Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell ; 182(2): 463-480.e30, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32533916

RESUMO

Although base editors are widely used to install targeted point mutations, the factors that determine base editing outcomes are not well understood. We characterized sequence-activity relationships of 11 cytosine and adenine base editors (CBEs and ABEs) on 38,538 genomically integrated targets in mammalian cells and used the resulting outcomes to train BE-Hive, a machine learning model that accurately predicts base editing genotypic outcomes (R ≈ 0.9) and efficiency (R ≈ 0.7). We corrected 3,388 disease-associated SNVs with ≥90% precision, including 675 alleles with bystander nucleotides that BE-Hive correctly predicted would not be edited. We discovered determinants of previously unpredictable C-to-G, or C-to-A editing and used these discoveries to correct coding sequences of 174 pathogenic transversion SNVs with ≥90% precision. Finally, we used insights from BE-Hive to engineer novel CBE variants that modulate editing outcomes. These discoveries illuminate base editing, enable editing at previously intractable targets, and provide new base editors with improved editing capabilities.


Assuntos
Edição de Genes/métodos , Aprendizado de Máquina , Animais , Biblioteca Gênica , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Mutação Puntual , RNA Guia de Cinetoplastídeos/metabolismo
2.
J Integr Plant Biol ; 65(2): 444-467, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36479615

RESUMO

Precise replacement of an allele with an elite allele controlling an important agronomic trait in a predefined manner by gene editing technologies is highly desirable in crop improvement. Base editing and prime editing are two newly developed precision gene editing systems which can introduce the substitution of a single base and install the desired short indels to the target loci in the absence of double-strand breaks and donor repair templates, respectively. Since their discoveries, various strategies have been attempted to optimize both base editor (BE) and prime editor (PE) in order to improve the precise editing efficacy, specificity, and expand the targeting scopes. Here, we summarize the latest development of various BEs and PEs, as well as their applications in plants. Based on these progresses, we recommend the appropriate BEs and PEs for both basic plant research and crop improvement. Moreover, we propose the perspectives for further optimization of these two editors. We envision that both BEs and PEs will become the routine and customized precise gene editing tools for both plant biological research and crop improvement in the near future.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Plantas/genética , Alelos
3.
RNA Biol ; 19(1): 588-593, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35465826

RESUMO

The ability to precisely alter the genome holds immense potential for molecular biology, medicine and biotechnology. The development of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) into a genomic editing tool has vastly simplified genome engineering. Here, we explored the use of chemically synthesized chimeric oligonucleotides encoding a target-specific crRNA (CRISPR RNA) fused to a single-stranded DNA repair template for RNP-mediated precision genome editing. By generating three clinically relevant oncogenic driver mutations, two non-stop extension mutations, an FGFRi resistance mutation and a single nucleotide change, we demonstrate the ability of chimeric oligos to form RNPs and direct Cas9 to effectively induce genome editing. Further, we demonstrate that the polarity of the chimeric oligos is crucial: only chimeric oligos with the single-stranded DNA repair template fused to the 3'-end of the crRNA are functional for accurate editing, while templates fused to the 5'-end are ineffective. We also find that chimeras can perform editing with both symmetric and asymmetric single-stranded DNA repair templates. Depending on the target locus, the editing efficiency using chimeric RNPs is similar to or less than the efficiency of editing using the bipartite standard RNPs. Our results indicate that chimeric RNPs comprising RNA-DNA oligos formed from fusing the crRNA and DNA repair templates can successfully induce precise edits. While chimeric RNPs do not display an advantage over standard RNPs, they nonetheless represent a viable approach for one-molecule precision genome editing.


Assuntos
Edição de Genes , RNA Guia de Cinetoplastídeos , Sistemas CRISPR-Cas , Quimera/metabolismo , DNA de Cadeia Simples/genética , Edição de Genes/métodos , Oligonucleotídeos/genética , RNA Guia de Cinetoplastídeos/genética , Ribonucleoproteínas/metabolismo
4.
Plant Biotechnol J ; 19(8): 1658-1669, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33759354

RESUMO

The CRISPR/Cas9 system is an RNA-guided sequence-specific genome editing tool, which has been adopted for single or multiple gene editing in a wide range of organisms. When working with gene families with functional redundancy, knocking out multiple genes within the same family may be required to generate a phenotype. In this study, we tested the possibility of exploiting the known tolerance of Cas9 for mismatches between the single-guide RNA (sgRNA) and target site to simultaneously introduce indels in multiple homologous genes in the marine diatom Phaeodactylum tricornutum. As a proof of concept, we designed two sgRNAs that could potentially target the same six light-harvesting complex (LHC) genes belonging to the LHCF subgroup. Mutations in up to five genes were achieved simultaneously using a previously established CRISPR/Cas9 system for P. tricornutum. A visible colour change was observed in knockout mutants with multiple LHCF lesions. A combination of pigment, LHCF protein and growth analyses was used to further investigate the phenotypic differences between the multiple LHCF mutants and WT. Furthermore, we used the two same sgRNAs in combination with a variant of the existing Cas9 where four amino acids substitutions had been introduced that previously have been shown to increase Cas9 specificity. A significant reduction of off-target editing events was observed, indicating that the altered Cas9 functioned as a high-fidelity (HiFi) Cas9 nuclease.


Assuntos
Sistemas CRISPR-Cas , Diatomáceas/genética , Edição de Genes , Sequência de Bases , Sistemas CRISPR-Cas/genética , Endonucleases , RNA Guia de Cinetoplastídeos/genética
5.
Curr Gene Ther ; 24(5): 377-394, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38258771

RESUMO

Precision genome editing is a rapidly evolving field in gene therapy, allowing for the precise modification of genetic material. The CRISPR and Cas systems, particularly the CRISPRCas9 system, have revolutionized genetic research and therapeutic development by enabling precise changes like single-nucleotide substitutions, insertions, and deletions. This technology has the potential to correct disease-causing mutations at their source, allowing for the treatment of various genetic diseases. Programmable nucleases like CRISPR-Cas9, transcription activator-like effector nucleases (TALENs), and zinc finger nucleases (ZFNs) can be used to restore normal gene function, paving the way for novel therapeutic interventions. However, challenges, such as off-target effects, unintended modifications, and ethical concerns surrounding germline editing, require careful consideration and mitigation strategies. Researchers are exploring innovative solutions, such as enhanced nucleases, refined delivery methods, and improved bioinformatics tools for predicting and minimizing off-target effects. The prospects of precision genome editing in gene therapy are promising, with continued research and innovation expected to refine existing techniques and uncover new therapeutic applications.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Terapia Genética , Humanos , Terapia Genética/métodos , Terapia Genética/tendências , Edição de Genes/métodos , Edição de Genes/tendências , Nucleases de Dedos de Zinco/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Medicina de Precisão/métodos
6.
Cell Rep Methods ; 4(2): 100698, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38301655

RESUMO

The detection of genomic sequences and their alterations is crucial for basic research and clinical diagnostics. However, current methodologies are costly and time-consuming and require outsourcing sample preparation, processing, and analysis to genomic companies. Here, we establish One-pot DTECT, a platform that expedites the detection of genetic signatures, only requiring a short incubation of a PCR product in an optimized one-pot mixture. One-pot DTECT enables qualitative, quantitative, and visual detection of biologically relevant variants, such as cancer mutations, and nucleotide changes introduced by prime editing and base editing into cancer cells and human primary T cells. Notably, One-pot DTECT achieves quantification accuracy for targeted genetic signatures comparable with Sanger and next-generation sequencing. Furthermore, its effectiveness as a diagnostic platform is demonstrated by successfully detecting sickle cell variants in blood and saliva samples. Altogether, One-pot DTECT offers an efficient, versatile, adaptable, and cost-effective alternative to traditional methods for detecting genomic signatures.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Edição de Genes/métodos , Mutação/genética , Genômica
7.
Biotechnol J ; 17(10): e2100673, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35766313

RESUMO

Precise modification of plant genomes, such as seamless insertion, deletion, or replacement of DNA sequences at a predefined site, is a challenging task. Gene targeting (GT) and prime editing are currently the best approaches for this purpose. However, these techniques are inefficient in plants, which limits their applications for crop breeding programs. Recently, substantial developments have been made to improve the efficiency of these techniques in plants. Several strategies, such as RNA donor templating, chemically modified donor DNA template, and tandem-repeat homology-directed repair, are aimed at improving GT. Additionally, improved prime editing gRNA design, use of engineered reverse transcriptase enzymes, and splitting prime editing components have improved the efficacy of prime editing in plants. These emerging strategies and existing technologies are reviewed along with various perspectives on their future improvement and the development of robust precision genome editing technologies for plants.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , DNA , Edição de Genes/métodos , Marcação de Genes , Genoma de Planta/genética , Melhoramento Vegetal/métodos , Plantas/genética , RNA Guia de Cinetoplastídeos , DNA Polimerase Dirigida por RNA/genética
8.
Methods Enzymol ; 661: 251-282, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34776215

RESUMO

Variations in the genetic information originate from errors during DNA replication, error-prone repair of DNA damages, or genome editing. The most common approach to detect changes in DNA sequences employs sequencing technologies. However, they remain expensive and time-consuming, limiting their utility for routine laboratory experiments. We recently developed DinucleoTidE Signature CapTure (DTECT). DTECT is a marker-free and versatile detection method that captures targeted dinucleotide signatures resulting from the digestion of genomic amplicons by the type IIS restriction enzyme AcuI. Here, we describe the DTECT protocol to identify mutations introduced by CRISPR-based precision genome editing technologies or resulting from genetic variation. DTECT enables accurate detection of mutations using basic laboratory equipment and off-the-shelf reagents with qualitative or quantitative capture of signatures.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Genoma , Genômica , Mutação
9.
Cell Rep ; 35(9): 109207, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34077734

RESUMO

As genome engineering advances cell-based therapies, a versatile approach to introducing both CRISPR-Cas9 ribonucleoproteins (RNPs) and therapeutic transgenes into specific cells would be transformative. Autologous T cells expressing a chimeric antigen receptor (CAR) manufactured by viral transduction are approved to treat multiple blood cancers, but additional genetic modifications to alter cell programs will likely be required to treat solid tumors and for allogeneic cellular therapies. We have developed a one-step strategy using engineered lentiviral particles to introduce Cas9 RNPs and a CAR transgene into primary human T cells without electroporation. Furthermore, programming particle tropism allows us to target a specific cell type within a mixed cell population. As a proof-of-concept, we show that HIV-1 envelope targeted particles to edit CD4+ cells while sparing co-cultured CD8+ cells. This adaptable approach to immune cell engineering ex vivo provides a strategy applicable to the genetic modification of targeted somatic cells in vivo.


Assuntos
Sistemas CRISPR-Cas/genética , Engenharia Celular , Técnicas de Transferência de Genes , Transgenes , Células A549 , Linfócitos T CD4-Positivos/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Edição de Genes , HIV-1/fisiologia , Humanos , Células Jurkat , Lentivirus/genética , Receptores de Antígenos Quiméricos/metabolismo , Ribonucleoproteínas/metabolismo , Vírion/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana
10.
Biotechnol J ; 16(6): e2000650, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33710783

RESUMO

Precision genome editing by homology directed repair has tremendous potential for crop improvement. This study describes in planta homologous recombination mediated by CRISPR/Cas9 induced DNA double strand break in proximity to a single short (∼30 nt) homology arm. The efficiency of CRISPR/Cas9-mediated recombination between two loxP sites was compared with Cre (Cyclization recombination enzyme) and codon-optimized Cre-mediated site-specific recombination in sugarcane. A transgenic locus was generated with a selectable nptII coding sequence with terminator between two loxP sites located downstream of a constitutive promoter and acting as transcription block for the downstream promoter-less gusA coding sequence with terminator. Recombination between the two loxP sites resulted in deletion of the transcription block and restored gus activity. This transgenic locus provided an efficient screen for identification of recombination events in sugarcane callus following biolistic delivery of Cre, codon-optimized Cre, or the combination of sgRNA and Cas9 targeting the 5' loxP site. The Cre codon optimized for sugarcane displayed the highest efficiency in mediating the recombination that restored gus activity followed by cre and CRISPR/Cas9. Remarkably the short region of homology of the loxP site cleaved by Cas9 (30 nt)-mediated error-free recombination in all 21 events from three different experiments that were analyzed by Sanger sequencing consistent with homology directed repair. These findings will inform rational design of strategies for precision genome editing in plants.


Assuntos
Sistemas CRISPR-Cas , Saccharum , Sistemas CRISPR-Cas/genética , Edição de Genes , Integrases/genética , Nucleotídeos , Saccharum/genética
11.
Cell Rep ; 30(10): 3280-3295.e6, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32160537

RESUMO

Genome editing technologies have transformed our ability to engineer desired genomic changes within living systems. However, detecting precise genomic modifications often requires sophisticated, expensive, and time-consuming experimental approaches. Here, we describe DTECT (Dinucleotide signaTurE CapTure), a rapid and versatile detection method that relies on the capture of targeted dinucleotide signatures resulting from the digestion of genomic DNA amplicons by the type IIS restriction enzyme AcuI. DTECT enables the accurate quantification of marker-free precision genome editing events introduced by CRISPR-dependent homology-directed repair, base editing, or prime editing in various biological systems, such as mammalian cell lines, organoids, and tissues. Furthermore, DTECT allows the identification of oncogenic mutations in cancer mouse models, patient-derived xenografts, and human cancer patient samples. The ease, speed, and cost efficiency by which DTECT identifies genomic signatures should facilitate the generation of marker-free cellular and animal models of human disease and expedite the detection of human pathogenic variants.


Assuntos
Edição de Genes , Variação Genética , Genômica , Animais , Proteína BRCA1/genética , Proteína BRCA2/genética , Sequência de Bases , DNA/genética , Modelos Animais de Doenças , Loci Gênicos , Marcadores Genéticos , Genótipo , Células HEK293 , Humanos , Camundongos , Mutação/genética , Células NIH 3T3 , Neoplasias/genética , Nucleotídeos/genética , Oncogenes , Reparo de DNA por Recombinação/genética , Mapeamento por Restrição
12.
Elife ; 72018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30156184

RESUMO

CRISPR/Cas9 efficiently induces targeted mutations via non-homologous-end-joining but for genome editing, precise, homology-directed repair (HDR) of endogenous DNA stretches is a prerequisite. To favor HDR, many approaches interfere with the repair machinery or manipulate Cas9 itself. Using Medaka we show that the modification of 5' ends of long dsDNA donors strongly enhances HDR, favors efficient single-copy integration by retaining a monomeric donor conformation thus facilitating successful gene replacement or tagging.


Assuntos
Sistemas CRISPR-Cas , Reparo do DNA por Junção de Extremidades , DNA/genética , Edição de Genes/métodos , Reparo de DNA por Recombinação , Animais , DNA/metabolismo , Embrião não Mamífero/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Modelos Genéticos , Oryzias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA