Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Acta Radiol ; 56(2): 219-27, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24574360

RESUMO

BACKGROUND: In cell therapy, magnetic resonance imaging (MRI) has been used to visualize superparamagnetic iron oxide (SPIO)-labeled stem cells homing to a lesion. Improving traceability is to utilize the sequence that maximizes sensitivity to the susceptibility effect of SPIO. PURPOSE: To explore the best method by comparing the MRI sequences to visualize mesenchymal stem cells (MSCs) labeled with SPIO. MATERIAL AND METHODS: Human bone marrow (hBM)-derived MSCs were labeled by internalization of SPIO nanoparticles. In vitro MRI was performed for the SPIO-labeled hBM-MSCs in tubes with T2-weighted (T2W), T2*-weighted (T2*W), and susceptibility-weighted images (SWI). Contrast-to-noise ratio (CNR) and volumes of dark signal of SPIO-labeled hBM-MSCs were obtained on images of each sequence. Photothrombotic cerebral infarction (PTCI) was induced in eight rats, and 2.5 × 10(5) SPIO-labeled hBM-MSCs were infused through the tail vein on the third day. In vivo MRI of the rat brain was performed using a 3.0 T MRI on the first, third, seventh, and 14th days. CNRspio was obtained on T2W imaging, T2*W imaging, and SWI. The dark signals were compared with the SPIO-positive cells of Prussian blue staining. RESULTS: In vitro MRI of 5 × 10(5) SPIO-labeled hBM-MSCs showed the CNR and volume of dark signal to be 63, 517 mm(3) in SWI, 41, 228 mm(3) in T2*W imaging, and 56, 41 mm(3) in T2W imaging, respectively. In vivo MRI showed a dark signal surrounding the high signal intensity of PTCI. Pathologically, the dark signals were matched with SPIO-labeled hBM-MSC in the corresponding rat. The dark signal was most prominent in SWI, then T2*W imaging, and finally in T2W imaging (P <0.05). In SWI, other causes of dark signals were matched with the veins and the choroid plexuses on histopathology. CONCLUSION: SWI can visualize SPIO-labeled hBM-MSCs more sensitively, earlier, and with larger size and greater contrast than T2W imaging and T2*W imaging.


Assuntos
Rastreamento de Células/métodos , Infarto Cerebral/patologia , Infarto Cerebral/terapia , Imagem de Difusão por Ressonância Magnética/métodos , Trombose Intracraniana/patologia , Trombose Intracraniana/terapia , Células-Tronco Mesenquimais/citologia , Animais , Células Cultivadas , Meios de Contraste , Dextranos , Modelos Animais de Doenças , Humanos , Luz , Nanopartículas de Magnetita , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Coloração e Rotulagem/métodos
2.
Korean J Radiol ; 16(3): 575-85, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25995687

RESUMO

OBJECTIVE: To evaluate engraftment by visualizing the location of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) three-dimensionally in photothrombotic cerebral infarction (PTCI) models of rats. MATERIALS AND METHODS: Magnetic resonance imaging (MRI) of an agarose block containing superparamagnetic iron oxide (SPIO)-labeled hBM-MSCs was performed using a 3.0-T MRI, T2-(T2WI), T2(*)-(T2(*)WI), and susceptibility-weighted images (SWI). PTCI was induced in 6 rats, and 2.5 × 10(5) SPIO-labeled hBM-MSCs were infused through the ipsilateral internal carotid artery (ICA group) or tail vein (IV group). MRI was performed on days 1, 3, 7, and 14 after stem cell injection. Dark signal regions were confirmed using histology. Three-dimensional MRI reconstruction was performed using the clinical workflow solution to evaluate the engraftment of hBM-MSCs. Volumetric analysis of the engraftment was also performed. RESULTS: The volumes of SPIO-labeled hBM-MSCs in the phantom MRI were 129.3, 68.4, and 25.9 µL using SWI, T2(*)WI, and T2WI, respectively. SPIO-labeled hBM-MSCs appeared on day 1 after injection, encircling the cerebral infarction from the ventral side. Dark signal regions matched iron positive cells and human origin (positive) cells. The volume of the engraftment was larger in the ICA group on days 1, 3, and 7, after stem cell injection (p < 0.05 on SWI). SWI was the most sensitive MRI pulse sequence (p < 0.05). The volume of infarction decreased until day 14. CONCLUSION: The engraftment of SPIO-labeled hBM-MSCs can be visualized and evaluated three-dimensionally in PTCI models of rats. The engraftment volume was larger in the ICA group than IV group on early stage within one week.


Assuntos
Infarto Cerebral/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Transplante de Células-Tronco Mesenquimais , Neuroimagem/métodos , Animais , Infarto Cerebral/patologia , Meios de Contraste , Dextranos , Humanos , Imageamento Tridimensional/métodos , Nanopartículas de Magnetita , Masculino , Células-Tronco Mesenquimais/diagnóstico por imagem , Nanopartículas , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Tomografia Computadorizada por Raios X
3.
J Korean Neurosurg Soc ; 54(6): 467-76, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24527188

RESUMO

OBJECTIVE: This study aimed to evaluate the hypotheses that administration routes [intra-arterial (IA) vs. intravenous (IV)] affect the early stage migration of transplanted human bone marrow-derived mesenchymal stem cells (hBM-MSCs) in acute brain infarction. METHODS: Male Sprague-Dawley rats (n=40) were subjected to photothrombotic infarction. Three days after photothrombotic infarction, rats were randomly allocated to one of four experimental groups [IA group : n=12, IV group : n=12, superparamagnetic iron oxide (SPIO) group : n=8, control group : n=8]. All groups were subdivided into 1, 6, 24, and 48 hours groups according to time point of sacrifice. Magnetic resonance imaging (MRI) consisting of T2 weighted image (T2WI), T2(*) weighted image (T2(*)WI), susceptibility weighted image (SWI), and diffusion weighted image of rat brain were obtained prior to and at 1, 6, 24, and 48 hours post-implantation. After final MRI, rats were sacrificed and grafted cells were analyzed in brain and lung specimen using Prussian blue and immunohistochemical staining. RESULTS: Grafted cells appeared as dark signal intensity regions at the peri-lesional zone. In IA group, dark signals in peri-lesional zone were more prominent compared with IV group. SWI showed largest dark signal followed by T2(*)WI and T2WI in both IA and IV groups. On Prussian blue staining, IA administration showed substantially increased migration and a large number of transplanted hBM-MSCs in the target brain than IV administration. The Prussian blue-positive cells were not detected in SPIO and control groups. CONCLUSION: In a rat photothrombotic model of ischemic stroke, selective IA administration of human mesenchymal stem cells is more effective than IV administration. MRI and histological analyses revealed the time course of cell migration, and the numbers and distribution of hBM-MSCs delivered into the brain.

4.
Artigo em Inglês | WPRIM | ID: wpr-83668

RESUMO

OBJECTIVE: To evaluate engraftment by visualizing the location of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) three-dimensionally in photothrombotic cerebral infarction (PTCI) models of rats. MATERIALS AND METHODS: Magnetic resonance imaging (MRI) of an agarose block containing superparamagnetic iron oxide (SPIO)-labeled hBM-MSCs was performed using a 3.0-T MRI, T2-(T2WI), T2*-(T2*WI), and susceptibility-weighted images (SWI). PTCI was induced in 6 rats, and 2.5 x 10(5) SPIO-labeled hBM-MSCs were infused through the ipsilateral internal carotid artery (ICA group) or tail vein (IV group). MRI was performed on days 1, 3, 7, and 14 after stem cell injection. Dark signal regions were confirmed using histology. Three-dimensional MRI reconstruction was performed using the clinical workflow solution to evaluate the engraftment of hBM-MSCs. Volumetric analysis of the engraftment was also performed. RESULTS: The volumes of SPIO-labeled hBM-MSCs in the phantom MRI were 129.3, 68.4, and 25.9 microL using SWI, T2*WI, and T2WI, respectively. SPIO-labeled hBM-MSCs appeared on day 1 after injection, encircling the cerebral infarction from the ventral side. Dark signal regions matched iron positive cells and human origin (positive) cells. The volume of the engraftment was larger in the ICA group on days 1, 3, and 7, after stem cell injection (p < 0.05 on SWI). SWI was the most sensitive MRI pulse sequence (p < 0.05). The volume of infarction decreased until day 14. CONCLUSION: The engraftment of SPIO-labeled hBM-MSCs can be visualized and evaluated three-dimensionally in PTCI models of rats. The engraftment volume was larger in the ICA group than IV group on early stage within one week.


Assuntos
Animais , Humanos , Masculino , Ratos , Infarto Cerebral/patologia , Meios de Contraste , Dextranos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/diagnóstico por imagem , Nanopartículas , Neuroimagem/métodos , Distribuição Aleatória , Ratos Sprague-Dawley , Tomografia Computadorizada por Raios X
5.
Artigo em Inglês | WPRIM | ID: wpr-118490

RESUMO

OBJECTIVE: This study aimed to evaluate the hypotheses that administration routes [intra-arterial (IA) vs. intravenous (IV)] affect the early stage migration of transplanted human bone marrow-derived mesenchymal stem cells (hBM-MSCs) in acute brain infarction. METHODS: Male Sprague-Dawley rats (n=40) were subjected to photothrombotic infarction. Three days after photothrombotic infarction, rats were randomly allocated to one of four experimental groups [IA group : n=12, IV group : n=12, superparamagnetic iron oxide (SPIO) group : n=8, control group : n=8]. All groups were subdivided into 1, 6, 24, and 48 hours groups according to time point of sacrifice. Magnetic resonance imaging (MRI) consisting of T2 weighted image (T2WI), T2* weighted image (T2*WI), susceptibility weighted image (SWI), and diffusion weighted image of rat brain were obtained prior to and at 1, 6, 24, and 48 hours post-implantation. After final MRI, rats were sacrificed and grafted cells were analyzed in brain and lung specimen using Prussian blue and immunohistochemical staining. RESULTS: Grafted cells appeared as dark signal intensity regions at the peri-lesional zone. In IA group, dark signals in peri-lesional zone were more prominent compared with IV group. SWI showed largest dark signal followed by T2*WI and T2WI in both IA and IV groups. On Prussian blue staining, IA administration showed substantially increased migration and a large number of transplanted hBM-MSCs in the target brain than IV administration. The Prussian blue-positive cells were not detected in SPIO and control groups. CONCLUSION: In a rat photothrombotic model of ischemic stroke, selective IA administration of human mesenchymal stem cells is more effective than IV administration. MRI and histological analyses revealed the time course of cell migration, and the numbers and distribution of hBM-MSCs delivered into the brain.


Assuntos
Animais , Humanos , Masculino , Ratos , Encéfalo , Infarto Encefálico , Movimento Celular , Infarto Cerebral , Difusão , Infarto , Infusões Intravenosas , Ferro , Pulmão , Imageamento por Ressonância Magnética , Células-Tronco Mesenquimais , Ratos Sprague-Dawley , Acidente Vascular Cerebral , Transplantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA