Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.244
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Plant J ; 119(3): 1353-1368, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38829920

RESUMO

Cucumber plants are highly susceptible to the hemibiotroph oomycete Phytophthora melonis. However, the mechanism of resistance to cucumber blight remains poorly understood. Here, we demonstrated that cucumber plants with impairment in the biosynthesis of brassinosteroids (BRs) or gibberellins (GAs) were more susceptible to P. melonis. By contrast, increasing levels of endogenous BRs or exogenously application of 24-epibrassinolide enhanced the resistance of cucumber plants against P. melonis. Furthermore, we found that both knockout and overexpression of the BR biosynthesis gene CYP85A1 reduced the endogenous GA3 content compared with that of wild-type plants under the condition of inoculation with P. melonis, and the enhancement of disease resistance conferred by BR was inhibited in plants with silencing of the GA biosynthetic gene GA20ox1 or KAO. Together, these findings suggest that GA homeostasis is an essential factor mediating BRs-induced disease resistance. Moreover, BZR6, a key regulator of BR signaling, was found to physically interact with GA20ox1, thereby suppressing its transcription. Silencing of BZR6 promoted endogenous GA biosynthesis and compromised GA-mediated resistance. These findings reveal multifaceted crosstalk between BR and GA in response to pathogen infection, which can provide a new approach for genetically controlling P. melonis damage in cucumber production.


Assuntos
Brassinosteroides , Cucumis sativus , Resistência à Doença , Giberelinas , Phytophthora , Doenças das Plantas , Phytophthora/fisiologia , Brassinosteroides/metabolismo , Cucumis sativus/microbiologia , Cucumis sativus/genética , Cucumis sativus/metabolismo , Cucumis sativus/parasitologia , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/imunologia , Giberelinas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais
2.
Plant J ; 118(1): 263-276, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38078656

RESUMO

Small RNAs play important roles in regulation of plant development and response to various stresses. Northern blot is an important technique in small RNA research. Isotope- and biotin- (or digoxigenin) labeled probes are frequently used in small RNA northern blot. However, isotope-based probe is limited by strict environmental regulation and availability in many places in the world while biotin-based probe is usually suffered from low sensitivity. In this study, we developed a T4 DNA polymerase-based method for incorporation of a cluster of 33 biotin-labeled C in small RNA probe (T4BC33 probe). T4BC33 probe reaches similar sensitivity as 32P-labeled probe in dot blot and small RNA northern blot experiments. Addition of locked nucleic acids in T4BC33 probe further enhanced its sensitivity in detecting low-abundance miRNAs. With newly developed northern blot method, expression of miR6027 and miR6149 family members was validated. Northern blot analysis also confirmed the successful application of virus-based miRNA silencing in pepper, knocking down accumulation of Can-miR6027a and Can-miR6149L. Importantly, further analysis showed that knocking-down Can-miR6027a led to upregulation of a nucleotide binding-leucine rich repeat domain protein coding gene (CaRLb1) and increased immunity against Phytophthora capsici in pepper leaves. Our study provided a highly sensitive and convenient method for sRNA research and identified new targets for genetic improvement of pepper immunity against P. capsici.


Assuntos
Capsicum , MicroRNAs , MicroRNAs/genética , Biotina , Northern Blotting , Isótopos , Capsicum/genética , Doenças das Plantas/genética
3.
BMC Biol ; 22(1): 38, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38360697

RESUMO

BACKGROUND: Plants have complex and dynamic immune systems that have evolved to resist pathogens. Humans have worked to enhance these defenses in crops through breeding. However, many crops harbor only a fraction of the genetic diversity present in wild relatives. Increased utilization of diverse germplasm to search for desirable traits, such as disease resistance, is therefore a valuable step towards breeding crops that are adapted to both current and emerging threats. Here, we examine diversity of defense responses across four populations of the long-generation tree crop Theobroma cacao L., as well as four non-cacao Theobroma species, with the goal of identifying genetic elements essential for protection against the oomycete pathogen Phytophthora palmivora. RESULTS: We began by creating a new, highly contiguous genome assembly for the P. palmivora-resistant genotype SCA 6 (Additional file 1: Tables S1-S5), deposited in GenBank under accessions CP139290-CP139299. We then used this high-quality assembly to combine RNA and whole-genome sequencing data to discover several genes and pathways associated with resistance. Many of these are unique, i.e., differentially regulated in only one of the four populations (diverged 40 k-900 k generations). Among the pathways shared across all populations is phenylpropanoid biosynthesis, a metabolic pathway with well-documented roles in plant defense. One gene in this pathway, caffeoyl shikimate esterase (CSE), was upregulated across all four populations following pathogen treatment, indicating its broad importance for cacao's defense response. Further experimental evidence suggests this gene hydrolyzes caffeoyl shikimate to create caffeic acid, an antimicrobial compound and known inhibitor of Phytophthora spp. CONCLUSIONS: Our results indicate most expression variation associated with resistance is unique to populations. Moreover, our findings demonstrate the value of using a broad sample of evolutionarily diverged populations for revealing the genetic bases of cacao resistance to P. palmivora. This approach has promise for further revealing and harnessing valuable genetic resources in this and other long-generation plants.


Assuntos
Cacau , Phytophthora , Ácido Chiquímico/análogos & derivados , Humanos , Cacau/genética , Phytophthora/fisiologia , Melhoramento Vegetal , Doenças das Plantas/genética
4.
Plant J ; 113(4): 649-664, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36534114

RESUMO

Late blight caused by the oomycete Phytophthora infestans is a most devastating disease of potatoes (Solanum tuberosum). Its early detection is crucial for suppressing disease spread. Necrotic lesions are normally seen in leaves at 4 days post-inoculation (dpi) when colonized cells are dead, but early detection of the initial biotrophic growth stage, when the pathogen feeds on living cells, is challenging. Here, the biotrophic growth phase of P. infestans was detected by whole-plant redox imaging of potato plants expressing chloroplast-targeted reduction-oxidation sensitive green fluorescent protein (chl-roGFP2). Clear spots on potato leaves with a lower chl-roGFP2 oxidation state were detected as early as 2 dpi, before any visual symptoms were recorded. These spots were particularly evident during light-to-dark transitions, and reflected the mislocalization of chl-roGFP2 outside the chloroplasts. Image analysis based on machine learning enabled systematic identification and quantification of spots, and unbiased classification of infected and uninfected leaves in inoculated plants. Comparing redox with chlorophyll fluorescence imaging showed that infected leaf areas that exhibit mislocalized chl-roGFP2 also showed reduced non-photochemical quenching and enhanced quantum PSII yield (ΦPSII) compared with the surrounding leaf areas. The data suggest that mislocalization of chloroplast-targeted proteins is an efficient marker of late blight infection, and demonstrate how it can be utilized for non-destructive monitoring of the disease biotrophic stage using whole-plant redox imaging.


Assuntos
Phytophthora infestans , Solanum tuberosum , Doenças das Plantas
5.
Plant J ; 115(2): 398-413, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37021636

RESUMO

The potato's most devastating disease is late blight, which is caused by Phytophthora infestans. Whereas various resistance (R) genes are known, most are typically defeated by this fast-evolving oomycete pathogen. However, the broad-spectrum and durable R8 is a vital gene resource for potato resistance breeding. To support an educated deployment of R8, we embarked on a study on the corresponding avirulence gene Avr8. We overexpressed Avr8 by transient and stable transformation, and found that Avr8 promotes colonization of P. infestans in Nicotiana benthamiana and potato, respectively. A yeast-two-hybrid (Y2H) screen showed that AVR8 interacts with a desumoylating isopeptidase (StDeSI2) of potato. We overexpressed DeSI2 and found that DeSI2 positively regulates resistance to P. infestans, while silencing StDeSI2 downregulated the expression of a set of defense-related genes. By using a specific proteasome inhibitor, we found that AVR8 destabilized StDeSI2 through the 26S proteasome and attenuated early PTI responses. Altogether, these results indicate that AVR8 manipulates desumoylation, which is a new strategy that adds to the plethora of mechanisms that Phytophthora exploits to modulate host immunity, and StDeSI2 provides a new target for durable resistance breeding against P. infestans in potato.


Assuntos
Phytophthora infestans , Solanum tuberosum , Melhoramento Vegetal , Imunidade Vegetal , Solanum tuberosum/genética , Doenças das Plantas
6.
Mol Plant Microbe Interact ; 37(3): 220-226, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37999635

RESUMO

Filamentous plant pathogens, including fungi and oomycetes, cause some of the most devastating plant diseases. These organisms serve as ideal models for understanding the intricate molecular interplay between plants and the invading pathogens. Filamentous pathogens secrete effector proteins via haustoria, specialized structures for infection and nutrient uptake, to suppress the plant immune response and to reprogram plant metabolism. Recent advances in cell biology have provided crucial insights into the biogenesis of the extrahaustorial membrane and the redirection of host endomembrane trafficking toward this interface. Functional studies have shown that an increasing number of oomycete effectors accumulate at the perihaustorial interface to subvert plant focal immune responses, with a particular convergence on targets involved in host endomembrane trafficking. In this review, we summarize the diverse mechanisms of perihaustorial effectors from oomycetes and pinpoint pressing questions regarding their role in manipulating host defense and metabolism at the haustorial interface. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Interações Hospedeiro-Patógeno , Oomicetos , Oomicetos/metabolismo , Plantas/microbiologia , Proteínas/metabolismo , Fungos , Doenças das Plantas/microbiologia
7.
Mol Plant Microbe Interact ; 37(1): 15-24, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37856777

RESUMO

Oomycete pathogens secrete numerous crinkling and necrosis proteins (CRNs) to manipulate plant immunity and promote infection. However, the functional mechanism of CRN effectors is still poorly understood. Previous research has shown that the Phytophthora sojae effector PsCRN108 binds to the promoter of HSP90s and inhibits their expression, resulting in impaired plant immunity. In this study, we found that in addition to HSP90, PsCRN108 also suppressed other Heat Shock Protein (HSP) family genes, including HSP40. Interestingly, PsCRN108 inhibited the expression of NbHSP40 through its promoter, but did not directly bind to its promoter. Instead, PsCRN108 interacted with NbCAMTA2, a negative regulator of plant immunity. NbCAMTA2 was a negative regulator of NbHSP40 expression, and PsCRN108 could promote such inhibition activity of NbCAMTA2. Our results elucidated the multiple roles of PsCRN108 in the suppression of plant immunity and revealed a new mechanism by which the CRN effector hijacked transcription factors to affect immunity. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Phytophthora , Phytophthora/genética , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Choque Térmico/metabolismo , Imunidade Vegetal , Doenças das Plantas
8.
Mol Plant Microbe Interact ; 37(3): 239-249, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37921637

RESUMO

Plant pathogens manipulate the cellular environment of the host to facilitate infection and colonization that often lead to plant diseases. To accomplish this, many specialized pathogens secrete virulence proteins called effectors into the host cell, which subvert processes such as immune signaling, gene transcription, and host metabolism. Phytophthora infestans, the causative agent of potato late blight, employs an expanded repertoire of RxLR effectors with WY domains to manipulate the host through direct interaction with protein targets. However, our understanding of the molecular mechanisms underlying the interactions between WY effectors and their host targets remains limited. In this study, we performed a structural and biophysical characterization of the P. infestans WY effector Pi04314 in complex with the potato Protein Phosphatase 1-c (PP1c). We elucidate how Pi04314 uses a WY domain and a specialized C-terminal loop carrying a KVxF motif that interact with conserved surfaces on PP1c, known to be used by host regulatory proteins for guiding function. Through biophysical and in planta analyses, we demonstrate that Pi04314 WY or KVxF mutants lose their ability to bind PP1c. The loss of PP1c binding correlates with changes in PP1c nucleolar localization and a decrease in lesion size in plant infection assays. This study provides insights into the manipulation of plant hosts by pathogens, revealing how effectors exploit key regulatory interfaces in host proteins to modify their function and facilitate disease. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Phytophthora infestans , Phytophthora infestans/genética , Monoéster Fosfórico Hidrolases/metabolismo , Plantas/metabolismo , Fatores de Transcrição/metabolismo , Ligação Proteica , Doenças das Plantas
9.
BMC Genomics ; 25(1): 435, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698341

RESUMO

The oomycete Phytophthora cinnamomi is a devastating plant pathogen with a notably broad host range. It is the causal agent of Phytophthora root rot (PRR), arguably the most economically important yield-limiting disease in Persea americana (avocado). Despite this, our understanding of the mechanisms P. cinnamomi employs to infect and successfully colonize avocado remains limited, particularly regarding the pathogen's ability to maintain its biotrophic and necrotrophic lifestyles during infection. The pathogen utilises a large repertoire of effector proteins which function in facilitating and establishing disease in susceptible host plants. Crinkling and necrosis effectors (CRN/Crinklers) are suspected to manipulate cell death to aid in maintenance of the pathogens biotrophic and necrotrophic lifestyles during different stages of infection. The current study identified 25 P. cinnamomi CRN effectors from the GKB4 genome using an HMM profile and assigned putative function to them as either cell death inducers or suppressors. Function was assigned to 10 PcinCRNs by analysing their RNA-seq expression profiles, relatedness to other functionally characterised Phytophthora CRNs and tertiary protein predictions. The full-length coding sequences for these PcinCRNs were confirmed by Sanger sequencing, six of which were found to have two divergent alleles. The presence of alleles indicates that the proteins encoded may perform contradicting functions in cell death manipulation, or function in different host plant species. Overall, this study provides a foundation for future research on P. cinnamomi infection and cell death manipulation mechanisms.


Assuntos
Morte Celular , Persea , Phytophthora , Doenças das Plantas , Phytophthora/fisiologia , Phytophthora/genética , Phytophthora/patogenicidade , Persea/microbiologia , Persea/genética , Doenças das Plantas/microbiologia
10.
BMC Genomics ; 25(1): 710, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044130

RESUMO

BACKGROUND: Identifying the DNA-binding specificities of transcription factors (TF) is central to understanding gene networks that regulate growth and development. Such knowledge is lacking in oomycetes, a microbial eukaryotic lineage within the stramenopile group. Oomycetes include many important plant and animal pathogens such as the potato and tomato blight agent Phytophthora infestans, which is a tractable model for studying life-stage differentiation within the group. RESULTS: Mining of the P. infestans genome identified 197 genes encoding proteins belonging to 22 TF families. Their chromosomal distribution was consistent with family expansions through unequal crossing-over, which were likely ancient since each family had similar sizes in most oomycetes. Most TFs exhibited dynamic changes in RNA levels through the P. infestans life cycle. The DNA-binding preferences of 123 proteins were assayed using protein-binding oligonucleotide microarrays, which succeeded with 73 proteins from 14 families. Binding sites predicted for representatives of the families were validated by electrophoretic mobility shift or chromatin immunoprecipitation assays. Consistent with the substantial evolutionary distance of oomycetes from traditional model organisms, only a subset of the DNA-binding preferences resembled those of human or plant orthologs. Phylogenetic analyses of the TF families within P. infestans often discriminated clades with canonical and novel DNA targets. Paralogs with similar binding preferences frequently had distinct patterns of expression suggestive of functional divergence. TFs were predicted to either drive life stage-specific expression or serve as general activators based on the representation of their binding sites within total or developmentally-regulated promoters. This projection was confirmed for one TF using synthetic and mutated promoters fused to reporter genes in vivo. CONCLUSIONS: We established a large dataset of binding specificities for P. infestans TFs, representing the first in the stramenopile group. This resource provides a basis for understanding transcriptional regulation by linking TFs with their targets, which should help delineate the molecular components of processes such as sporulation and host infection. Our work also yielded insight into TF evolution during the eukaryotic radiation, revealing both functional conservation as well as diversification across kingdoms.


Assuntos
Evolução Molecular , Filogenia , Phytophthora infestans , Fatores de Transcrição , Phytophthora infestans/genética , Phytophthora infestans/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Sítios de Ligação , Ligação Proteica
11.
BMC Plant Biol ; 24(1): 508, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844843

RESUMO

Phytophthora cinnamomi Rands is a highly prevalent phytopathogen worldwide, ranking among the top ten in terms of distribution. It inflicts crown rot, canker, and root rot on numerous plant species, significantly impacting the biodiversity of both flora and fauna within affected environments. With a host range spanning over 5,000 species, including important plants like Quercus suber, Quercus ilex, Castanea sativa, and commercially significant crops such as avocado (Persea americana), maize (Zea mays), and tomato (Solanum lycopersicum), Phytophthora cinnamomi poses a substantial threat to agriculture and ecosystems. The efficient dissemination of the oomycete relies on its short-lived asexually motile zoospores, which depend on water currents to infect host roots. However, managing these zoospores in the laboratory has long been challenging due to the complexity of the life cycle. Current protocols involve intricate procedures, including alternating cycles of growth, drought, and flooding. Unfortunately, these artificial conditions often result in a rapid decline in virulence, necessitating additional steps to maintain infectivity during cultivation. In our research, we sought to address this challenge by investigating zoospore survival under various conditions. Our goal was to develop a stable stock of zoospores that is both easily deployable and highly infective. Through direct freezing in liquid nitrogen, we have successfully preserved their virulence. This breakthrough eliminates the need for repeated culture transfers, simplifying the process of plant inoculation. Moreover, it enables more comprehensive studies of Phytophthora cinnamomi and its interactions with host plants.


Assuntos
Phytophthora , Doenças das Plantas , Phytophthora/fisiologia , Doenças das Plantas/microbiologia , Interações Hospedeiro-Patógeno , Raízes de Plantas/microbiologia , Esporos/fisiologia
12.
BMC Plant Biol ; 24(1): 30, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182981

RESUMO

BACKGROUND: Potato late blight, caused by Phytophthora infestans, is the most devastating disease on potato. Dissecting critical immune components in potato will be supportive for engineering P. infestans resistance. Upon pathogens attack, plant Ca2+ signature is generated and decoded by an array of Ca2+ sensors, among which calcineurin B-like proteins (CBLs) coupled with plant specific CBL-interacting protein kinases (CIPKs) are much less explored in plant immunity. RESULTS: In this study, we identified that two differential potato CBL-CIPK modules regulate plant defense responses against Phytophthora and ROS production, respectively. By deploying virus-induced gene silencing (VIGS) system-based pathogen inoculation assays, StCBL3 was shown to negatively regulate Phytophthora resistance. Consistently, StCBL3 was further found to negatively regulate PTI and ETI responses in Nicotiana benthamiana. Furthermore, StCIPK7 was identified to act together with StCBL3 to negatively regulate Phytophthora resistance. StCIPK7 physically interacts with StCBL3 and phosphorylates StCBL3 in a Ca2+-dependent manner. StCBL3 promotes StCIPK7 kinase activity. On the other hand, another StCBL3-interacting kinase StCIPK24 negatively modulating flg22-triggered accumulation of reactive oxygen species (ROS) by interacting with StRBOHB. CONCLUSIONS: Together, these findings demonstrate that the StCBL3-StCIPK7 complex negatively modulates Phytophthora resistance and StCBL3-StCIPK24 complex negatively regulate ROS production. Our results offer new insights into the roles of potato CBL-CIPK in plant immunity and provide valuable gene resources to engineer the disease resistance potato in the future.


Assuntos
Phytophthora infestans , Solanum tuberosum , Cálcio , Solanum tuberosum/genética , Espécies Reativas de Oxigênio , Imunidade Vegetal/genética , Proteínas de Plantas/genética
13.
BMC Plant Biol ; 24(1): 154, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38424489

RESUMO

BACKGROUND: Soybean is one of the most cultivated crops globally and a staple food for much of the world's population. The annual global crop losses due to infection by Phytophthora sojae is currently estimated at $20B USD, yet we have limited understanding of the role of lipid mediators in the adaptative strategies used by the host plant to limit infection. Since root is the initial site of this infection, we examined the infection process in soybean root infected with Phytophthora sojae using scanning electron microscopy to observe the changes in root morphology and a multi-modal lipidomics approach to investigate how soybean cultivars remodel their lipid mediators to successfully limit infection by Phytophthora sojae. RESULTS: The results reveal the presence of elevated biogenic crystals and more severe damaged cells in the root morphology of the infected susceptible cultivar compared to the infected tolerant cultivars. Furthermore, induced accumulation of stigmasterol was observed in the susceptible cultivar whereas, induced accumulation of phospholipids and glycerolipids occurred in tolerant cultivar. CONCLUSION: The altered lipidome reported in this study suggest diacylglycerol and phosphatidic acid mediated lipid signalling impacting phytosterol anabolism appears to be a strategy used by tolerant soybean cultivars to successfully limit infection and colonization by Phytophthora sojae.


Assuntos
Glycine max , Phytophthora , Phytophthora/fisiologia , Resistência à Doença , Imunidade Vegetal , Fosfolipídeos , Doenças das Plantas
14.
Plant Biotechnol J ; 22(7): 1913-1925, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38366362

RESUMO

Potato is the third most important food crop worldwide. Potato production suffers from severe diseases caused by multiple detrimental plant pathogens, and broad-spectrum disease resistance genes are rarely identified in potato. Here we identified the potato non-specific lipid transfer protein StLTPa, which enhances species none-specific disease resistance against various pathogens, such as the oomycete pathogen Phytophthora infestans, the fungal pathogens Botrytis cinerea and Verticillium dahliae, and the bacterial pathogens Pectobacterium carotovorum and Ralstonia solanacearum. The StLTPa overexpression potato lines do not show growth penalty. Furthermore, we provide evidence that StLTPa binds to lipids present in the plasma membrane (PM) of the hyphal cells of P. infestans, leading to an increased permeability of the PM. Adding of PI(3,5)P2 and PI(3)P could compete the binding of StLTPa to pathogen PM and reduce the inhibition effect of StLTPa. The lipid-binding activity of StLTPa is essential for its role in pathogen inhibition and promotion of potato disease resistance. We propose that StLTPa enhances potato broad-spectrum disease resistance by binding to, and thereby promoting the permeability of the PM of the cells of various pathogens. Overall, our discovery illustrates that increasing the expression of a single gene in potato enhances potato disease resistance against different pathogens without growth penalty.


Assuntos
Proteínas de Transporte , Membrana Celular , Resistência à Doença , Phytophthora infestans , Doenças das Plantas , Proteínas de Plantas , Solanum tuberosum , Solanum tuberosum/microbiologia , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Solanum tuberosum/imunologia , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Membrana Celular/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Phytophthora infestans/patogenicidade , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Ralstonia solanacearum/patogenicidade , Ralstonia solanacearum/fisiologia , Botrytis , Plantas Geneticamente Modificadas , Pectobacterium carotovorum
15.
New Phytol ; 242(4): 1630-1644, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105548

RESUMO

Nonmycorrhizal cluster root-forming species enhance the phosphorus (P) acquisition of mycorrhizal neighbours in P-impoverished megadiverse systems. However, whether mycorrhizal plants facilitate the defence of nonmycorrhizal plants against soil-borne pathogens, in return and via their symbiosis, remains unknown. We characterised growth and defence-related compounds in Banksia menziesii (nonmycorrhizal) and Eucalyptus todtiana (ectomycorrhizal, ECM) seedlings grown either in monoculture or mixture in a multifactorial glasshouse experiment involving ECM fungi and native oomycete pathogens. Roots of B. menziesii had higher levels of phytohormones (salicylic and jasmonic acids, jasmonoyl-isoleucine and 12-oxo-phytodienoic acid) than E. todtiana which further activated a salicylic acid-mediated defence response in roots of B. menziesii, but only in the presence of ECM fungi. We also found that B. menziesii induced a shift in the defence strategy of E. todtiana, from defence-related secondary metabolites (phenolic and flavonoid) towards induced phytohormone response pathways. We conclude that ECM fungi play a vital role in the interactions between mycorrhizal and nonmycorrhizal plants in a severely P-impoverished environment, by introducing a competitive component within the facilitation interaction between the two plant species with contrasting nutrient-acquisition strategies. This study sheds light on the interplay between beneficial and detrimental soil microbes that shape plant-plant interaction in severely nutrient-impoverished ecosystems.


Assuntos
Micorrizas , Oomicetos , Fósforo , Micorrizas/fisiologia , Fósforo/metabolismo , Oomicetos/fisiologia , Oomicetos/patogenicidade , Eucalyptus/microbiologia , Eucalyptus/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plântula/microbiologia , Simbiose/fisiologia , Especificidade da Espécie , Meio Ambiente
16.
New Phytol ; 241(3): 1277-1291, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38013595

RESUMO

Transient and rapid increase in cytosolic Ca2+ plays a crucial role in plant-pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). Cyclic nucleotide-gated channels (CNGCs) have been implicated in mediating this Ca2+ influx; however, their regulatory mechanisms remain poorly understood. Here, we have found that AVRblb2 requires the calmodulin (CaM) and calmodulin-like (CML) proteins as co-factors to interact with the NbCNGCs, resulting in the formation of AVRblb2-CaM/CML-NbCNGCs complex. Furthermore, CaM and CML are dissociated from NbCNGC18 during PTI response to increase Ca2+ influx; however, Avrblb2 inhibits calcium channel activation by disrupting the release of CaM and CML from NbCNGC18. Following recognition of PAMP, NbCNGC18 forms active heteromeric channels with other NbCNGCs, which may give selectivity of CNGC complex against diverse signals for fine-tuning of cytosolic Ca2+ level to mediate appropriate responses. Silencing of multiple NbCNGCs compromised the function of AVRblb2 on the pathogenicity of Phytophthora infestans, confirming that AVRblb2 contributes to pathogen virulence by targeting CNGCs. Our findings provide new insights into the regulation of CNGCs in PTI and the role of pathogen effectors in manipulating host cell physiology to promote infection.


Assuntos
Calmodulina , Phytophthora infestans , Calmodulina/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Cálcio/metabolismo , Reconhecimento da Imunidade Inata , Phytophthora infestans/metabolismo , Nucleotídeos Cíclicos/metabolismo , Imunidade Vegetal
17.
New Phytol ; 243(4): 1472-1489, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38877698

RESUMO

Phytophthora parasitica causes diseases on a broad range of host plants. It secretes numerous effectors to suppress plant immunity. However, only a few virulence effectors in P. parasitica have been characterized. Here, we highlight that PpE18, a conserved RXLR effector in P. parasitica, was a virulence factor and suppresses Nicotiana benthamiana immunity. Utilizing luciferase complementation, co-immunoprecipitation, and GST pull-down assays, we determined that PpE18 targeted NbAPX3-1, a peroxisome membrane-associated ascorbate peroxidase with reactive oxygen species (ROS)-scavenging activity and positively regulates plant immunity in N. benthamiana. We show that the ROS-scavenging activity of NbAPX3-1 was critical for its immune function and was hindered by the binding of PpE18. The interaction between PpE18 and NbAPX3-1 resulted in an elevation of ROS levels in the peroxisome. Moreover, we discovered that the ankyrin repeat-containing protein NbANKr2 acted as a positive immune regulator, interacting with both NbAPX3-1 and PpE18. NbANKr2 was required for NbAPX3-1-mediated disease resistance. PpE18 competitively interfered with the interaction between NbAPX3-1 and NbANKr2, thereby weakening plant resistance. Our results reveal an effective counter-defense mechanism by which P. parasitica employed effector PpE18 to suppress host cellular defense, by suppressing biochemical activity and disturbing immune function of NbAPX3-1 during infection.


Assuntos
Ascorbato Peroxidases , Nicotiana , Peroxissomos , Phytophthora , Imunidade Vegetal , Espécies Reativas de Oxigênio , Fatores de Virulência , Phytophthora/patogenicidade , Phytophthora/fisiologia , Nicotiana/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Ascorbato Peroxidases/metabolismo , Fatores de Virulência/metabolismo , Peroxissomos/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Ligação Proteica , Resistência à Doença , Repetição de Anquirina
18.
Microb Ecol ; 87(1): 32, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228918

RESUMO

Alders are nitrogen (N)-fixing riparian trees that promote leaf litter decomposition in streams through their high-nutrient leaf litter inputs. While alders are widespread across Europe, their populations are at risk due to infection by the oomycete Phytophthora ×alni, which causes alder dieback. Moreover, alder death opens a space for the establishment of an aggressive N-fixing invasive species, the black locust (Robinia pseudoacacia). Shifts from riparian vegetation containing healthy to infected alder and, eventually, alder loss and replacement with black locust may alter the key process of leaf litter decomposition and associated microbial decomposer assemblages. We examined this question in a microcosm experiment comparing three types of leaf litter mixtures: one representing an original riparian forest composed of healthy alder (Alnus lusitanica), ash (Fraxinus angustifolia), and poplar (Populus nigra); one with the same species composition where alder had been infected by P. ×alni; and one where alder had been replaced with black locust. The experiment lasted six weeks, and every two weeks, microbially driven decomposition, fungal biomass, reproduction, and assemblage structure were measured. Decomposition was highest in mixtures with infected alder and lowest in mixtures with black locust, reflecting differences in leaf nutrient concentrations. Mixtures with alder showed distinct fungal assemblages and higher sporulation rates than mixtures with black locust. Our results indicate that alder loss and its replacement with black locust may alter key stream ecosystem processes and assemblages, with important changes already occurring during alder infection. This highlights the importance of maintaining heathy riparian forests to preserve proper stream ecosystem functioning.


Assuntos
Alnus , Ecossistema , Árvores , Rios/microbiologia , Biomassa , Nitrogênio , Folhas de Planta/microbiologia , Alnus/microbiologia
19.
J Chem Ecol ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904862

RESUMO

Plant-plant signalling via volatile organic compounds (VOCs) in response to insect herbivory has been widely studied, but its occurrence and specificity in response to pathogen attack has received much less attention. To fill this gap, we carried out a greenhouse experiment using two fungal pathogens (Fusarium solani and Phytophthora infestans) to test for specificity in VOC induction and signalling between potato plants (Solanum tuberosum). We paired potato plants in plastic cages, one acting as VOC emitter and the other as receiver, and subjected emitters to one of the following treatments: no infection (control), infected by F. solani, or infected by P. infestans. We measured total emission and composition of VOCs released by emitter plants to test for pathogen-specificity in VOC induction, and then conducted a pathogen infection bioassay to assess resistance levels on receiver plants by subjecting half of the receivers of each emitter treatment to F. solani infection and the other half to P. infestans infection. This allowed us to test for specificity in plant VOC signalling by comparing its effects on conspecific and heterospecific sequential infections. Results showed that infection by neither F. solani or P. infestans produced quantitative (total emissions) or qualitative (compositional) changes in VOC emissions. Mirroring these patterns, emitter infection treatment (control vs. pathogen infection) did not produce a significant change in pathogen infection levels on receiver plants in any case (i.e., either for conspecific or heterospecific sequential infections), indicating a lack of signalling effects which precluded pathogen-based specificity in signalling. We discuss possible mechanisms for lack of pathogen effects on VOC emissions and call for future work testing for pathogen specificity in plant-plant signalling and its implications for plant-pathogen interactions under ecologically relevant scenarios involving infections by multiple pathogens.

20.
Appl Microbiol Biotechnol ; 108(1): 237, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407622

RESUMO

Late blight caused by Phytophthora infestans is an economically important disease of potato and tomato worldwide. In Canada, an increase in late blight incidence and severity coincided with changes in genetic composition of P. infestans. We monitored late blight incidence on tomato and potato in Pacific western and eastern Canada between 2019 and 2022, identified genotypes of P. infestans, and examined their population genetic diversity. We identified four major existing genotypes US11, US17, US8, and US23 as well as 25 new genotypes. The US11 genotype was dominant in Pacific western Canada, accounting for 59% of the total population. We discovered the US17 genotype for the first time in Canada. We revealed a higher incidence of late blight and quite diverse genotypes of P. infestans in Pacific western Canada than in eastern Canada. We found high genetic diversity of P. infestans population from Pacific western Canada, as evidenced by the high number of multilocus genotypes, high values of genetic diversity indices, and emergence of 25 new genotypes. Considering the number of disease incidence, the detection of diverse known genotypes, the emergence of novel genotypes, and the high number of isolates resistant to metalaxyl-m (95%) from Pacific western Canada, the region could play a role in establishing sexual recombination and diverse populations, which could ultimately pose challenges for late blight management. Therefore, continuous monitoring of P. infestans populations in Pacific western region and across Canada is warranted. KEY POINTS: • Genotypes of P. infestans in Pacific western were quite diverse than in eastern Canada. • We discovered US17 genotype for the first time in Canada and identified 26 novel genotypes. • Approximately 95% of P. infestans isolates were resistant to metalaxyl-m.


Assuntos
Phytophthora infestans , Solanum lycopersicum , Solanum tuberosum , Phytophthora infestans/genética , Canadá , Genótipo , Estruturas Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA