Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 360
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(3): e2312455121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38194450

RESUMO

Type VII secretion systems are membrane-embedded nanomachines used by Gram-positive bacteria to export effector proteins from the cytoplasm to the extracellular environment. Many of these effectors are polymorphic toxins comprised of an N-terminal Leu-x-Gly (LXG) domain of unknown function and a C-terminal toxin domain that inhibits the growth of bacterial competitors. In recent work, it was shown that LXG effectors require two cognate Lap proteins for T7SS-dependent export. Here, we present the 2.6 Å structure of the LXG domain of the TelA toxin from the opportunistic pathogen Streptococcus intermedius in complex with both of its cognate Lap targeting factors. The structure reveals an elongated α-helical bundle within which each Lap protein makes extensive hydrophobic contacts with either end of the LXG domain. Remarkably, despite low overall sequence identity, we identify striking structural similarity between our LXG complex and PE-PPE heterodimers exported by the distantly related ESX type VII secretion systems of Mycobacteria implying a conserved mechanism of effector export among diverse Gram-positive bacteria. Overall, our findings demonstrate that LXG domains, in conjunction with their cognate Lap targeting factors, represent a tripartite secretion signal for a widespread family of T7SS toxins.


Assuntos
Gafanhotos , Toxinas Biológicas , Sistemas de Secreção Tipo VII , Animais , Sistemas de Secreção Tipo VII/genética , Citoplasma
2.
J Cell Sci ; 134(15)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34350965

RESUMO

Septin GTP-binding proteins contribute essential biological functions that range from the establishment of cell polarity to animal tissue morphogenesis. Human septins in cells form hetero-octameric septin complexes containing the ubiquitously expressed SEPT9 subunit (also known as SEPTIN9). Despite the established role of SEPT9 in mammalian development and human pathophysiology, biochemical and biophysical studies have relied on monomeric SEPT9, thus not recapitulating its native assembly into hetero-octameric complexes. We established a protocol that enabled, for the first time, the isolation of recombinant human septin octamers containing distinct SEPT9 isoforms. A combination of biochemical and biophysical assays confirmed the octameric nature of the isolated complexes in solution. Reconstitution studies showed that octamers with either a long or a short SEPT9 isoform form filament assemblies, and can directly bind and cross-link actin filaments, raising the possibility that septin-decorated actin structures in cells reflect direct actin-septin interactions. Recombinant SEPT9-containing octamers will make it possible to design cell-free assays to dissect the complex interactions of septins with cell membranes and the actin and microtubule cytoskeleton.


Assuntos
Citoesqueleto , Septinas , Actinas , Animais , Citoesqueleto/metabolismo , Humanos , Mamíferos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Septinas/genética , Septinas/metabolismo
3.
Mol Biol Rep ; 50(2): 1743-1752, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36446981

RESUMO

Transmissible spongiform encephalopathies (TSEs) or prion diseases consist of a broad range of fatal neurological disorders affecting humans and animals. Contrary to Watson and Crick's 'central dogma', prion diseases are caused by a protein, devoid of DNA involvement. Herein, we briefly review various cellular and biological aspects of prions and prion pathogenesis focusing mainly on historical milestones, biosynthesis, degradation, structure-function of cellular and scrapie forms of prions .


Assuntos
Doenças Priônicas , Príons , Scrapie , Animais , Ovinos , Humanos , Scrapie/genética , Scrapie/metabolismo , Scrapie/patologia , Príons/genética , Doenças Priônicas/genética , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia
4.
J Biol Chem ; 297(5): 101309, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34656563

RESUMO

Tau can adopt distinct fibril conformations in different human neurodegenerative diseases, which may invoke distinct pathological mechanisms. In a recent issue, Weismiller et al. showed that intramolecular disulfide links between cys291 and cys322 for a specific tau isoform containing four microtubule-binding repeats direct the formation of a structurally distinct amyloid polymorph. These findings have implications in how oxidative stress can flip switches of tau polymorphism in these diseases.


Assuntos
Amiloidose , Cisteína , Amiloide/genética , Proteínas Amiloidogênicas , Humanos , Proteínas tau/genética
5.
J Biol Chem ; 297(2): 100981, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34302812

RESUMO

Gram-positive bacteria contain sortase enzymes on their cell surfaces that catalyze transpeptidation reactions critical for proper cellular function. In vitro, sortases are used in sortase-mediated ligation (SML) reactions for a variety of protein engineering applications. Historically, sortase A from Staphylococcus aureus (saSrtA) has been the enzyme of choice to catalyze SML reactions. However, the stringent specificity of saSrtA for the LPXTG sequence motif limits its uses. Here, we describe the impact on substrate selectivity of a structurally conserved loop with a high degree of sequence variability in all classes of sortases. We investigate the contribution of this ß7-ß8 loop by designing and testing chimeric sortase enzymes. Our chimeras utilize natural sequence variation of class A sortases from eight species engineered into the SrtA sequence from Streptococcus pneumoniae. While some of these chimeric enzymes mimic the activity and selectivity of the WT protein from which the loop sequence was derived (e.g., that of saSrtA), others results in chimeric Streptococcus pneumoniae SrtA enzymes that are able to accommodate a range of residues in the final position of the substrate motif (LPXTX). Using mutagenesis, structural comparisons, and sequence analyses, we identify three interactions facilitated by ß7-ß8 loop residues that appear to be broadly conserved or converged upon in class A sortase enzymes. These studies provide the foundation for a deeper understanding of sortase target selectivity and can expand the sortase toolbox for future SML applications.


Assuntos
Aminoaciltransferases/química , Proteínas de Bactérias/química , Domínio Catalítico , Cisteína Endopeptidases/química , Mutação , Engenharia de Proteínas/métodos , Infecções Estafilocócicas/enzimologia , Staphylococcus aureus/enzimologia , Sequência de Aminoácidos , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/química , Staphylococcus aureus/isolamento & purificação , Especificidade por Substrato
6.
Chembiochem ; 22(14): 2478-2485, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33998129

RESUMO

Chemical glycosylation of proteins is a powerful tool applied widely in biomedicine and biotechnology. However, it is a challenging undertaking and typically relies on recombinant proteins and site-specific conjugations. The scope and utility of this nature-inspired methodology would be broadened tremendously by the advent of facile, scalable techniques in glycosylation, which are currently missing. In this work, we investigated a one-pot aqueous protocol to achieve indiscriminate, surface-wide glycosylation of the surface accessible amines (lysines and/or N-terminus). We reveal that this approach afforded minimal if any change in the protein activity and recognition events in biochemical and cell culture assays, but at the same time provided a significant benefit of stabilizing proteins against aggregation and fibrillation - as demonstrated on serum proteins (albumins and immunoglobulin G, IgG), an enzyme (uricase), and proteins involved in neurodegenerative disease (α-synuclein) and diabetes (insulin). Most importantly, this highly advantageous result was achieved via a one-pot aqueous protocol performed on native proteins, bypassing the use of complex chemical methodologies and recombinant proteins.


Assuntos
Doenças Neurodegenerativas , Glicosilação , Lisina
7.
Adv Exp Med Biol ; 1340: 1-9, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34569019

RESUMO

Malaria did not die with the end of the age of western colonization but is still a major public health issue in large parts of the world. Despite repeated and concerted efforts to eradicate this disease, it has proved remarkably resilient, and constant vigilance and continuous research are required to discover new chinks in the parasite's armor and alleviate the suffering at both the individual and societal levels. A deeper understanding of the fundamental processes underlying parasite survival, propagation, virulence, and ability to cause disease is the key to the development of desperately needed new therapies and prophylactic drugs. Malaria parasites, by the nature of their lifecycle, are subject to a number of environmental and cellular stresses which they must overcome to survive. To this end, they express a number of heat shock proteins (HSPs), molecules specialized on buffering the effects of external stimuli, but which are also essential for normal cellular biochemistry. In this introductory chapter, I give a brief overview of the diversity of structure, function, and importance of these HSPs, and highlight some of the current and future research questions in this field. Additionally, this chapter acts as a bridge to the other chapters in this book. These chapters, I think you will agree, demonstrate that with regard to HSPs malaria parasites, as in so many things, obey the adage "Same same, but different."


Assuntos
Malária , Parasitos , Animais , Proteínas de Choque Térmico/genética , Malária/tratamento farmacológico , Plasmodium falciparum/genética , Proteínas de Protozoários/genética
9.
J Biol Inorg Chem ; 22(1): 161-168, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27928630

RESUMO

The alternative, vanadium-dependent nitrogenase is employed by Azotobacter vinelandii for the fixation of atmospheric N2 under conditions of molybdenum starvation. While overall similar in architecture and functionality to the common Mo-nitrogenase, the V-dependent enzyme exhibits a series of unique features that on one hand are of high interest for biotechnological applications. As its catalytic properties differ from Mo-nitrogenase, it may on the other hand also provide invaluable clues regarding the molecular mechanism of biological nitrogen fixation that remains scarcely understood to date. Earlier studies on vanadium nitrogenase were almost exclusively based on a ΔnifHDK strain of A. vinelandii, later also in a version with a hexahistidine affinity tag on the enzyme. As structural analyses remained unsuccessful with such preparations we have developed protocols to isolate unmodified vanadium nitrogenase from molybdenum-depleted, actively nitrogen-fixing A. vinelandii wild-type cells. The procedure provides pure protein at high yields whose spectroscopic properties strongly resemble data presented earlier. Analytical size-exclusion chromatography shows this preparation to be a VnfD2K2G2 heterohexamer.


Assuntos
Azotobacter vinelandii/enzimologia , Molibdênio/farmacologia , Nitrogenase/biossíntese , Nitrogenase/isolamento & purificação , Azotobacter vinelandii/efeitos dos fármacos , Azotobacter vinelandii/crescimento & desenvolvimento , Azotobacter vinelandii/metabolismo , Biocatálise , Meios de Cultura/química , Relação Dose-Resposta a Droga , Nitrogenase/metabolismo
10.
Biochem Biophys Res Commun ; 457(1): 119-23, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25511704

RESUMO

The glucocorticoid receptor (GR) N-terminal domain (NTD) contains a transactivation domain (activation function 1; AF-1). GR AF-1 is phosphorylated, but effects of this modification upon AF-1 activity and cofactor recruitment are not completely clear. GR AF-1 activity is mostly confined to a short unstructured domain called tau1c (amino acids 187-244) that contains three phosphorylation sites and binds a short cysteine rich fragment (CH3) of the coactivator CREB binding protein (CBP). Since the CH3 domain overlaps the CBP transcriptional adaptor zinc binding (TAZ) 2 domain, implicated in phosphorylation dependent binding to other unstructured transcription factor domains, we set out to investigate whether GR interacts with TAZ2 and whether this binding event is modulated by phosphorylation. We find that GR tau1c is absolutely required for enhancement of GR function and GR/CBP association in cultured cells. Tau1c interacts with TAZ2 in vitro and peptide mapping reveals CBP binding determinants throughout tau1c. Phosphorylation at GR Ser203, not involved in transactivation, does not affect tau1c/TAZ2 interactions. However, phosphorylation at Ser211 and Ser226, markers of GR transcriptional activity, greatly enhances TAZ2 binding in a synergistic fashion. We propose that GR tau1c phosphorylation could promote CBP recruitment and enhance AF-1 activity.


Assuntos
Proteína de Ligação a CREB/química , Proteína de Ligação a CREB/metabolismo , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/metabolismo , Ativação Transcricional , Sequência de Aminoácidos , Linhagem Celular , Humanos , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Fosforilação , Fosfosserina/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
11.
STAR Protoc ; 5(4): 103377, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39396233

RESUMO

MYCN amplification is a hallmark of aggressive neuroblastoma, driving N-Myc overexpression and enhancing protein synthesis, making these processes potential therapeutic targets. Here, we present a protocol for quantifying nascent N-Myc and global protein translation in neuroblastoma cells. This protocol describes the steps for labeling nascent proteins and performing an optimized click chemistry reaction directly on the membrane after blotting, enabling high-sensitivity detection and analysis. Adaptable to other proteins of interest, this approach provides valuable insights into neuroblastoma protein synthesis. For complete details on the use and execution of this protocol, please refer to Chittavanich et al.1.

12.
STAR Protoc ; 5(1): 102839, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38261516

RESUMO

Numerous interacting protein partners exist without recognized interactive domains, necessitating a standardized methodology to decipher more in-depth interaction profiles. Here, we present a protocol to reveal the binding partner of a secreted housekeeping enzyme, alcohol acetaldehyde dehydrogenase (Listeria adhesion protein), in Listeria monocytogenes through in silico modeling and in vivo experiments. We describe steps for target protein modeling, biophysical profiling, ClusPro docking optimization, protein variant modeling, and docking comparison. We then provide detailed procedures for in vitro and in vivo protein binding validation. For complete details on the use and execution of this protocol, please refer to Liu et al.1.


Assuntos
Listeria monocytogenes , Listeria , Listeria/metabolismo , Simulação por Computador , Ligação Proteica
13.
STAR Protoc ; 5(2): 103054, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38704832

RESUMO

Palmitoylation is a post-translational lipid modification in which palmitic acid is conjugated predominantly to cysteine residues of target proteins, allowing them to tether to cell membranes. Here, we describe a protocol to perform a stepwise acyl biotin exchange assay to identify protein S-palmitoylation. We describe steps for initial blocking of free thiols in protein lysates, subsequent replacement of thioester-linked palmitate groups with a biotin tag for affinity enrichment, and identification of palmitoylated proteins by SDS-PAGE. For complete details on the use and execution of this protocol, please refer to Leishman et al.1.


Assuntos
Biotina , Lipoilação , Biotina/química , Biotina/metabolismo , Humanos , Processamento de Proteína Pós-Traducional , Células Cultivadas , Eletroforese em Gel de Poliacrilamida/métodos
14.
STAR Protoc ; 5(2): 103064, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38743568

RESUMO

Many techniques exist for the identification of protein interaction networks. We present a protocol that relies on an affinity purification-mass spectrometry (AP-MS) approach to detect proteins that co-purify with a tagged bait of interest from Drosophila melanogaster larval muscles using the GAL4/upstream activating sequence (UAS) expression system. We also describe steps for the isolation and identification of protein complexes, followed by streamlined bioinformatics analysis for rapid and reproducible results. This protocol can be extended to investigate protein interactions in other tissues. For complete details on the use and execution of this protocol, please refer to Guo et al.1.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Larva , Espectrometria de Massas , Animais , Drosophila melanogaster/metabolismo , Larva/metabolismo , Espectrometria de Massas/métodos , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Cromatografia de Afinidade/métodos , Mapeamento de Interação de Proteínas/métodos , Biologia Computacional/métodos
15.
STAR Protoc ; 5(2): 103074, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771695

RESUMO

Lysine malonylation is a protein posttranslational modification. We present a protocol to generate stable gene-knockdown K562 cell lines through lentiviral infection of a CRISPR interference (CRISPRi) system followed by lysine malonylation measurement using mass spectrometry (MS). We detail guide RNA (gRNA) vector cloning, lentiviral infection, cell line purification, protein digestion, malonyl-lysine enrichment, desalting, and MS acquisition and analysis. For complete details on the use and execution of this protocol, please refer to Zhang et al.1 and Bons et al.2.


Assuntos
Lisina Acetiltransferases , Lisina , Espectrometria de Massas , Humanos , Células K562 , Lisina/metabolismo , Espectrometria de Massas/métodos , Lisina Acetiltransferases/metabolismo , Lisina Acetiltransferases/genética , Sistemas CRISPR-Cas , Processamento de Proteína Pós-Traducional , Malonatos/metabolismo , RNA Guia de Sistemas CRISPR-Cas/metabolismo
16.
STAR Protoc ; 5(3): 103185, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39078738

RESUMO

The aggregation and spreading of "tau-seeds" are key for the development and progression of tauopathies, including Alzheimer's disease. Here we describe the steps to isolate and analyze biochemically active tau-seeds from human, mouse, and cell origin. We detail the procedure to isolate soluble tau-seeds by size exclusion chromatography and seeding assay. The isolated tau-seed can be further analyzed to determine the interactome by mass spectrometry. This workflow identifies protein-protein interactors of tau-seeds, providing a useful tool for finding new therapeutic targets. For complete details on the use and execution of this protocol, please refer to Martinez et al.1.


Assuntos
Proteômica , Proteínas tau , Proteínas tau/metabolismo , Proteínas tau/isolamento & purificação , Proteínas tau/análise , Proteômica/métodos , Humanos , Animais , Camundongos , Cromatografia em Gel/métodos , Tauopatias/metabolismo , Doença de Alzheimer/metabolismo , Espectrometria de Massas/métodos
17.
STAR Protoc ; 5(3): 103126, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39088326

RESUMO

Engagement of TRAIL or Fas death receptors can trigger the assembly of cytoplasmic caspase-8/FADD/RIPK1 (FADDosome) signaling complexes that promote nuclear factor κB (NF-κB) activation. Here, we present a protocol for immunoprecipitation of TRAIL- or Fas-induced FADDosomes from human cell lines. We describe steps for stimulating human cells with TRAIL or Fas ligand, followed by preparation of membrane death receptor-associated, as well as cytoplasmic FADDosome, signaling complexes. This protocol has application in the analysis of death receptor-induced signaling complex formation. For complete details on the use and execution of this protocol, please refer to Davidovich et al.1.


Assuntos
Proteína de Domínio de Morte Associada a Fas , Imunoprecipitação , Transdução de Sinais , Ligante Indutor de Apoptose Relacionado a TNF , Receptor fas , Humanos , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Imunoprecipitação/métodos , Proteína de Domínio de Morte Associada a Fas/metabolismo , Receptor fas/metabolismo , Proteína Ligante Fas/metabolismo , Caspase 8/metabolismo , Linhagem Celular , NF-kappa B/metabolismo
18.
STAR Protoc ; 5(3): 103235, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39116197

RESUMO

Selenoprotein thioredoxin reductase 1 (TXNRD1) is a promising therapeutic target, with several inhibitors reported to inhibit TXNRD1 activity. These inhibitors have the potential for applications such as anti-tumor medications. Here, we present a protocol for assessing irreversible inhibitors of TXNRD1. We describe four assays covering cellular TXNRD activity measurement, recombinant enzyme-based activity determination, differential scanning fluorimetry (DSF), and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. This protocol will facilitate the screening and development of potential small-molecule inhibitors of TXNRD1.


Assuntos
Inibidores Enzimáticos , Espectrometria de Massas em Tandem , Tiorredoxina Redutase 1 , Humanos , Tiorredoxina Redutase 1/antagonistas & inibidores , Tiorredoxina Redutase 1/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Fluorometria/métodos
19.
STAR Protoc ; 5(3): 103220, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39068654

RESUMO

AS1411-NCL-MDM2-based proteolysis-targeting chimeras (ANM-PROTACs) are capable of inducing selective degradation of transcription factors (TFs) in tumor cells. Here, we present a protocol for constructing ANM-PROTACs. We describe steps for molecular design of the ANM-PROTACs, assembly and characterization of the ANM-PROTACs, and initial assessment of in vitro TF degradation potency. We then detail procedures for validation of selective degradation of TFs via proteomic analysis. This protocol has been successfully applied to degrade various TFs across multiple tumor cell lines. For complete details on the use and execution of this protocol, please refer to Fu et al.1.


Assuntos
Proteólise , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Neoplasias/metabolismo , Proteômica/métodos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Quimera de Direcionamento de Proteólise
20.
STAR Protoc ; 5(4): 103369, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39392748

RESUMO

We present a protocol for the in vitro detection of spontaneous termination of yeast RNA polymerase II (RNAPII) transcription using bead-immobilized elongation complexes (ECs). We describe the steps for EC assembly, ligation to a long transcription template, and the in vitro elongation and termination reactions. Our protocol has proven successful for identifying spontaneous termination in the yeast CYC1 terminator. For complete details on the use and execution of this protocol, please refer to Han et al.1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA