Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235.201
Filtrar
Mais filtros

Coleção BVS Equador
Intervalo de ano de publicação
1.
Annu Rev Immunol ; 39: 481-509, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33577347

RESUMO

Posttranscriptional control of mRNA regulates various biological processes, including inflammatory and immune responses. RNA-binding proteins (RBPs) bind cis-regulatory elements in the 3' untranslated regions (UTRs) of mRNA and regulate mRNA turnover and translation. In particular, eight RBPs (TTP, AUF1, KSRP, TIA-1/TIAR, Roquin, Regnase, HuR, and Arid5a) have been extensively studied and are key posttranscriptional regulators of inflammation and immune responses. These RBPs sometimes collaboratively or competitively bind the same target mRNA to enhance or dampen regulatory activities. These RBPs can also bind their own 3' UTRs to negatively or positively regulate their expression. Both upstream signaling pathways and microRNA regulation shape the interactions between RBPs and target RNA. Dysregulation of RBPs results in chronic inflammation and autoimmunity. Here, we summarize the functional roles of these eight RBPs in immunity and their associated diseases.


Assuntos
MicroRNAs , Estabilidade de RNA , Animais , Regulação da Expressão Gênica , Humanos , MicroRNAs/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
2.
Annu Rev Immunol ; 39: 511-536, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33577348

RESUMO

The surfaces of all living organisms and most secreted proteins share a common feature: They are glycosylated. As the outermost-facing molecules, glycans participate in nearly all immunological processes, including driving host-pathogen interactions, immunological recognition and activation, and differentiation between self and nonself through a complex array of pathways and mechanisms. These fundamental immunologic roles are further cast into sharp relief in inflammatory, autoimmune, and cancer disease states in which immune regulation goes awry. Here, we review the broad impact of glycans on the immune system and discuss the changes and clinical opportunities associated with the onset of immunologic disease.


Assuntos
Interações Hospedeiro-Patógeno , Polissacarídeos , Animais , Diferenciação Celular , Humanos
3.
Annu Rev Immunol ; 37: 295-324, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30649989

RESUMO

Cytokines are secreted or otherwise released polypeptide factors that exert autocrine and/or paracrine actions, with most cytokines acting in the immune and/or hematopoietic system. They are typically pleiotropic, controlling development, cell growth, survival, and/or differentiation. Correspondingly, cytokines are clinically important, and augmenting or attenuating cytokine signals can have deleterious or therapeutic effects. Besides physiological fine-tuning of cytokine signals, altering the nature or potency of the signal can be important in pathophysiological responses and can also provide novel therapeutic approaches. Here, we give an overview of cytokines, their signaling and actions, and the physiological mechanisms and pharmacologic strategies to fine-tune their actions. In particular, the differential utilization of STAT proteins by a single cytokine or by different cytokines and STAT dimerization versus tetramerization are physiological mechanisms of fine-tuning, whereas anticytokine and anticytokine receptor antibodies and cytokines with altered activities, including cytokine superagonists, partial agonists, and antagonists, represent new ways of fine-tuning cytokine signals.


Assuntos
Citocinas/metabolismo , Imunoterapia/tendências , Animais , Citocinas/genética , Humanos , Imunidade Humoral , Imunomodulação , Multimerização Proteica , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/imunologia
4.
Annu Rev Immunol ; 37: 1-17, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30379594

RESUMO

Each of us is a story. Mine is a story of doing science for 60 years, and I am honored to be asked to tell it. Even though this autobiography was written for the Annual Review of Immunology, I have chosen to describe my whole career in science because the segment that was immunology is so intertwined with all else I was doing. This article is an elongation and modification of a talk I gave at my 80th birthday celebration at Caltech on March 23, 2018.


Assuntos
Alergia e Imunologia/história , NF-kappa B/metabolismo , Vírus de RNA/fisiologia , Viroses/imunologia , Animais , Modelos Animais de Doenças , Rearranjo Gênico , História do Século XX , História do Século XXI , Humanos , Camundongos , Proteínas Tirosina Quinases/metabolismo , Transcrição Reversa , Estados Unidos
5.
Annu Rev Immunol ; 37: 97-123, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31026412

RESUMO

The B cell antigen receptor (BCR) plays a central role in the self/nonself selection of B lymphocytes and in their activation by cognate antigen during the clonal selection process. It was long thought that most cell surface receptors, including the BCR, were freely diffusing and randomly distributed. Since the advent of superresolution techniques, it has become clear that the plasma membrane is compartmentalized and highly organized at the nanometer scale. Hence, a complete understanding of the precise conformation and activation mechanism of the BCR must take into account the organization of the B cell plasma membrane. We review here the recent literature on the nanoscale organization of the lymphocyte membrane and discuss how this new information influences our view of the conformational changes that the BCR undergoes during activation.


Assuntos
Linfócitos B/imunologia , Membrana Celular/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Regulação Alostérica , Animais , Compartimento Celular , Humanos , Ativação Linfocitária , Nanomedicina , Conformação Proteica
6.
Annu Rev Immunol ; 37: 349-375, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30673536

RESUMO

Detection of double-stranded RNAs (dsRNAs) is a central mechanism of innate immune defense in many organisms. We here discuss several families of dsRNA-binding proteins involved in mammalian antiviral innate immunity. These include RIG-I-like receptors, protein kinase R, oligoadenylate synthases, adenosine deaminases acting on RNA, RNA interference systems, and other proteins containing dsRNA-binding domains and helicase domains. Studies suggest that their functions are highly interdependent and that their interdependence could offer keys to understanding the complex regulatory mechanisms for cellular dsRNA homeostasis and antiviral immunity. This review aims to highlight their interconnectivity, as well as their commonalities and differences in their dsRNA recognition mechanisms.


Assuntos
Imunidade Inata/genética , RNA de Cadeia Dupla/genética , Viroses/imunologia , 2',5'-Oligoadenilato Sintetase/metabolismo , Animais , Proteína DEAD-box 58/metabolismo , Humanos , Imunomodulação , Mamíferos , Nucleotídeo Desaminases/metabolismo , Interferência de RNA , eIF-2 Quinase/metabolismo
7.
Annu Rev Biochem ; 93(1): 233-259, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38621235

RESUMO

Peroxisomes are organelles that play a central role in lipid metabolism and cellular redox homeostasis. The import of peroxisomal matrix proteins by peroxisomal targeting signal (PTS) receptors is an ATP-dependent mechanism. However, the energy-dependent steps do not occur early during the binding of the receptor-cargo complex to the membrane but late, because they are linked to the peroxisomal export complex for the release of the unloaded receptor. The first ATP-demanding step is the cysteine-dependent monoubiquitination of the PTS receptors, which is required for recognition by the AAA+ peroxins. They execute the second ATP-dependent step by extracting the ubiqitinated PTS receptors from the membrane for release back to the cytosol. After deubiquitination, the PTS receptors regain import competence and can facilitate further rounds of cargo import. Here, we give a general overview and discuss recent data regarding the ATP-dependent steps in peroxisome protein import.


Assuntos
Trifosfato de Adenosina , Peroxissomos , Transporte Proteico , Ubiquitinação , Peroxissomos/metabolismo , Trifosfato de Adenosina/metabolismo , Humanos , Animais , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Sinais de Orientação para Peroxissomos , Peroxinas/metabolismo , Peroxinas/genética , Proteínas de Membrana
8.
Annu Rev Biochem ; 93(1): 211-231, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38603556

RESUMO

Almost all outer membrane proteins (OMPs) in Gram-negative bacteria contain a ß-barrel domain that spans the outer membrane (OM). To reach the OM, OMPs must be translocated across the inner membrane by the Sec machinery, transported across the crowded periplasmic space through the assistance of molecular chaperones, and finally assembled (folded and inserted into the OM) by the ß-barrel assembly machine. In this review, we discuss how considerable new insights into the contributions of these factors to OMP biogenesis have emerged in recent years through the development of novel experimental, computational, and predictive methods. In addition, we describe recent evidence that molecular machines that were thought to function independently might interact to form dynamic intermembrane supercomplexes. Finally, we discuss new results that suggest that OMPs are inserted primarily near the middle of the cell and packed into supramolecular structures (OMP islands) that are distributed throughout the OM.


Assuntos
Proteínas da Membrana Bacteriana Externa , Chaperonas Moleculares , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/química , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/química , Transporte Proteico , Dobramento de Proteína , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Negativas/genética , Membrana Externa Bacteriana/metabolismo , Modelos Moleculares , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Canais de Translocação SEC/metabolismo , Canais de Translocação SEC/genética , Canais de Translocação SEC/química , Periplasma/metabolismo
9.
Annu Rev Biochem ; 93(1): 289-316, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38316136

RESUMO

RAF family protein kinases are a key node in the RAS/RAF/MAP kinase pathway, the signaling cascade that controls cellular proliferation, differentiation, and survival in response to engagement of growth factor receptors on the cell surface. Over the past few years, structural and biochemical studies have provided new understanding of RAF autoregulation, RAF activation by RAS and the SHOC2 phosphatase complex, and RAF engagement with HSP90-CDC37 chaperone complexes. These studies have important implications for pharmacologic targeting of the pathway. They reveal RAF in distinct regulatory states and show that the functional RAF switch is an integrated complex of RAF with its substrate (MEK) and a 14-3-3 dimer. Here we review these advances, placing them in the context of decades of investigation of RAF regulation. We explore the insights they provide into aberrant activation of the pathway in cancer and RASopathies (developmental syndromes caused by germline mutations in components of the pathway).


Assuntos
Transdução de Sinais , Quinases raf , Proteínas ras , Humanos , Proteínas ras/metabolismo , Proteínas ras/genética , Proteínas ras/química , Quinases raf/metabolismo , Quinases raf/genética , Animais , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética
10.
Annu Rev Biochem ; 93(1): 389-410, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38594926

RESUMO

Molecular docking has become an essential part of a structural biologist's and medicinal chemist's toolkits. Given a chemical compound and the three-dimensional structure of a molecular target-for example, a protein-docking methods fit the compound into the target, predicting the compound's bound structure and binding energy. Docking can be used to discover novel ligands for a target by screening large virtual compound libraries. Docking can also provide a useful starting point for structure-based ligand optimization or for investigating a ligand's mechanism of action. Advances in computational methods, including both physics-based and machine learning approaches, as well as in complementary experimental techniques, are making docking an even more powerful tool. We review how docking works and how it can drive drug discovery and biological research. We also describe its current limitations and ongoing efforts to overcome them.


Assuntos
Descoberta de Drogas , Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas , Ligantes , Descoberta de Drogas/métodos , Humanos , Proteínas/química , Proteínas/metabolismo , Aprendizado de Máquina , Sítios de Ligação , Desenho de Fármacos
11.
Cell ; 187(1): 130-148.e17, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38128538

RESUMO

The plant-signaling molecule auxin triggers fast and slow cellular responses across land plants and algae. The nuclear auxin pathway mediates gene expression and controls growth and development in land plants, but this pathway is absent from algal sister groups. Several components of rapid responses have been identified in Arabidopsis, but it is unknown if these are part of a conserved mechanism. We recently identified a fast, proteome-wide phosphorylation response to auxin. Here, we show that this response occurs across 5 land plant and algal species and converges on a core group of shared targets. We found conserved rapid physiological responses to auxin in the same species and identified rapidly accelerated fibrosarcoma (RAF)-like protein kinases as central mediators of auxin-triggered phosphorylation across species. Genetic analysis connects this kinase to both auxin-triggered protein phosphorylation and rapid cellular response, thus identifying an ancient mechanism for fast auxin responses in the green lineage.


Assuntos
Embriófitas , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/metabolismo , Embriófitas/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Fosforilação , Plantas/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Algas/metabolismo
12.
Cell ; 187(4): 999-1010.e15, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325366

RESUMO

Protein structures are essential to understanding cellular processes in molecular detail. While advances in artificial intelligence revealed the tertiary structure of proteins at scale, their quaternary structure remains mostly unknown. We devise a scalable strategy based on AlphaFold2 to predict homo-oligomeric assemblies across four proteomes spanning the tree of life. Our results suggest that approximately 45% of an archaeal proteome and a bacterial proteome and 20% of two eukaryotic proteomes form homomers. Our predictions accurately capture protein homo-oligomerization, recapitulate megadalton complexes, and unveil hundreds of homo-oligomer types, including three confirmed experimentally by structure determination. Integrating these datasets with omics information suggests that a majority of known protein complexes are symmetric. Finally, these datasets provide a structural context for interpreting disease mutations and reveal coiled-coil regions as major enablers of quaternary structure evolution in human. Our strategy is applicable to any organism and provides a comprehensive view of homo-oligomerization in proteomes.


Assuntos
Inteligência Artificial , Proteínas , Proteoma , Humanos , Proteínas/química , Proteínas/genética , Archaea/química , Archaea/genética , Eucariotos/química , Eucariotos/genética , Bactérias/química , Bactérias/genética
13.
Cell ; 187(16): 4305-4317.e18, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38936360

RESUMO

Interleukin (IL)-23 and IL-17 are well-validated therapeutic targets in autoinflammatory diseases. Antibodies targeting IL-23 and IL-17 have shown clinical efficacy but are limited by high costs, safety risks, lack of sustained efficacy, and poor patient convenience as they require parenteral administration. Here, we present designed miniproteins inhibiting IL-23R and IL-17 with antibody-like, low picomolar affinities at a fraction of the molecular size. The minibinders potently block cell signaling in vitro and are extremely stable, enabling oral administration and low-cost manufacturing. The orally administered IL-23R minibinder shows efficacy better than a clinical anti-IL-23 antibody in mouse colitis and has a favorable pharmacokinetics (PK) and biodistribution profile in rats. This work demonstrates that orally administered de novo-designed minibinders can reach a therapeutic target past the gut epithelial barrier. With high potency, gut stability, and straightforward manufacturability, de novo-designed minibinders are a promising modality for oral biologics.


Assuntos
Colite , Interleucina-17 , Células Th17 , Animais , Administração Oral , Camundongos , Humanos , Ratos , Colite/tratamento farmacológico , Interleucina-17/metabolismo , Interleucina-17/antagonistas & inibidores , Células Th17/imunologia , Receptores de Interleucina/metabolismo , Receptores de Interleucina/antagonistas & inibidores , Camundongos Endogâmicos C57BL , Masculino , Interleucina-23/metabolismo , Interleucina-23/antagonistas & inibidores , Distribuição Tecidual , Feminino , Ratos Sprague-Dawley
14.
Cell ; 187(5): 1127-1144.e21, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38428393

RESUMO

Chloroplasts are green plastids in the cytoplasm of eukaryotic algae and plants responsible for photosynthesis. The plastid-encoded RNA polymerase (PEP) plays an essential role during chloroplast biogenesis from proplastids and functions as the predominant RNA polymerase in mature chloroplasts. The PEP-centered transcription apparatus comprises a bacterial-origin PEP core and more than a dozen eukaryotic-origin PEP-associated proteins (PAPs) encoded in the nucleus. Here, we determined the cryo-EM structures of Nicotiana tabacum (tobacco) PEP-PAP apoenzyme and PEP-PAP transcription elongation complexes at near-atomic resolutions. Our data show the PEP core adopts a typical fold as bacterial RNAP. Fifteen PAPs bind at the periphery of the PEP core, facilitate assembling the PEP-PAP supercomplex, protect the complex from oxidation damage, and likely couple gene transcription with RNA processing. Our results report the high-resolution architecture of the chloroplast transcription apparatus and provide the structural basis for the mechanistic and functional study of transcription regulation in chloroplasts.


Assuntos
RNA Polimerases Dirigidas por DNA , Plastídeos , Cloroplastos/metabolismo , Microscopia Crioeletrônica , RNA Polimerases Dirigidas por DNA/genética , Nicotiana/genética , Fotossíntese , Plastídeos/enzimologia
15.
Cell ; 187(2): 345-359.e16, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38181787

RESUMO

Cells self-organize molecules in space and time to generate complex behaviors, but we lack synthetic strategies for engineering spatiotemporal signaling. We present a programmable reaction-diffusion platform for designing protein oscillations, patterns, and circuits in mammalian cells using two bacterial proteins, MinD and MinE (MinDE). MinDE circuits act like "single-cell radios," emitting frequency-barcoded fluorescence signals that can be spectrally isolated and analyzed using digital signal processing tools. We define how to genetically program these signals and connect their spatiotemporal dynamics to cell biology using engineerable protein-protein interactions. This enabled us to construct sensitive reporter circuits that broadcast endogenous cell signaling dynamics on a frequency-barcoded imaging channel and to build control signal circuits that synthetically pattern activities in the cell, such as protein condensate assembly and actin filamentation. Our work establishes a paradigm for visualizing, probing, and engineering cellular activities at length and timescales critical for biological function.


Assuntos
Proteínas de Bactérias , Células Eucarióticas , Transdução de Sinais , Animais , Mamíferos , Biologia Sintética/métodos , Células Eucarióticas/metabolismo
16.
Cell ; 187(11): 2785-2800.e16, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38657604

RESUMO

Natural cell death pathways such as apoptosis and pyroptosis play dual roles: they eliminate harmful cells and modulate the immune system by dampening or stimulating inflammation. Synthetic protein circuits capable of triggering specific death programs in target cells could similarly remove harmful cells while appropriately modulating immune responses. However, cells actively influence their death modes in response to natural signals, making it challenging to control death modes. Here, we introduce naturally inspired "synpoptosis" circuits that proteolytically regulate engineered executioner proteins and mammalian cell death. These circuits direct cell death modes, respond to combinations of protease inputs, and selectively eliminate target cells. Furthermore, synpoptosis circuits can be transmitted intercellularly, offering a foundation for engineering synthetic killer cells that induce desired death programs in target cells without self-destruction. Together, these results lay the groundwork for programmable control of mammalian cell death.


Assuntos
Morte Celular , Humanos , Apoptose , Caspases/metabolismo , Células HEK293 , Proteólise , Piroptose/efeitos dos fármacos , Biologia Sintética/métodos , Células Cultivadas
17.
Cell ; 187(6): 1527-1546.e25, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38412860

RESUMO

G protein-coupled receptors (GPCRs) are the largest family of druggable proteins encoded in the human genome, but progress in understanding and targeting them is hindered by the lack of tools to reliably measure their nuanced behavior in physiologically relevant contexts. Here, we developed a collection of compact ONE vector G-protein Optical (ONE-GO) biosensor constructs as a scalable platform that can be conveniently deployed to measure G-protein activation by virtually any GPCR with high fidelity even when expressed endogenously in primary cells. By characterizing dozens of GPCRs across many cell types like primary cardiovascular cells or neurons, we revealed insights into the molecular basis for G-protein coupling selectivity of GPCRs, pharmacogenomic profiles of anti-psychotics on naturally occurring GPCR variants, and G-protein subtype signaling bias by endogenous GPCRs depending on cell type or upon inducing disease-like states. In summary, this open-source platform makes the direct interrogation of context-dependent GPCR activity broadly accessible.


Assuntos
Técnicas Biossensoriais , Transdução de Sinais , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Ligação ao GTP/metabolismo
18.
Cell ; 187(3): 733-749.e16, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38306984

RESUMO

Autoimmune diseases disproportionately affect females more than males. The XX sex chromosome complement is strongly associated with susceptibility to autoimmunity. Xist long non-coding RNA (lncRNA) is expressed only in females to randomly inactivate one of the two X chromosomes to achieve gene dosage compensation. Here, we show that the Xist ribonucleoprotein (RNP) complex comprising numerous autoantigenic components is an important driver of sex-biased autoimmunity. Inducible transgenic expression of a non-silencing form of Xist in male mice introduced Xist RNP complexes and sufficed to produce autoantibodies. Male SJL/J mice expressing transgenic Xist developed more severe multi-organ pathology in a pristane-induced lupus model than wild-type males. Xist expression in males reprogrammed T and B cell populations and chromatin states to more resemble wild-type females. Human patients with autoimmune diseases displayed significant autoantibodies to multiple components of XIST RNP. Thus, a sex-specific lncRNA scaffolds ubiquitous RNP components to drive sex-biased immunity.


Assuntos
Autoanticorpos , Doenças Autoimunes , RNA Longo não Codificante , Animais , Feminino , Humanos , Masculino , Camundongos , Autoanticorpos/genética , Doenças Autoimunes/genética , Autoimunidade/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Cromossomo X/genética , Cromossomo X/metabolismo , Inativação do Cromossomo X , Caracteres Sexuais
19.
Cell ; 187(3): 526-544, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38306980

RESUMO

Methods from artificial intelligence (AI) trained on large datasets of sequences and structures can now "write" proteins with new shapes and molecular functions de novo, without starting from proteins found in nature. In this Perspective, I will discuss the state of the field of de novo protein design at the juncture of physics-based modeling approaches and AI. New protein folds and higher-order assemblies can be designed with considerable experimental success rates, and difficult problems requiring tunable control over protein conformations and precise shape complementarity for molecular recognition are coming into reach. Emerging approaches incorporate engineering principles-tunability, controllability, and modularity-into the design process from the beginning. Exciting frontiers lie in deconstructing cellular functions with de novo proteins and, conversely, constructing synthetic cellular signaling from the ground up. As methods improve, many more challenges are unsolved.


Assuntos
Inteligência Artificial , Proteínas , Conformação Proteica , Proteínas/química , Proteínas/metabolismo , Engenharia de Proteínas , Aprendizado Profundo
20.
Cell ; 187(4): 882-896.e17, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38295787

RESUMO

Streptococcus anginosus (S. anginosus) was enriched in the gastric mucosa of patients with gastric cancer (GC). Here, we show that S. anginosus colonized the mouse stomach and induced acute gastritis. S. anginosus infection spontaneously induced progressive chronic gastritis, parietal cell atrophy, mucinous metaplasia, and dysplasia in conventional mice, and the findings were confirmed in germ-free mice. In addition, S. anginosus accelerated GC progression in carcinogen-induced gastric tumorigenesis and YTN16 GC cell allografts. Consistently, S. anginosus disrupted gastric barrier function, promoted cell proliferation, and inhibited apoptosis. Mechanistically, we identified an S. anginosus surface protein, TMPC, that interacts with Annexin A2 (ANXA2) receptor on gastric epithelial cells. Interaction of TMPC with ANXA2 mediated attachment and colonization of S. anginosus and induced mitogen-activated protein kinase (MAPK) activation. ANXA2 knockout abrogated the induction of MAPK by S. anginosus. Thus, this study reveals S. anginosus as a pathogen that promotes gastric tumorigenesis via direct interactions with gastric epithelial cells in the TMPC-ANXA2-MAPK axis.


Assuntos
Gastrite , Neoplasias Gástricas , Infecções Estreptocócicas , Streptococcus anginosus , Animais , Humanos , Camundongos , Atrofia/patologia , Carcinogênese , Transformação Celular Neoplásica , Mucosa Gástrica , Gastrite/patologia , Inflamação/patologia , Proteínas Quinases Ativadas por Mitógeno , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia , Streptococcus anginosus/fisiologia , Infecções Estreptocócicas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA