Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Cell Physiol ; 237(12): 4531-4543, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36288570

RESUMO

Porcine embryonic fibroblasts (PEFs) can be directly reprogrammed into porcine induced pluripotent stem cells (piPSCs). However, the reprogramming process is generally lengthy and inefficient. Here, we established a fast and efficient induction system of piPSCs from porcine Sertoli cells (SCs) via forced expression of pig Yamanaka factors. The alkaline phosphatase (AP)-positive colonies from SCs developed on Day 3 after lentivirus infection, and were expanded and then picked up on Day 7, whereas reprogramming process from PEFs did not show any colonies in the same period. The picked piPSCs strongly expressed pluripotent genes, had the differentiation capacity to three germ layers, and could be also induced into primordial germ cell-like cells. Screening for transcription factor combinations showed that POU class 5 homeobox 1 (OCT4) is the core factor for AP-positive colony formation, and two factors (OCT4 and c-MYC) could successfully reprogram SCs into piPSCs. We then compared the RNA-sequencing data of piPSCs derived from SCs and PEFs, and found that the most significant difference was the activation of Transforming Growth Factor ß signaling pathway. We also compared the RNA levels of SCs and PEFs, and found that SCs exhibited higher Wnt signaling activity and Bone Morphogenetic Protein 4 expression than PEFs, which might be correlated with higher cell proliferation rate and reprogramming efficiency. In summary, the data demonstrated that starting cell sources of piPSCs significantly affect reprogramming dynamics and SCs could serve as cell sources for efficient reprogramming.


Assuntos
Reprogramação Celular , Fibroblastos , Células-Tronco Pluripotentes Induzidas , Células de Sertoli , Animais , Masculino , Diferenciação Celular , Células Cultivadas , Fibroblastos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , RNA/genética , Células de Sertoli/citologia , Suínos
2.
Int J Mol Sci ; 23(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35886932

RESUMO

Studies on ESRRB-regulating porcine-induced pluripotent stem cells (piPSCs) converted to trophoblast-like stem cells (TLSCs) contribute to the understanding of early embryo development. However, the epigenetic modification regulation network during the conversion is poorly understood. Here, the global change in histone H3 Lysine 4, 9, 27, 36 methylation and Lysine 27 acetylation was investigated in piPSCs and TLSCs. We found a high modification profile of H3K36me2 in TLSCs compared to that of piPSCs, whereas the profiles of other modifications remained constant. KDM4C, a H3K36me3/2 demethylase, whose gene body region was combined with ESRRB, was upregulated in TLSCs. Moreover, KDM4 inhibitor supplementation rescued the AP-negative phenotype observed in TLSCs, confirming that KDM4C could regulate the pluripotency of TLSCs. Subsequently, KDM4C replenishment results show the significantly repressed proliferation and AP-positive staining of TLSCs. The expressions of CDX2 and KRT8 were also upregulated after KDM4C overexpression. In summary, these results show that KDM4C replaced the function of ESRRB. These findings reveal the unique and crucial role of KDM4C-mediated epigenetic chromatin modifications in determination of piPSCs' fate and expand the understanding of the connection between piPSCs and TSCs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Animais , Células-Tronco Pluripotentes Induzidas/metabolismo , Lisina/metabolismo , Metilação , Células-Tronco Pluripotentes/metabolismo , Suínos , Trofoblastos/metabolismo
3.
RNA Biol ; 16(1): 82-92, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30567463

RESUMO

Porcine OTX2 was found to be highly activated in porcine iPS cells (piPSCs) that were reported by different laboratories worldwide. To reveal the regulatory function of OTX2 in porcine reprogrammed cells, we screened porcine miRNA-seq databases and found two miRNAs, miR-1343 and miR-545, that could specifically bind to 3'UTR of OTX2 and suppress endogenous OTX2 expression in piPSCs. Knockdown of OTX2 by miR-1343 and miR-545 could significantly increase the expression of SOX2 and ESRRB, but did not alter the expressions of OCT4 and KLF4, and improve the pluripotency of piPSCs. The promoter-based assays showed that OTX2 potentially bound to the promoter region of SOX2 and ESRRB and suppressed their expression. On the other hand, SOX2 could interact with OTX2 promoter. Ectopic expression of SOX2 could significantly decrease OTX2 promoter activity, showing that there is a negative feedback loop between SOX2 and OTX2. Additionally, SOX2 and ESRRB significantly stimulated miR-1343 expression in piPSCs, but OTX2 down regulated the expression of miR-1343 in either direct or indirect manners. In summary, this study demonstrates that there is a regulatory network mediated by miR-1343, in which downregulation of OTX2 by miR-1343 can elevate the expression of pluripotent genes that were then sustain the pluripotency of piPSCs.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , MicroRNAs/genética , Fatores de Transcrição Otx/genética , Células-Tronco Pluripotentes/metabolismo , Interferência de RNA , Regiões 3' não Traduzidas , Animais , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Modelos Biológicos , Regiões Promotoras Genéticas , Suínos , Transcriptoma
4.
Small ; 13(32)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28665509

RESUMO

Suspension cells can provide a source of cells for cellular reprogramming, but they are difficult to transfect by nonviral vectors. An efficient and safe nonviral vector (GO-Fe3 O4 -PEI complexes) based on iron oxide nanoparticle (Fe3 O4 )-decorated graphene oxide (GO) complexed with polyethylenimine (PEI) for the first time is developed for delivering three individual episomal plasmids (pCXLE-hOCT3/4-shp53, pCXLE-hSK, and pCXLE-hUL) encoding pluripotent-related factors of Oct3/4, shRNA against p53, Sox2, Klf4, L-Myc, and Lin28 into human peripheral blood mononuclear cells (PBMCs) simultaneously. The combined treatment of magnetic stirring and near-infrared (NIR)-laser irradiation, which can promote contact between the complexes and floating cells and increase the cell membrane permeability, respectively, is used to conduct multiple physical stimulations for suspension PBMCs transfection. The PCR analysis shows that the combinatorial effect of magnetic targeting and photothermal stimulation obviously promoted the transfection efficiency of suspension cells. The transfected cells show positive expression of the pluripotency markers, including Nanog, Oct4, and Sox2, and have potential to differentiate into mesoderm and ectoderm cells. The results demonstrate that the GO-Fe3 O4 -PEI complex provides a safe, convenient, and efficient tool for reprogramming PBMCs into partially induced pluripotent stem cells, which are able to rapidly transdifferentiate into mesodermal lineages without full reprogramming.


Assuntos
Linhagem da Célula , Reprogramação Celular , Grafite/farmacologia , Magnetismo , Mesoderma/citologia , Óxido Ferroso-Férrico/química , Humanos , Fator 4 Semelhante a Kruppel , Polietilenoimina/química
5.
Biochem Biophys Res Commun ; 456(3): 743-9, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25514039

RESUMO

Porcine induced pluripotent stem cells (piPSCs) had been reported during the past 5years, but there were few reports on how the cell signaling works in piPSCs. In order to clarify the signaling work that dominated the characteristic difference of two types of piPSCs which were derived from Oct4, Sox2, Klf4 and c-Myc (termed 4F piPSCs) and Oct4, Sox2, Klf4, c-Myc, Tbx3 and Nr5α2 (termed 6F piPSCs) respectively, we performed this study. 4F piPSCs and 6F piPSCs were cultured in medium with or without the ROCK inhibitor Y27632 after dissociating into single cells, the efficiency of a single cell colony and the number of AP positive colonies were assessed. The total RhoA and GTP-bind RhoA were detected in 4F piPSCs and 6F piPSCs before and after digestion into single cells. To explore the relationship between RHO-ROCK-MLC signaling pathway and the two factors Tbx3 and Nr5α2, the 4F piPSCs were infected with lenti-virus Tbx3 and Nr5α2 (termed 4F+TND). Results showed that the viability of cells could be enhanced by Y27632 and the RHO-ROCK-MLC signaling pathway was activated after dissociation into single cells in 4F piPSCs but not in 6F piPSCs. And, the 4F+TND piPSCs could be passaged and keep in high viability after dissociation into single cells, though the morphology of colonies did not change. These results indicated that the Tbx3 and Nr5α2 can improve the viability of piPSCs after dissociation into single cells by inhibiting the RHO-ROCK-MLC signaling pathway. And this provides useful information for establishing porcine pluripotent cells in future study.


Assuntos
Células-Tronco Pluripotentes Induzidas/fisiologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Proteínas com Domínio T/fisiologia , Amidas/farmacologia , Animais , Técnicas de Cultura de Células , Sobrevivência Celular , Inibidores Enzimáticos/farmacologia , Fator 4 Semelhante a Kruppel , Camundongos , Camundongos Endogâmicos ICR , Cadeias Leves de Miosina/antagonistas & inibidores , Cadeias Leves de Miosina/metabolismo , Piridinas/farmacologia , Receptores Citoplasmáticos e Nucleares/genética , Transdução de Sinais , Suínos , Proteínas com Domínio T/genética , Proteínas rho de Ligação ao GTP/antagonistas & inibidores , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo
6.
Zool Res ; 43(6): 911-922, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36052561

RESUMO

As a transcription factor of the Pit-Oct-Unc (POU) domain family, octamer-binding transcription factor 6 ( OCT6) participates in various aspects of stem cell development and differentiation. At present, however, its role in porcine-induced pluripotent stem cells (piPSCs) remains unclear. Here, we explored the function of OCT6 in piPSCs. We found that piPSCs overexpressing OCT6 maintained colony morphology and pluripotency under differentiation conditions, with a similar gene expression pattern to that of non-differentiated piPSCs. Functional analysis revealed that OCT6 attenuated the adverse effects of extracellular signal-regulated kinase (ERK) signaling pathway inhibition on piPSC pluripotency by activating phosphatidylinositol 3-kinase-protein kinase B (PI3K-AKT) signaling activity. Our research sheds new light on the mechanism by which OCT6 promotes PSC maintenance.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Diferenciação Celular , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Transdução de Sinais , Suínos , Fatores de Transcrição/metabolismo
7.
Zool Res ; 42(3): 377-388, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33998185

RESUMO

LIN28A, an RNA-binding protein, plays an important role in porcine induced pluripotent stem cells (piPSCs). However, the molecular mechanism underlying the function of LIN28A in the maintenance of pluripotency in piPSCs remains unclear. Here, we explored the function of LIN28A in piPSCs based on its overexpression and knockdown. We performed total RNA sequencing (RNA-seq) of piPSCs and detected the expression levels of relevant genes by quantitative real-time polymerase chain reaction (qRT-PCR), western blot analysis, and immunofluorescence staining. Results indicated that piPSC proliferation ability decreased following LIN28A knockdown. Furthermore, when LIN28A expression in the shLIN28A2 group was lower (by 20%) than that in the negative control knockdown group ( shNC), the pluripotency of piPSCs disappeared and they differentiated into neuroectoderm cells. Results also showed that LIN28A overexpression inhibited the expression of DUSP (dual-specificity phosphatases) family phosphatases and activated the mitogen-activated protein kinase (MAPK) signaling pathway. Thus, LIN28A appears to activate the MAPK signaling pathway to maintain the pluripotency and proliferation ability of piPSCs. Our study provides a new resource for exploring the functions of LIN28A in piPSCs.


Assuntos
Fosfatases de Especificidade Dupla/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Proliferação de Células , Fosfatases de Especificidade Dupla/genética , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteínas de Ligação a RNA/genética , Suínos
8.
Stem Cell Res Ther ; 11(1): 505, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33246502

RESUMO

BACKGROUND: Despite years of research, porcine-induced pluripotent stem cells (piPSCs) with germline chimeric capacity have not been established. Furthermore, the key transcription factors (TFs) defining the naïve state in piPSCs also remain elusive, even though TFs in the inner cell mass (ICM) are believed to be key molecular determinants of naïve pluripotency. In this study, interferon regulatory factor 1 (IRF-1) was screened to express higher in ICM than trophectoderm (TE). But the impact of IRF-1 on maintenance of pluripotency in piPSCs was not determined. METHODS: Transcriptome profiles of the early ICM were analyzed to determine highly interconnected TFs. Cells carrying these TFs' reporter were used to as donor cells for somatic cell nuclear transfer to detect expression patterns in blastocysts. Next, IRF1-Flag was overexpressed in DOX-hLIF-2i piPSCs and AP staining, qRT-PCR, and RNA-seq were conducted to examine the effect of IRF-1 on pluripotency. Then, the expression of IRF-1 in DOX-hLIF-2i piPSCs was labeled by GFP and qRT-PCR was conducted to determine the difference between GFP-positive and GFP-negative cells. Next, ChIP-Seq was conducted to identify genes target by IRF-1. Treatment with IL7 in wild-type piPSCs and STAT3 phosphorylation inhibitor in IRF-1 overexpressing piPSCs was conducted to confirm the roles of JAK-STAT3 signaling pathway in IRF-1's regulation of pluripotency. Moreover, during reprogramming, IRF-1 was overexpressed and knocked down to determine the change of reprogramming efficiency. RESULTS: IRF-1 was screened to be expressed higher in porcine ICM than TE of d6~7 SCNT blastocysts. First, overexpression of IRF-1 in the piPSCs was observed to promote the morphology, AP staining, and expression profiles of pluripotency genes as would be expected when cells approach the naïve state. Genes, KEGG pathways, and GO terms related to the process of differentiation were also downregulated. Next, in the wild-type piPSCs, high-level fluorescence activated by the IRF-1 promoter was associated with higher expression of naïve related genes in piPSCs. Analysis by ChIP-Seq indicated that genes related to the JAK-STAT pathway, and expression of IL7 and STAT3 were activated by IRF-1. The inhibitor of STAT3 phosphorylation was observed could revert the expression of primed genes in IRF-1 overexpressing cells, but the addition of IL7 in culture medium had no apparent change in the cell morphology, AP staining results, or expression of pluripotency related genes. In addition, knockdown of IRF-1 during reprogramming appeared to reduce reprogramming efficiency, whereas overexpression exerted the converse effect. CONCLUSION: The IRF-1 expressed in the ICM of pigs' early blastocyst enhances the pluripotency of piPSCs, in part through promoting the JAK-STAT pathway.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Animais , Blastocisto , Fator Regulador 1 de Interferon/genética , Suínos , Transcriptoma
9.
Cell Cycle ; 17(23): 2547-2563, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30457474

RESUMO

Physiologically and anatomically, humans and pigs share many similarities, which make porcine induced pluripotent stem cells (piPSCs) very attractive for modeling human cell therapy as well as for testing safety of iPSC based cell replacement therapies. To date, several integrative and non-integrative strategies have been reported to successfully generate piPSCs, but all resulting piPSCs had integration of transgenes. The use of integrative methods has the disadvantage of potential lack of silencing or inappropriate re-activation of these genes during differentiation, as well as uncertainty regarding disruption of important genomic regions caused by integration. In our study, we performed a non-integrative vector based reprogramming approach using porcine fetal fibroblasts. The resulting four piPSC lines were positive for pluripotency marker and when subjected to in vitro and in vivo differentiation assays, all four lines formed embryoid bodies, capable to differentiate into all three germ layers, and three out of the four cell lines formed teratomas. PCR analysis on genomic and plasmid DNA revealed that the episomal vectors were undetectable in six out of eight subclones derived from one of the piPSC lines (piPSC1) above passage 20. These piPSCs could potentially be ideal cell lines for the generation of porcine in vitro and in vivo models. Furthermore, subsequent analyses of our new transgene independent piPSCs could provide novel insights on the genetic and epigenetic necessities to achieve and maintain piPSCs.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/transplante , Cariótipo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Suínos , Teratoma/patologia , Transgenes/genética
10.
Dev Reprod ; 21(1): 47-54, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28484743

RESUMO

Unlike mouse results, cloning efficiency of nuclear transfer from porcine induced pluripotent stem cells (piPSCs) is very low. The present study was performed to investigate the effect of cell cycle inhibitors on the cell cycle synchronization of piPSCs. piPSCs were generated using combination of six human transcriptional factors under stem cell culture condition. To examine the efficiency of cell cycle synchronization, piPSCs were cultured on a matrigel coated plate with stem cell media and they were treated with staurosporine (STA, 20 nM), daidzein (DAI, 100 µM), roscovitine (ROSC, 10 µM), or olomoucine (OLO, 200 µM) for 12 h. Flow Cytometry (FACs) data showed that piPSCs in control were in G1 (37.5±0.2%), S (34.0±0.6%) and G2/M (28.5±0.4%). The proportion of cells at G1 in DAI group was significantly higher than that in control, while STA, ROSC and OLO treatments could not block the cell cycle of piPSCs. Both of viability and apoptosis were affected by STA and ROSC treatment, but there were no significantly differences between control and DAI groups. Real-Time qPCR and FACs results revealed that DAI treatment did not affect the expression of pluripotent gene, Oct4. In case of OLO, it did not affect both of viability and apoptosis, but Oct4 expression was significantly decreased. Our results suggest that DAI could be used for synchronizing piPSCs at G1 stage and has any deleterious effect on survival and pluripotency sustaining of piPSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA