Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38818673

RESUMO

PURPOSE: To study implant lead tip heating because of the RF power deposition by developing mathematical models and comparing them with measurements acquired at 1.5 T and 3 T, especially to predict resonant length. THEORY AND METHODS: A simple exponential model and an adapted transmission line model for the electric field transfer function were developed. A set of wavenumbers, including that calculated from insulated antenna theory (King wavenumber) and that of the embedding medium were considered. Experiments on insulated, capped wires of varying lengths were performed to determine maximum temperature rise under RF exposure. The results are compared with model predictions from analytical expressions derived under the assumption of a constant electric field, and with those numerically calculated from spatially varying, simulated electric fields from body coil transmission. Simple expressions for the resonant length bounded between one-quarter and one-half wavelength are developed based on the roots of transcendental equations. RESULTS: The King wavenumber for both models more closely matched the experimental data with a maximum root mean square error of 9.81°C at 1.5 T and 5.71°C at 3 T compared to other wavenumbers with a maximum root mean square error of 27.52°C at 1.5 T and 22.01°C for 3 T. Resonant length was more accurately predicted compared to values solely based on the embedding medium. CONCLUSION: Analytical expressions were developed for implanted lead heating and resonant lengths under specific assumptions. The value of the wavenumber has a strong effect on the model predictions. Our work could be used to better manage implanted device lead tip heating.

2.
Magn Reson Med ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860561

RESUMO

PURPOSE: A previously published method for MRI-based transfer function assessment makes use of the so-called transceive phase assumption (TPA). This limits its applicability to shorter leads and/or lower field strengths. A new method is presented where the background electric field is determined from both B 1 + $$ {\mathrm{B}}_1^{+} $$ - and B 1 - $$ {\mathrm{B}}_1^{-} $$ -field distributions, avoiding the TPA and making it more generally applicable. THEORY AND METHODS: These B 1 $$ {\mathrm{B}}_1 $$ -distributions are determined from a spoiled gradient echo multiflip angle acquisition. From the separated B 1 $$ {\mathrm{B}}_1 $$ -components the background electrical field and the induced current are computed. Further improvement is achieved by recasting the B 1 $$ {\mathrm{B}}_1 $$ -field model as a "magnitude squared least squares" problem. The proposed reconstruction method is used to determine transfer functions of various copper wire lengths up to 40 cm inside an elliptical ASTM phantom. The method is first tested on EM-simulated data and subsequently phantom and bench measurements are used to determine transfer functions experimentally. RESULTS: In silica reconstructions demonstrate the validity of the proposed B 1 $$ {\mathrm{B}}_1 $$ -field model resulting in highly accurate reconstructed B 1 $$ {\mathrm{B}}_1 $$ -fields, currents, incident electric fields and transfer functions. The experimental results show slight deviations in the field model, however, resulting transfer functions are accurately determined with high similarity to simulations and comparable to bench measurements. CONCLUSION: A more generally applicable method for MRI-based transfer function assessment is presented. The proposed method circumvents phase assumptions making it applicable for longer objects and/or higher field strengths. Additional improvements are implemented in the B 1 $$ {\mathrm{B}}_1 $$ -mapping method and the solution algorithm.

3.
Strahlenther Onkol ; 200(6): 512-522, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38177701

RESUMO

BACKGROUND: Hyperthermia treatment quality is usually evaluated by thermal (dose) parameters, though hyperthermic radiosensitization effects are also influenced by the time interval between the two modalities. This work applies biological modelling for clinical treatment evaluation of cervical cancer patients treated with radiotherapy plus hyperthermia by calculating the equivalent radiation dose (EQDRT, i.e., the dose needed for the same effect with radiation alone). Subsequent analyses evaluate the impact of logistics. METHODS: Biological treatment evaluation was performed for 58 patients treated with 23-28 fractions of 1.8-2 Gy plus 4-5 weekly hyperthermia sessions. Measured temperatures (T50) and recorded time intervals between the radiotherapy and hyperthermia sessions were used to calculate the EQDRT using an extended linear quadratic (LQ) model with hyperthermic LQ parameters based on extensive experimental data. Next, the impact of a 30-min time interval (optimized logistics) as well as a 4­h time interval (suboptimal logistics) was evaluated. RESULTS: Median average measured T50 and recorded time intervals were 41.2 °C (range 39.7-42.5 °C) and 79 min (range 34-125 min), respectively, resulting in a median total dose enhancement (D50) of 5.5 Gy (interquartile range [IQR] 4.0-6.6 Gy). For 30-min time intervals, the enhancement would increase by ~30% to 7.1 Gy (IQR 5.5-8.1 Gy; p < 0.001). In case of 4­h time intervals, an ~ 40% decrease in dose enhancement could be expected: 3.2 Gy (IQR 2.3-3.8 Gy; p < 0.001). Normal tissue enhancement was negligible (< 0.3 Gy), even for short time intervals. CONCLUSION: Biological treatment evaluation is a useful addition to standard thermal (dose) evaluation of hyperthermia treatments. Optimizing logistics to shorten time intervals seems worthwhile to improve treatment efficacy.


Assuntos
Hipertermia Induzida , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/radioterapia , Neoplasias do Colo do Útero/terapia , Hipertermia Induzida/métodos , Pessoa de Meia-Idade , Terapia Combinada , Resultado do Tratamento , Modelos Biológicos , Adulto , Idoso , Dosagem Radioterapêutica , Fracionamento da Dose de Radiação
4.
Magn Reson Med ; 90(6): 2510-2523, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37526134

RESUMO

PURPOSE: After epicardial cardiac implantable electronic devices are implanted in pediatric patients, they become ineligible to receive MRI exams due to an elevated risk of RF heating. We investigated whether simple modifications in the trajectories of epicardial leads could substantially and reliably reduce RF heating during MRI at 1.5 T, with benefits extending to abandoned leads. METHODS: Electromagnetic simulations were performed to assess RF heating of two common 35-cm epicardial lead trajectories exhibiting different degrees of coupling with MRI incident electric fields. Experiments in anthropomorphic phantoms implanted with commercial cardiac implantable electronic devices confirmed the findings. Both electromagnetic simulations and experimental measurements were performed using head-first and feet-first positioning and various landmarks. Transfer function approach was used to assess the performance of suggested modifications in realistic body models. RESULTS: Simulations (head-first, chest landmark) of a 35-cm epicardial lead with a trajectory where the excess length of the lead was looped and placed on the inferior surface of the heart showed an 87-fold reduction in the 0.1 g-averaged specific absorption rate compared with the lead where the excess length was looped on the anterior surface. Repeated experiments with a commercial epicardial device confirmed this. For fully implanted systems following low-specific absorption rate trajectories, there was a 16-fold reduction in the average temperature rise and a 28-fold reduction for abandoned leads. The transfer function method predicted a 7-fold reduction in the RF heating in 336 realistic scenarios. CONCLUSION: Surgical modification of epicardial lead trajectory can substantially reduce RF heating at 1.5 T, with benefits extending to abandoned leads.


Assuntos
Calefação , Próteses e Implantes , Humanos , Criança , Coração , Temperatura , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Ondas de Rádio , Temperatura Alta
5.
Magn Reson Med ; 90(6): 2608-2626, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37533167

RESUMO

PURPOSE: To investigate a novel reduced RF heating method for imaging in the presence of active implanted medical devices (AIMDs) which employs a sensor-equipped implant that provides wireless feedback. METHODS: The implant, consisting of a generator case and a lead, measures RF-induced E $$ E $$ -fields at the implant tip using a simple sensor in the generator case and transmits these values wirelessly to the MR scanner. Based on the sensor signal alone, parallel transmission (pTx) excitation vectors were calculated to suppress tip heating and maintain image quality. A sensor-based imaging metric was introduced to assess the image quality. The methodology was studied at 7T in testbed experiments, and at a 3T scanner in an ASTM phantom containing AIMDs instrumented with six realistic deep brain stimulation (DBS) lead configurations adapted from patients. RESULTS: The implant successfully measured RF-induced E $$ E $$ -fields (Pearson correlation coefficient squared [R2 ] = 0.93) and temperature rises (R2 = 0.95) at the implant tip. The implant acquired the relevant data needed to calculate the pTx excitation vectors and transmitted them wirelessly to the MR scanner within a single shot RF sequence (<60 ms). Temperature rises for six realistic DBS lead configurations were reduced to 0.03-0.14 K for heating suppression modes compared to 0.52-3.33 K for the worst-case heating, while imaging quality remained comparable (five of six lead imaging scores were ≥0.80/1.00) to conventional circular polarization (CP) images. CONCLUSION: Implants with sensors that can communicate with an MR scanner can substantially improve safety for patients in a fast and automated manner, easing the current burden for MR personnel.


Assuntos
Estimulação Encefálica Profunda , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Próteses e Implantes , Imagens de Fantasmas , Temperatura Alta , Ondas de Rádio
6.
NMR Biomed ; 36(7): e4900, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36624556

RESUMO

To protect implant carriers in MRI from excessive radiofrequency (RF) heating it has previously been suggested to assess that hazard via sensors on the implant. Other work recommended parallel transmission (pTx) to actively mitigate implant-related heating. Here, both ideas are integrated into one comprehensive safety concept where native pTx safety (without implant) is ensured by state-of-the-art field simulations and the implant-specific hazard is quantified in situ using physical sensors. The concept is demonstrated by electromagnetic simulations performed on a human voxel model with a simplified spinal-cord implant in an eight-channel pTx body coil at 3 T . To integrate implant and native safety, the sensor signal must be calibrated in terms of an established safety metric (e.g., specific absorption rate [SAR]). Virtual experiments show that E -field and implant-current sensors are well suited for this purpose, while temperature sensors require some caution, and B 1 probes are inadequate. Based on an implant sensor matrix Q s , constructed in situ from sensor readings, and precomputed native SAR limits, a vector space of safe RF excitations is determined where both global (native) and local (implant-related) safety requirements are satisfied. Within this safe-excitation subspace, the solution with the best image quality in terms of B 1 + magnitude and homogeneity is then found by a straightforward optimization algorithm. In the investigated example, the optimized pTx shim provides a 3-fold higher mean B 1 + magnitude compared with circularly polarized excitation for a maximum implant-related temperature increase ∆ T imp ≤ 1 K . To date, sensor-equipped implants interfaced to a pTx scanner exist as demonstrator items in research labs, but commercial devices are not yet within sight. This paper aims to demonstrate the significant benefits of such an approach and how this could impact implant-related RF safety in MRI. Today, the responsibility for safe implant scanning lies with the implant manufacturer and the MRI operator; within the sensor concept, the MRI manufacturer would assume much of the operator's current responsibility.


Assuntos
Temperatura Alta , Ondas de Rádio , Humanos , Simulação por Computador , Imagens de Fantasmas , Imageamento por Ressonância Magnética/métodos
7.
Zhongguo Yi Liao Qi Xie Za Zhi ; 47(5): 497-501, 2023 Sep 30.
Artigo em Zh | MEDLINE | ID: mdl-37753886

RESUMO

In MRI examination, RF heating of implants will affect the safety of implant wearers. The conductivity of various tissues in the human body is significantly different, and the medium conductivity will affect the distribution of the RF electric field. Therefore, it is necessary to study the RF heating of different medium conductivity. Based on the analysis of the principle of MRI RF heating, this study build the model of the bird cage coil, ASTM standard phantom and lead, and the conductivity of several typical human tissues is selected as the conductivity in the experiment. Then calculate the power deposition of the lead at 64 MHz. The results show that the medium conductivity has no effect on the distribution of electric field and power deposition, and the hot spot distribution remains unchanged under different conductivity; The smaller the conductivity is, the larger the power deposition of the lead is, and the greater the temperature rise of the lead caused by RF heating is; The change of conductivity and power deposition is approximately linear. At the limit of 2 W/kg whole body specific absorption rate(SAR), the conductivity decreases, and the wire power deposition increases sharply.

8.
Neuroimage ; 254: 119129, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35331868

RESUMO

OBJECTIVES: Simultaneous intracranial EEG and functional MRI (icEEG-fMRI) recordings in humans, whereby EEG is recorded from electrodes implanted inside the cranium during fMRI scanning, were made possible following safety studies on test phantoms and our specification of a rigorous data acquisition protocol. In parallel with this work, other investigations in our laboratory revealed the damage caused by the EEG electrode implantation procedure at the cellular level. The purpose of this report is to further explore the safety of performing MRI, including simultaneous icEEG-fMRI data acquisitions, in the presence of implanted intra-cranial EEG electrodes, by presenting some histopathological and heat-shock immunopositive labeling observations in surgical tissue samples from patients who underwent the scanning procedure. METHODS: We performed histopathology and heat shock protein expression analyses on surgical tissue samples from nine patients who had been implanted with icEEG electrodes. Three patients underwent icEEG-fMRI and structural MRI (sMRI); three underwent sMRI only, all at similar time points after icEEG implantation; and three who did not undergo functional or sMRI with icEEG electrodes. RESULTS: The histopathological findings from the three patients who underwent icEEG-fMRI were similar to those who did not, in that they showed no evidence of additional damage in the vicinity of the electrodes, compared to cases who had no MRI with implanted icEEG electrodes. This finding was similar to our observations in patients who only underwent sMRI with implanted icEEG electrodes. CONCLUSION: This work provides unique evidence on the safety of functional MRI in the presence of implanted EEG electrodes. In the cases studied, icEEG-fMRI performed in accordance with our protocol based on low-SAR (≤0.1 W/kg) sequences at 1.5T using a head-transmit RF coil, did not result in measurable additional damage to the brain tissue in the vicinity of implanted electrodes. Furthermore, while one cannot generalize the results of this study beyond the specific electrode implantation and scanning conditions described herein, we submit that our approach is a useful framework for the post-hoc safety assessment of MR scanning with brain implants.


Assuntos
Eletrocorticografia , Eletroencefalografia , Eletrodos Implantados/efeitos adversos , Eletroencefalografia/métodos , Humanos , Imuno-Histoquímica , Imageamento por Ressonância Magnética/métodos , Ondas de Rádio
9.
Magn Reson Med ; 87(3): 1515-1528, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34775615

RESUMO

PURPOSE: There is increasing use of open-bore vertical MR systems that consist of two planar RF coils. A recent study showed that the RF-induced heating of a neuromodulation device was much lower in the open-bore system at the brain and the chest imaging landmarks. This study focused on the hip and knee implants and compared the specific absorption rate (SAR) distribution in human models in a 1.2T open-bore coil with that of a 1.5T conventional birdcage coil. METHODS: Computational modeling results were compared against the measurement values using a saline phantom. The differences in RF exposure were examined between a 1.2T open-bore coil and a 1.5T conventional birdcage coil using SAR in an anatomical human model. RESULTS: Modeling setups were validated. The body placed closed to the coil elements led to high SAR values in the birdcage system compared with the open-bore system. CONCLUSION: Our computational modeling showed that the 1.2T planar system demonstrated a lower intensity of SAR distribution adjacent to hip and knee implants compared with the 1.5T conventional birdcage system.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Calefação , Humanos , Imagens de Fantasmas , Próteses e Implantes
10.
Magn Reson Med ; 87(6): 2997-3010, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35092069

RESUMO

PURPOSE: To protect patients from RF heating in MRI scan, this work proposes an accurate and patient-specific whole-body specific absorption rate (SAR) characterization method based on an equivalent circuit model. Compared to the standard pulse energy method defined in NEMA MS 8-2016, this method avoids the complexity of integrating flux loops and has the potential to be easily implemented in MRI scanners. THEORY AND METHODS: In this study, we use an equivalent parallel circuit to model the power distribution on the transmit coil and subject. The coil and subject equivalent resistances are fitted by the frequency response functions of reflection coefficient and are thereafter used to calculate the power ratio between them. To assess the accuracy of this method, we measured the subject absorbed power of 2 phantoms and 5 volunteers and compared it with the standard pulse energy method with flux loops. RESULTS: The resistances, resonant frequencies, and quality factors of the transmit coil are fitted with the equivalent circuit model in both unloaded and loaded conditions. Whole-body SAR of 5 volunteers is measured at 2 different landmarks. In addition, the relationship between SAR and the working frequencies of the transmit coil is measured and analyzed. The subject absorbed power measured by the proposed method demonstrates good accuracy (RMS error and maximum error of 3.77% and 9.47%, respectively) relative to the flux loop method. CONCLUSION: The equivalent circuit model-based method enables individualized, accurate, and simplified SAR characterization for clinical applications and research with moderate implementation complexity.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Calefação , Humanos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas
11.
Magn Reson Med ; 87(6): 2933-2946, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35092097

RESUMO

PURPOSE: In this study, the effects of RF coupling on the magnitude and spatial patterns of RF-induced heating near multiple wire-like conducting implants (such as simultaneous electrical stimulation of stereoelectroencephalography electrodes) during MRI were assessed. METHODS: Simulations and experimental measurements of RF-induced temperature increases near partially immersed wire-like conductors were performed using a phantom with a transmit/receive head coil on a 3T MRI system. The conductors consisted of either a pair of wires or a single simultaneous electrical stimulation of stereoelectroencephalography electrode with multiple contacts, and the locations and lengths of the conductors were varied to study the effect of electromagnetic coupling on RF-induced heating. RESULTS: The temperature increase near a wire within the phantom was dependent not only on its own location and length, but also on the locations and lengths of the other partially immersed wires. In the configurations that were studied, the presence of a second implant could increase the heating near the tip of the conductor by as much as 95%. CONCLUSION: The level of RF-induced heating during an MR scan is affected significantly by RF coupling when more than one wire-like implant is present. In some of the configurations studied, the heating was increased by the presence of a second conductor partially immersed in the phantom. Thus, RF coupling is an important factor to consider in the assessment of safety issues for MRI when multiple implants are present.


Assuntos
Calefação , Ondas de Rádio , Eletrodos , Temperatura Alta , Imageamento por Ressonância Magnética , Imagens de Fantasmas
12.
Magn Reson Med ; 87(5): 2464-2480, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34958685

RESUMO

PURPOSE: To evaluate the safety of MRI in patients with fragmented retained leads (FRLs) through numerical simulation and phantom experiments. METHODS: Electromagnetic and thermal simulations were performed to determine the worst-case RF heating of 10 patient-derived FRL models during MRI at 1.5 T and 3 T and at imaging landmarks corresponding to head, chest, and abdomen. RF heating measurements were performed in phantoms implanted with reconstructed FRL models that produced highest heating in numerical simulations. The potential for unintended tissue stimulation was assessed through a conservative estimation of the electric field induced in the tissue due to gradient-induced voltages developed along the length of FRLs. RESULTS: In simulations under conservative approach, RF exposure at B1+ ≤ 2 µT generated cumulative equivalent minutes (CEM)43 < 40 at all imaging landmarks at both 1.5 T and 3 T, indicating no thermal damage for acquisition times (TAs) < 10 min. In experiments, the maximum temperature rise when FRLs were positioned at the location of maximum electric field exposure was measured to be 2.4°C at 3 T and 2.1°C at 1.5 T. Electric fields induced in the tissue due to gradient-induced voltages remained below the threshold for cardiac tissue stimulation in all cases. CONCLUSIONS: Simulation and experimental results indicate that patients with FRLs can be scanned safely at both 1.5 T and 3 T with most clinical pulse sequences.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Coração/diagnóstico por imagem , Calefação , Temperatura Alta , Humanos , Imageamento por Ressonância Magnética/efeitos adversos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas
13.
Magn Reson Med ; 87(1): 509-527, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34397114

RESUMO

PURPOSE: Rapid detection and mitigation of radiofrequency (RF)-induced implant heating during MRI based on small and low-cost embedded sensors. THEORY AND METHODS: A diode and a thermistor are embedded at the tip of an elongated mock implant. RF-induced voltages or temperature change measured by these root mean square (RMS) sensors are used to construct the sensor Q-Matrix (QS ). Hazard prediction, monitoring and parallel transmit (pTx)-based mitigation using these sensors is demonstrated in benchtop measurements at 300 MHz and within a 3T MRI. RESULTS: QS acquisition and mitigation can be performed in <20 ms demonstrating real-time capability. The acquisitions can be performed using safe low powers (<3 W) due to the high reading precision of the diode (126 µV) and thermistor (26 µK). The orthogonal projection method used for pTx mitigation was able to reduce the induced signals and temperatures in all 155 investigated locations. Using the QS approach in a pTx capable 3T MRI with either a two-channel body coil or an eight-channel head coil, RF-induced heating was successfully assessed, monitored and mitigated while the image quality outside the implant region was preserved. CONCLUSION: Small (<1.5 mm3 ) and low-cost (<1 €) RMS sensors embedded in an implant can provide all relevant information to predict, monitor and mitigate RF-induced heating in implants, while preserving image quality. The proposed pTx-based QS approach is independent of simulations or in vitro testing and therefore complements these existing safety assessments.


Assuntos
Calefação , Temperatura Alta , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Próteses e Implantes , Ondas de Rádio
14.
Magn Reson Med ; 86(4): 2156-2164, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34080721

RESUMO

PURPOSE: The risks of RF-induced heating of active implantable medical device (AIMD) leads during MR examinations must be well understood and realistically assessed. In this study, we evaluate the potential additional risks of broken and abandoned (cut) leads. METHODS: First, we defined a generic AIMD with a metallic implantable pulse generator (IPG) and a 100-cm long lead containing 1 or 2 wires. Next, we numerically estimated the deposited in vitro lead-tip power for an intact lead, as well as with wire breaks placed at 10 cm intervals. We studied the effect of the break size (wire gap width), as well as the presence of an intact wire parallel to the broken wire, and experimentally validated the numeric results for the configurations with maximum deposited in vitro lead-tip power. Finally, we performed a Tier 3 assessment of the deposited in vivo lead-tip power for the intact and broken lead in 4 high resolution virtual population anatomic models for over 54,000 MR examination scenarios. RESULTS: The enhancement of the deposited lead-tip power for the broken leads, compared to the intact lead, reached 30-fold in isoelectric exposure, and 16-fold in realistic clinical exposures. The presence of a nearby intact wire, or even a nearby broken wire, reduced this enhancement factor to <7-fold over the intact lead. CONCLUSION: Broken and abandoned leads can pose increased risk of RF-induced lead-tip heating to patients undergoing MR examinations. The potential enhancement of deposited in vivo lead-tip power depends on location and type of the wire break, lead design, and clinical routing of the lead, and should be carefully considered when performing risk assessment for MR examinations and MR conditional labeling.


Assuntos
Calefação , Imageamento por Ressonância Magnética , Temperatura Alta , Humanos , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas , Próteses e Implantes/efeitos adversos , Ondas de Rádio/efeitos adversos
15.
Magn Reson Med ; 85(3): 1282-1293, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32936510

RESUMO

PURPOSE: A MR thermometry (MRT) method with field monitoring is proposed to improve the measurement of small temperature variations induced in brain MRI exams. METHODS: MR thermometry experiments were performed at 7 Tesla with concurrent field monitoring and RF heating. Images were reconstructed with nominal k-space trajectories and with first-order spherical harmonics correction. Experiments were performed in vitro with deliberate field disturbances and on an anesthetized macaque in 2 different specific absorption rate regimes, that is, at 50% and 100% of the maximal specific absorption rate level allowed in the International Electrotechnical Commission normal mode of operation. Repeatability was assessed by running a second separate session on the same animal. RESULTS: Inclusion of magnetic field fluctuations in the reconstruction improved temperature measurement accuracy in vitro down to 0.02°C. Measurement precision in vivo was on the order of 0.15°C in areas little affected by motion. In the same region, temperature increase reached 0.5 to 0.8°C after 20 min of heating at 100% specific absorption rates and followed a rough factor of 2 with the 50% specific absorption rate scans. A horizontal temperature plateau, as predicted by Pennes bioheat model with thermal constants from the literature and constant blood temperature assumption, was not observed. CONCLUSION: Inclusion of field fluctuations in image reconstruction was beneficial for the measurement of small temperature rises encountered in standard brain exams. More work is needed to correct for motion-induced field disturbances to extract reliable temperature maps.


Assuntos
Calefação , Termometria , Animais , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Temperatura
16.
Magn Reson Med ; 86(3): 1560-1572, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33961301

RESUMO

PURPOSE: Patients with active implants such as deep brain stimulation (DBS) devices are often denied access to MRI due to safety concerns associated with the radiofrequency (RF) heating of their electrodes. The majority of studies on RF heating of conductive implants have been performed in horizontal close-bore MRI scanners. Vertical MRI scanners which have a 90° rotated transmit coil generate fundamentally different electric and magnetic field distributions, yet very little is known about RF heating of implants in this class of scanners. We performed numerical simulations as well as phantom experiments to compare RF heating of DBS implants in a 1.2T vertical scanner (OASIS, Hitachi) compared to a 1.5T horizontal scanner (Aera, Siemens). METHODS: Simulations were performed on 90 lead models created from post-operative CT images of patients with DBS implants. Experiments were performed with wires and commercial DBS devices implanted in an anthropomorphic phantom. RESULTS: We found significant reduction of 0.1 g-averaged specific absorption rate (30-fold, P < 1 × 10-5 ) and RF heating (9-fold, P < .026) in the 1.2T vertical scanner compared to the 1.5T conventional scanner. CONCLUSION: Vertical MRI scanners appear to generate lower RF heating around DBS leads, providing potentially heightened safety or the flexibility to use sequences with higher power levels than on conventional systems.


Assuntos
Estimulação Encefálica Profunda , Eletrodos Implantados , Temperatura Alta , Humanos , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Ondas de Rádio
17.
J Magn Reson Imaging ; 53(2): 599-610, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32860322

RESUMO

BACKGROUND: Patients with deep brain stimulation (DBS) implants have limited access to MRI due to safety concerns associated with RF-induced heating. Currently, MRI in these patients is allowed in 1.5T horizontal bore scanners utilizing pulse sequences with reduced power. However, the use of 3T MRI in such patients is increasingly reported based on limited safety assessments. Here we present the results of comprehensive RF heating measurements for two commercially available DBS systems during MRI at 1.5T and 3T. PURPOSE: To assess the effect of imaging landmark, DBS lead configuration, and patient's body composition on RF heating of DBS leads during MRI at 1.5T and 3T. STUDY TYPE: Phantom and ex vivo study. POPULATION/SUBJECTS/PHANTOM/SPECIMEN/ANIMAL MODEL: Gel phantoms and cadaver brain. FIELD STRENGTH/SEQUENCE: 1.5T and 3T, T1 -weighted turbo spin echo. ASSESSMENT: RF heating was measured at the tips of DBS leads implanted in brain-mimicking gel. Image artifact was assessed in a cadaver brain implanted with an isolated DBS lead. STATISTICAL TESTS: Descriptive. RESULTS: We observed substantial fluctuation in RF heating, mainly affected by phantom composition and DBS lead configuration, ranging from 0.14°C to 23.73°C at 1.5T, and from 0.10°C to 7.39°C at 3T. The presence of subcutaneous fat substantially altered RF heating at the electrode tips (3.06°C < ∆T < 19.05° C). Introducing concentric loops in the extracranial portion of the lead at the surgical burr hole reduced RF heating by up to 89% at 1.5T and up to 98% at 3T compared to worst-case heating scenarios. DATA CONCLUSION: Device configuration and patient's body composition substantially altered the RF heating of DBS leads during MRI. Interestingly, certain lead trajectories consistently reduced RF heating and image artifact. Level of Evidence 1 Technical Efficacy Stage 1 J. MAGN. RESON. IMAGING 2021;53:599-610.


Assuntos
Estimulação Encefálica Profunda , Calefação , Artefatos , Composição Corporal , Humanos , Imageamento por Ressonância Magnética , Imagens de Fantasmas
18.
Crit Rev Food Sci Nutr ; 61(3): 380-394, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32156148

RESUMO

Recent pathogen incidents have forced food industry to seek for alternative processes in postharvest pasteurization of agricultural commodities. Radio frequency (RF) heating has been used as one alternative treatment to replace chemical fumigation and other conventional thermal methods since it is relatively easy to apply and leaves no chemical residues. RF technology transfers electromagnetic energy into large bulk volume of the products to provide a fast and volumetric heating. There are two types of RF technology commonly applied in lab and industry to generate the heat energy: free running oscillator and 50-Ω systems. Several reviews have been published to introduce the application of RF heating in food processing. However, few reviews have a comprehensive summary of RF treatment for pasteurizing agricultural products. The objective of this review was to introduce the developments in the RF pasteurization of agricultural commodities and to present future directions of the RF heating applications. While the recent developments in the RF pasteurization were presented, thermal death kinetics of targeted pathogens as influenced by water activity, pathogen species and heating rates, non-thermal effects of RF heating, combining RF heating with other technologies for pasteurization, RF heating uniformity improvements using computer simulation and development of practical RF pasteurization processes were also focused. This review is expected to provide a comprehensive understanding of RF pasteurization for agricultural products and promote the industrial-scale applications of RF technology with possible process protocol optimization purposes.


Assuntos
Pasteurização , Ondas de Rádio , Simulação por Computador , Calefação , Temperatura Alta
19.
Magn Reson Med ; 83(3): 1081-1095, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31631400

RESUMO

PURPOSE: A purely experimental method for MRI-based transfer function (TF) determination is presented. A TF characterizes the potential for radiofrequency heating of a linear implant by relating the incident tangential electric field to a scattered electric field at its tip. We utilize the previously introduced transfer matrix (TM) to determine transfer functions solely from the MR measurable quantities, that is, the B1+ and transceive phase distributions. This technique can extend the current practice of phantom-based TF assessment with dedicated experimental setup toward MR-based methods that have the potential to assess the TF in more realistic situations. THEORY AND METHODS: An analytical description of the B1+ magnitude and transceive phase distribution around a wire-like implant was derived based on the TM. In this model, the background field is described using a superposition of spherical and cylindrical harmonics while the transfer matrix is parameterized using a previously introduced attenuated wave model. This analytical description can be used to estimate the transfer matrix and transfer function based on the measured B1+ distribution. RESULTS: The TF was successfully determined for 2 mock-up implants: a 20-cm bare copper wire and a 20-cm insulated copper wire with 10 mm of insulation stripped at both endings in respectively 4 and 3 different trajectories. The measured TFs show a strong correlation with a reference determined from simulations and between the separate experiments with correlation coefficients above 0.96 between all TFs. Compared to the simulated TF, the maximum deviation in the estimated tip field is 9.4% and 12.2% for the bare and insulated wire, respectively. CONCLUSIONS: A method has been developed to measure the TF of medical implants using MRI experiments. Jointly fitting the incident and scattered B1+ distributions with an analytical description based on the transfer matrix enables accurate determination of the TF of 2 test implants. The presented method no longer needs input from simulated data and can therefore, in principle, be used to measure TF's in test animals or corpses.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Algoritmos , Celulose/análogos & derivados , Celulose/química , Simulação por Computador , Cobre , Campos Eletromagnéticos , Humanos , Modelos Estatísticos , Polimetil Metacrilato/química , Próteses e Implantes , Ondas de Rádio , Reprodutibilidade dos Testes
20.
Magn Reson Med ; 83(6): 2284-2292, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31677308

RESUMO

PURPOSE: Patients with deep brain stimulation (DBS) implants benefit highly from MRI, however, access to MRI is restricted for these patients because of safety hazards associated with RF heating of the implant. To date, all MRI studies on RF heating of medical implants have been performed in horizontal closed-bore systems. Vertical MRI scanners have a fundamentally different distribution of electric and magnetic fields and are now available at 1.2T, capable of high-resolution structural and functional MRI. This work presents the first simulation study of RF heating of DBS implants in high-field vertical scanners. METHODS: We performed finite element electromagnetic simulations to calculate specific absorption rate (SAR) at tips of DBS leads during MRI in a commercially available 1.2T vertical coil compared to a 1.5T horizontal scanner. Both isolated leads and fully implanted systems were included. RESULTS: We found 10- to 30-fold reduction in SAR implication at tips of isolated DBS leads, and up to 19-fold SAR reduction at tips of leads in fully implanted systems in vertical coils compared to horizontal birdcage coils. CONCLUSIONS: If confirmed in larger patient cohorts and verified experimentally, this result can open the door to plethora of structural and functional MRI applications to guide, interpret, and advance DBS therapy.


Assuntos
Estimulação Encefálica Profunda , Calefação , Simulação por Computador , Humanos , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Próteses e Implantes , Ondas de Rádio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA