.4 to 1780 copies/ml. Viral levels on the passive samplers were assessed after 4, 8, 24, 48, 72, and 96 hrs of deployment in the wastewater and 43/54 membrane, 42/54 gauze, and 27/54 cotton bud samples were positive. A linear accumulation rate of SARS-CoV-2 on the membranes was observed up to 48 hours, suggesting the passive sampler could adequately reflect wastewater levels for up to two days of deployment. Due the variability in accumulation observed for the cotton buds and gauzes, and the pre-processing steps required for the gauzes, we recommend membrane filters as a simple cost-effective option for wastewater-based surveillance of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Ontário/epidemiologia , Águas Residuárias
10.
Environ Monit Assess ; 193(10): 657, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34533645

RESUMO

High-resolution air quality maps are critical towards assessing and understanding exposures to elevated air pollution in dense urban areas. However, these surfaces are rarely available in low- and middle-income countries that suffer from some of the highest air pollution levels worldwide. In this study, we make use of land use regressions (LURs) to generate annual and seasonal, high-resolution nitrogen dioxide (NO2), nitrogen oxides (NOx), and ozone (O3) exposure surfaces for the Greater Beirut Area (GBA) in Lebanon. NO2, NOx and O3 concentrations were monitored using passive samplers that were deployed at 55 pre-defined monitoring locations. The average annual concentrations of NO2, NOx, and O3 across the GBA were 36.0, 89.7, and 26.9 ppb, respectively. Overall, the performance of the generated models was appropriate, with low biases, high model robustness, and acceptable R2 values that ranged between 0.66 and 0.73 for NO2, 0.56 and 0.60 for NOx, and 0.54 and 0.65 for O3. Traffic-related emissions as well as the operation of a fossil-fuel power plant were found to be the main contributors to the measured NO2 and NOx levels in the GBA, whereas they acted as sinks for O3 concentrations. No seasonally significant differences were found for the NO2 and NOx pollution surfaces; as their seasonal and annual models were largely similar (Pearson's r > 0.85 for both pollutants). On the other hand, seasonal O3 pollution surfaces were significantly different. The model results showed that around 99% of the population of the GBA were exposed to NO2 levels that exceeded the World Health Organization defined annual standard.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Óxidos de Nitrogênio/análise , Ozônio/análise
11.
Anal Bioanal Chem ; 412(11): 2665-2674, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32072209

RESUMO

In this work, an analytical method has been developed and validated for the determination of organophosphate esters (OPEs) in urban ornamental tree leaves. OPEs are flame retardants and plasticizers which are classified as health and environmental hazards substances. Their presence in urban air has been previously described. The method proposed in this work would allow the use of urban tree leaves as simple, cheap, and widely distributed in urban areas alternative to the existing active and passive sampler for sample collection. The method was based on sample treatment by selective pressurized liquid extraction (SPLE) and determination by gas chromatography with triple quadrupole mass spectrometry detector. After the optimization of the extraction solvent, the key parameters applied to SPLE (clean sorbent and sorbent amount applied for the sample clean-up, temperature, extraction cycles, and time) were optimized using a Box-Behnken response surface design. The method achieves high recoveries (higher than 60% for most of the target compounds), accuracies between 70 and 109%, and method detection and quantification limits ranged 0.05-4.96 ng/g dw (dry weight) and 0.15-14.4 ng/g dw, respectively. The method allowed the proper biomonitoring of OPE in tree leaves. Concentrations measured in analyzed samples were from 47.5 to 5477 ng/g dw (TEP). The most frequently detected compounds were triethyl phosphate tri-n-butyl phosphate, triphenyl phosphate, and tris(1-chloro-2-propyl)phosphate, while tris(2-ethylhexyl)phosphate was not detected in the analyzed samples. The proposed analytical method constitutes a starting point for the use of ornamental urban trees as passive sampler for the evaluation of OPE as air pollutants. Graphical Abstract.


Assuntos
Citrus/química , Poluentes Ambientais/análise , Retardadores de Chama/análise , Organofosfatos/análise , Folhas de Planta/química , Ésteres/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Extração Líquido-Líquido/métodos
12.
Bull Environ Contam Toxicol ; 101(3): 349-357, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30084017

RESUMO

Polydimethylsiloxane (PDMS) is a polymer material with high absorptive properties increasingly used as a passive environmental sampler for persistent organic compounds. However, the partitioning behavior of hydrophobic chemicals to PDMS remains largely unknown. Organochlorines (OCs) and polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants of great concern due to their persistence and potential toxic effects on humans and animals. In this study, the affinity of 20 OCs and 25 PAHs for commercially available PDMS pellets was determined to assess their effectiveness as passive samplers. Experiments were conducted to estimate the absorption rates (k) and equilibrium concentrations, demonstrating that 16 OCs and 21 PAHs were efficiently absorbed by PDMS, while others remained dissolved in water. A model has been proposed to predict dissolved concentrations in water based on the Kow of the compound, suggesting that PDMS is a suitable passive sampler for these compounds.


Assuntos
Dimetilpolisiloxanos/química , Monitoramento Ambiental/métodos , Hidrocarbonetos Clorados/química , Modelos Teóricos , Hidrocarbonetos Policíclicos Aromáticos/química , Poluentes Químicos da Água/química , Adsorção , Interações Hidrofóbicas e Hidrofílicas
13.
J Appl Microbiol ; 122(4): 1039-1047, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28052549

RESUMO

AIMS: This study was performed to develop a passive sampling methodology for the detection of two viruses in seawater in the area of shellfish production, the norovirus (NoV), a human pathogen implicated in gastroenteritis outbreaks linked to oyster consumption and the ostreid herpesvirus type 1 (OsHV-1), a virus associated with mass mortalities of Pacific oysters. METHODS AND RESULTS: Commercially, membranes were tested for their capacity to adsorb virus: zetapor, gauze, nylon, low-density polyethylene (LDPE) and polyvinylidene difluoride (PVDF). Laboratory exposures of membranes to contaminated water samples (stool, sewage, seawater) were performed. Our data show that the amount of NoV GII genome per membrane measured with qRT-PCR increased with the time of exposure up to 24 h, for all types of membranes except gauze. After 15 days of exposure, the amount of NoV GII per membrane continued to increase only for nylon and LDPE. The amount of OsHV-1 per zetapor membrane was significantly increased as soon as 4 h of exposure, and after 24 h of exposure for all types of membranes. Exposure of membranes to serial dilutions of various samples revealed that the amount of NoV GII and OsHV-1 per membrane is significantly higher in diluted samples. The detection of NoV and OsHV-1, respectively, with zetapor and PVDF membranes was found to be more efficient than the direct analysis of sewage and seawater. CONCLUSIONS: All membranes immersed in contaminated samples adsorbed NoV GII and OsHV-1. The amount of both viruses increased with the time of exposure. Zetapor and PVDF membranes seem to be more adapted to NoV GII and OsHV-1 detection respectively. SIGNIFICANCE AND IMPACT OF THE STUDY: Membranes tested will be used as passive samplers to improve the detection of virus in oyster production areas. Also, passive samplers could be a valuable tool for microbiome analysis with new generation sequencing.


Assuntos
Monitoramento Ambiental/instrumentação , Herpesviridae/isolamento & purificação , Norovirus/isolamento & purificação , Água do Mar/virologia , Adsorção , Herpesviridae/genética , Norovirus/genética , Polímeros , Reação em Cadeia da Polimerase em Tempo Real , Esgotos/virologia
14.
Ecotoxicology ; 26(2): 165-172, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27933552

RESUMO

The genotoxicity of river water dissolved contaminants is usually estimated after grab sampling of river water. Water contamination can now be obtained with passive samplers that allow a time-integrated sampling of contaminants. Since it was verified that low density polyethylene membranes (LDPE) accumulate labile hydrophobic compounds, their use was proposed as a passive sampler. This study was designed to test the applicability of passive sampling for combined chemical and genotoxicity measurements. The LDPE extracts were tested with the umu test (TA1535/pSK1002 ± S9) and the Ames assay (TA98, TA100 and YG1041 ± S9). We describe here this new protocol and its application in two field studies on four sites of the Seine River. Field LDPE extracts were negative with the YG1041 and TA100 and weakly positive with the TA98 + S9 and Umu test. Concentrations of labile mutagenic PAHs were higher upstream of Paris than downstream of Paris. Improvement of the method is needed to determine the genotoxicity of low concentrations of labile dissolved organic contaminants.


Assuntos
Dano ao DNA/efeitos dos fármacos , Testes de Mutagenicidade/instrumentação , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Polietileno/química , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , França , Membranas Artificiais , Hidrocarbonetos Policíclicos Aromáticos/análise , Rios , Salmonella/efeitos dos fármacos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
15.
Environ Monit Assess ; 189(1): 1, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27909849

RESUMO

The Lake Simcoe watershed in Ontario, Canada is an important recreational area and a recharge zone for groundwater resources. Lake Simcoe is a relatively shallow lotic system that has been impacted by urban development, recreation, industry and agriculture. As part of a watershed management plan, six wastewater treatment plants (WWTPs) located in this catchment basin were selected to measure the inputs of contaminants of emerging concern (CECs) of wastewater origin. These WWTPs were recently upgraded to tertiary treatment for phosphorus removal. Polar organic chemical integrative samplers (POCIS) and semipermeable membrane devices (SPMDs) were used to monitor for hydrophilic and hydrophobic CECs, respectively, in treated and untreated wastewater. The passive samplers were calibrated with performance reference compounds (PRCs) by measuring the loss of deuterated beta blocker drugs spiked into POCIS and the loss of PCB congeners spiked into SPMDs over the course of 14-day deployment periods. From the PRC data, field sampling rates of CECs were determined and applied to estimate time-weighted average (TWA) concentrations and mass loadings in mg/day/1000 members of the population serviced. In treated wastewater, TWA concentrations of an antibiotic, sulfamethoxazole, the prescription drugs, carbamazepine, naproxen and gemfibrozil, and the non-prescription drug, ibuprofen, were estimated to be in the low (<18 ng/L) range. The artificial sweeteners, sucralose and acesulfame, were particularly useful chemical tracers, with estimated TWA concentrations in treated wastewater ranging from 128 to 213 ng/L and 4 to 33 ng/L, respectively. The steroid hormones were detected only rarely in treated wastewater. Triclosan, triclocarban and the synthetic musks, HHCB and AHTN, were removed efficiently (>77 %), possibly because of the tertiary treatment technologies. Therefore, the mass loadings for these personal care products were all <5 mg/day/1000 people. Overall, this study indicates that tertiary treatment technologies designed for phosphorus removal do not entirely remove the target CECs.


Assuntos
Monitoramento Ambiental/métodos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Agricultura , Ontário , Compostos Orgânicos/análise , Padrões de Referência , Triclosan/análise
16.
Sci Total Environ ; 947: 174574, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38981548

RESUMO

Detection and monitoring of per- and polyfluoroalkyl substances (PFAS) in aquatic environments has become an increasingly higher priority of regulatory agencies as public concern for human intake of these chemicals continues to grow. While many methods utilize active sampling strategies ("grab samples") for precise PFAS quantitation, here we evaluate the efficacy of low-cost passive sampling devices (Solid Phase Adsorption Toxin Tracking, or SPATTs) for spatial and temporal PFAS assessment of aquatic systems. For this study, passive samplers were initially deployed in North Carolina along the Cape Fear River during the summer and fall of 2016 and 2017. These were originally intended for the detection of microcystins and monitoring potentially harmful algal blooms, though this period also coincided with occurrences of PFAS discharge from a local fluorochemical manufacturer into the river. Additional samplers were then deployed in 2022 to evaluate changes in PFAS fingerprint and abundances. Assessment of PFAS showed legacy compounds were observed across almost all sampling sites over all 3 years (PFHxS, PFOS, PFHxA, etc.), while emerging replacement PFAS (e.g., Nafion byproducts) were predominantly localized downstream from the manufacturer. Furthermore, samplers deployed downstream from the manufacturer in 2022 noted sharp decreases in observed signal for replacement PFAS in comparison to samplers deployed in 2016 and 2017, indicating mitigation and remediation efforts in the area were able to reduce localized fluorochemical contamination.


Assuntos
Monitoramento Ambiental , Fluorocarbonos , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Fluorocarbonos/análise , North Carolina , Espectrometria de Mobilidade Iônica/métodos , Rios/química , Espectrometria de Massas/métodos , Adsorção
17.
Environ Pollut ; 349: 123877, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574945

RESUMO

Silicone wristbands are a noninvasive personal exposure assessment tool. However, despite their utility, questions remain about the rate at which chemicals accumulate on wristbands when worn, as validation studies utilizing wristbands worn by human participants are limited. This study evaluated the chemical uptake rates of 113 organic pollutants from several chemical classes (i.e., polychlorinated biphenyls (PCB), organophosphate esters (OPEs), alkyl OPEs, polybrominated diphenyl ethers (PBDEs), brominated flame retardants (BFR), phthalates, pesticides, and polycyclic aromatic hydrocarbons (PAHs) over a five-day period. Adult participants (n = 10) were asked to wear five silicone wristbands and then remove one wristband each day. Several compounds were detected in all participants' wristbands after only one day. The number of chemicals detected frequently (i.e. in at least seven participants wristbands) increased from 20% of target compounds to 26% after three days and more substantially increased to 34% of target compounds after four days of wear. Chemicals detected in at least seven participants' day five wristbands (n = 24 chemicals) underwent further statistical analysis, including estimating the chemical uptake rates over time. Some chemicals, including pesticides and phthalates, had postive and significant correlations between concentrations on wristbands worn five days and concentrations of wristbands worn fewer days suggesting chronic exposure. For 23 of the 24 compounds evaluated there was a statistically significant and positive linear association between the length of time wristbands were worn and chemical concentrations in wristbands. Despite the differences that exist between laboratory studies using polydimethylsiloxane (PDMS) environmental samplers and worn wristbands, these results indicate that worn wristbands are primarily acting as first-order kinetic samplers. These results suggest that studies using different deployment lengths should be comparable when results are normalized to the length of the deployment period. In addition, a shorter deployment period could be utilized for compounds that were commonly detected in as little as one day.


Assuntos
Monitoramento Ambiental , Poluentes Ambientais , Retardadores de Chama , Silicones , Humanos , Adulto , Retardadores de Chama/análise , Poluentes Ambientais/análise , Monitoramento Ambiental/métodos , Masculino , Feminino , Exposição Ambiental/estatística & dados numéricos , Exposição Ambiental/análise , Éteres Difenil Halogenados/análise , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Praguicidas/análise , Adulto Jovem , Punho , Ácidos Ftálicos/análise
18.
Environ Pollut ; 342: 123084, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38065335

RESUMO

Monitoring pesticide run-off in the aquatic environment is ecologically important. Effective methods are required to detect the wide range of possible pesticides that enter estuaries from the surrounding catchment. Here, we investigate the occurrence of pesticides in the Richmond River estuary, Australia, and compare the effectiveness of using oysters and Chemcatcher® passive sampling devices against composite water samples. Samples were collected from six sites during two sampling periods: from January to March 2020 (4 weekly composite water samples and oyster collections) and from February to March 2021 (8 twice weekly composite water samples and Chemcatcher® deployment). Samples were analysed for up to 174 pesticides. A total of 21 pesticides were detected across all sites using all methods. The number of pesticides and mixture of pesticides detected in the 2020 sampling was higher in oyster samples than in water samples. In 2021, Chemcatcher® samplers detected more pesticides than in water samples. Herbicides were the most common in all samples. Insecticides and most fungicides were detected only in oysters and Chemcatcher®. Overall, the use of three complementary sampling approaches demonstrated a high level of pesticide input into the Richmond River estuary, highlighting the usefulness of oysters as biomonitors for some pesticides.


Assuntos
Praguicidas , Poluentes Químicos da Água , Praguicidas/análise , Estuários , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Rios , Água/análise , Austrália
19.
Chemosphere ; 352: 141240, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266881

RESUMO

Creosote has been used in Sweden as a wood preservative in buildings since the 19th century. These buildings can function as workplaces, homes, and cultural buildings to which the public has access. Creosote contains polycyclic aromatic hydrocarbons (PAH) which are well known carcinogens. To understand exposure and risks in an indoor environment, it is important to determine air levels of parent PAHs as well as the more toxic nitrated and oxygenated PAH derivatives (NPAH, OPAH). This study aims to investigate indoor air levels of polycyclic aromatic compounds (PACs) e.g., PAH, NPAH, OPAH and dibenzothiophenes in buildings containing creosote sources and whether these levels pose a health risk. Four cultural buildings were studied, all located within a radius of 130 m. Two were known to have creosote sources, and two had not. Polyurethane foam passive air samplers (PUF-PAS) were used to indicate possible point sources. PUF-PAS measurements were performed for one month in each building winter and summer. Simultaneously, PAC outdoor level measurements were performed. Buildings with creosote impregnated constructions had notably higher indoor air levels of PAC (31-1200 ng m-3) compared to the two buildings without creosote sources (14-45 ng m-3). The PAH cancer potency (sum of benzo[a]pyrene equivalents (BaPeq)) was more than one order of magnitude higher in the buildings containing creosote impregnated wood compared to reference buildings. The highest value was 5.1 BaPeq ng m-3 which was significantly higher than the outdoor winter measurement (1.3 BaPeq ng m-3). Fluoranthene and phenanthrene, with significant distribution in gas phase, but also several particulate NPAHs contributed significantly to the total cancer risk. Thus, creosote containing buildings can still contaminate the indoor air with PACs despite being over a hundred years old. The PUF-PAS was shown to be a good tool providing quantitative/semiquantitative measures of PACs exposure in indoor microenvironments.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Neoplasias , Hidrocarbonetos Policíclicos Aromáticos , Compostos Policíclicos , Humanos , Monitoramento Ambiental , Poluentes Atmosféricos/análise , Creosoto , Poluição do Ar em Ambientes Fechados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Microambiente Tumoral
20.
Chemosphere ; 364: 143155, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39181467

RESUMO

Exposure to air pollutants like sulfur dioxide (SO2), nitrogen oxides (NOx), and ozone (O3) is associated with adverse health effects, particularly with exacerbations of asthma symptoms and new asthma cases in both children and adults. While fixed-site monitoring (FSM) stations are commonly used in air pollutant exposure studies, they may not fully capture personal exposures due to limitations such as inadequate consideration of daily routines and indoor/outdoor concentration variations. In this study, to enhance the accuracy of personal exposure calculated by using FSM data, individual's daily activity routine, encompassing both indoor and outdoor environments, were incorporated by using indoor-to-outdoor concentration ratios. Three methodologies were compared to assess the accuracy of exposure calculations: (i) direct exposure determination employing passive samplers (PS), (ii) personal exposure calculated using FSM data alone, and (iii) personal exposure calculated using FSM data refined by integrating local average individual daily activity routines and indoor-to-outdoor ratios. The results demonstrate that the refined method (iii) yields substantial improvements in estimated exposure levels, reducing the average error from 1.4% to 0.4% for NO2, from 72.1% to 12.7% for SO2, and from 323.4% to 24.9% for O3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA