Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732135

RESUMO

Glioblastoma (GBM) is the most lethal and common malignant primary brain tumor in adults. An important feature that supports GBM aggressiveness is the unique composition of its extracellular matrix (ECM). Particularly, fibronectin plays an important role in cancer cell adhesion, differentiation, proliferation, and chemoresistance. Thus, herein, a hydrogel with mechanical properties compatible with the brain and the ability to disrupt the dynamic and reciprocal interaction between fibronectin and tumor cells was produced. High-molecular-weight hyaluronic acid (HMW-HA) functionalized with the inhibitory fibronectin peptide Arg-Gly-Asp-Ser (RGDS) was used to produce the polymeric matrix. Liposomes encapsulating doxorubicin (DOX) were also included in the hydrogel to kill GBM cells. The resulting hydrogel containing liposomes with therapeutic DOX concentrations presented rheological properties like a healthy brain. In vitro assays demonstrated that unmodified HMW-HA hydrogels only caused GBM cell killing after DOX incorporation. Conversely, RGDS-functionalized hydrogels displayed per se cytotoxicity. As GBM cells produce several proteolytic enzymes capable of disrupting the peptide-HA bond, we selected MMP-2 to illustrate this phenomenon. Therefore, RGDS internalization can induce GBM cell apoptosis. Importantly, RGDS-functionalized hydrogel incorporating DOX efficiently damaged GBM cells without affecting astrocyte viability, proving its safety. Overall, the results demonstrate the potential of the RGDS-functionalized hydrogel to develop safe and effective GBM treatments.


Assuntos
Doxorrubicina , Fibronectinas , Glioblastoma , Ácido Hialurônico , Hidrogéis , Oligopeptídeos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Doxorrubicina/farmacologia , Doxorrubicina/química , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Fibronectinas/metabolismo , Fibronectinas/antagonistas & inibidores , Hidrogéis/química , Linhagem Celular Tumoral , Ácido Hialurônico/química , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Lipossomos/química , Apoptose/efeitos dos fármacos , Metaloproteinase 2 da Matriz/metabolismo
2.
Molecules ; 28(6)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36985552

RESUMO

The most concerning adverse effects of thrombolytic agents are major bleeding and intracranial hemorrhage due to their short half-life, low fibrin specificity, and high dosage. To alleviate bleeding side effects during thrombolytic therapy which would bring about the risk of aggravation, we try to find a novel biodegradable delivery nanosystem to carry drugs to target the thrombus, reduce the dosage of the drug, and system side effects. A novel urokinase/poly-α, ß-d, l-aspartyl-Arg-Gly-Asp-Ser complex (UK/PD-RGDS) was synthesized and simply prepared. Its thrombolytic potency was assayed by the bubble-rising method and in vitro thrombolytic activity by the thrombus clot lysis assay separately. The in vivo thrombolytic activity and bleeding complication were evaluated by a rat model of carotid arteriovenous bypass thrombolysis. The thrombolytic potency (1288.19 ± 155.20 U/mg) of the UK/PD-RGDS complex nano-globule (18-130 nm) was 1.3 times that of commercial UK (966.77 ± 148.08 U/mg). In vivo, the UK/PD-RGDS complex (2000 IU/kg) could reduce the dose of UK by 90% while achieving the equivalent thrombolysis effect as the free UK (20,000 IU/kg). Additionally, the UK/PD-RGDS complex decreased the tail bleeding time compared with UK. The organ distribution of the FITC-UK/PD-RGDS complex was explored in the rat model. The UK/PD-RGDS complex could provide a promising platform to enhance thrombolytic efficacy significantly and reduce the major bleeding degree.


Assuntos
Trombose , Animais , Ratos , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Terapia Trombolítica , Trombose/tratamento farmacológico , Ativador de Plasminogênio Tipo Uroquinase
3.
Int J Mol Sci ; 22(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673496

RESUMO

Superporous poly(2-hydroxyethyl methacrylate-co-2-aminoethyl methacrylate) (P(HEMA-AEMA)) hydrogel scaffolds are designed for in vitro 3D culturing of leukemic B cells. Hydrogel porosity, which influences cell functions and growth, is introduced by adding ammonium oxalate needle-like crystals in the polymerization mixture. To improve cell vitality, cell-adhesive Arg-Gly-Asp-Ser (RGDS) peptide is immobilized on the N-(γ-maleimidobutyryloxy)succinimide-activated P(HEMA-AEMA) hydrogels via reaction of SH with maleimide groups. This modification is especially suitable for the survival of primary chronic lymphocytic leukemia cells (B-CLLs) in 3D cell culture. No other tested stimuli (interleukin-4, CD40 ligand, or shaking) can further improve B-CLL survival or metabolic activity. Both unmodified and RGDS-modified P(HEMA-AEMA) scaffolds serve as a long-term (70 days) 3D culture platforms for HS-5 and M2-10B4 bone marrow stromal cell lines and MEC-1 and HG-3 B-CLL cell lines, although the adherent cells retain their physiological morphologies, preferably on RGDS-modified hydrogels. Moreover, the porosity of hydrogels allows direct cell lysis, followed by efficient DNA isolation from the 3D-cultured cells. P(HEMA-AEMA)-RGDS thus serves as a suitable 3D in vitro leukemia model that enables molecular and metabolic assays and allows imaging of cell morphology, interactions, and migration by confocal microscopy. Such applications can prospectively assist in testing of drugs to treat this frequently recurring or refractory cancer.


Assuntos
Técnicas de Cultura de Células/métodos , Hidrogéis/química , Leucemia Linfocítica Crônica de Células B , Alicerces Teciduais/química , Linhagem Celular Tumoral , Humanos , Células-Tronco Mesenquimais , Oligopeptídeos , Porosidade , Succinimidas/química
4.
Biochim Biophys Acta ; 1840(3): 1188-93, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24361609

RESUMO

BACKGROUND: Expression of tissue factor (TF) antigen and activity in platelets is controversial and dependent upon the laboratory and reagents used. Two forms of TF were described: an oxidized functional form and a reduced nonfunctional form that is converted to the active form through the formation of an allosteric disulfide. This study tests the hypothesis that the discrepancies regarding platelet TF expression are due to differential expression of the two forms. METHODS: Specific reagents that recognize both oxidized and reduced TF were used in flow cytometry of unactivated and activated platelets and western blotting of whole platelet lysates. TF-dependent activity measurements were used to confirm the results. RESULTS: Western blotting analyses of placental TF demonstrated that, in contrast to anti-TF#5, which is directed against the oxidized form of TF, a sheep anti-human TF polyclonal antibody recognizes both the reduced and oxidized forms. Flow cytometric analyses demonstrated that the sheep antibody did not react with the surface of unactivated platelets or platelets activated with thrombin receptor agonist peptide, PAR-1. This observation was confirmed using biotinylated active site-blocked factor (F)VIIa: no binding was observed. Likewise, neither form of TF was detected by western blotting of whole platelet lysates with sheep anti-hTF. Consistent with these observations, no FXa or FIXa generation by FVIIa was detected at the surface of these platelets. Similarly, no TF-related activity was observed in whole blood using thromboelastography. CONCLUSION AND SIGNIFICANCE: Platelets from healthy donors do not express either oxidized (functional) or reduced (nonfunctional) forms of TF.


Assuntos
Plaquetas/química , Tromboplastina/análise , Animais , Anticorpos/imunologia , Western Blotting , Citometria de Fluxo , Humanos , Oxirredução , Ovinos , Tromboplastina/imunologia
5.
J Gastroenterol Hepatol ; 29(6): 1308-15, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24476051

RESUMO

BACKGROUND AND AIM: Fulminant hepatic failure (FHF) is a serious clinic syndrome with extremely poor prognosis and no effective treatment except for liver transplantation. Synthetic RGDS peptide, an inhibitor of integrins, was proved to suppress integrin signals. In this study, we investigated the protection effects of RGDS peptide on lipopolysaccharide/D-galactosamine (LPS/D-GalN)-induced FHF and the underlying molecular mechanisms. METHODS: Synthetic RGDS peptide was given intraperitoneally 30 min before LPS/D-GalN injection. Liver function and the extent of liver injury were analyzed biochemically and pathologically respectively. Enzyme-linked immunosorbent assay, real-time polymerase chain reaction and Western blotting were used to detect effectors and signaling molecules. RESULTS: Pretreatment with synthetic RGDS peptide significantly improved LPS/D-GalN-induced mortality, and liver injury as determined by alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, as well as pathological analysis. In addition, RGDS peptide significantly reduced tumor necrosis factor (TNF)-α and macrophage inflammatory protein (MIP)-2 production, and decreased myeloperoxidase (MPO) and NF-κB activity. Furthermore, Western blotting indicated that the levels of phospho-integrin ß3, phospho-focal adhesion kinase (FAK) and phospho-p38 mitogen-activated protein kinases (MAPK) decreased with RGDS peptide pretreatment. CONCLUSION: Together, these data suggest that synthetic RGDS peptide protect against LPS/D-GalN-induced FHF by inhibiting inflammatory cells migration and blocking the integrin αVß3-FAK-p38 MAPK and NF-κB signaling.


Assuntos
Galactosamina , Lipopolissacarídeos , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/tratamento farmacológico , Oligopeptídeos/administração & dosagem , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Biomarcadores/metabolismo , Quimiocina CXCL2/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Injeções Intraperitoneais , Integrinas/antagonistas & inibidores , Falência Hepática Aguda/diagnóstico , Falência Hepática Aguda/metabolismo , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Oligopeptídeos/farmacologia , Peroxidase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
J Exp Orthop ; 11(3): e12061, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38899049

RESUMO

Purpose: Establishing zonal tendon-to-bone attachment could accelerate the anterior cruciate ligament reconstruction (ACLR) rehabilitation schedule and facilitate an earlier return to sports. KI24RGDS is a self-assembling peptide hydrogel scaffold (SAPS) with the RGDS amino acid sequence. This study aimed to elucidate the therapeutic potential of KI24RGDS in facilitating zonal tendon-to-bone attachment after ACLR. Methods: Sixty-four C57BL/6 mice were divided into the ACLR + SAPS and ACLR groups. ACLR was performed using the tail tendon. To assess the maturation of tendon-to-bone attachment, we quantified the area of mineralized fibrocartilage (MFC) in the tendon graft with demeclocycline. Immunofluorescence staining of α-smooth muscle actin (α-SMA) was performed to evaluate progenitor cell proliferation. The strength of tendon-to-bone attachment was evaluated using a pull-out test. Results: The MFC and maximum failure load in the ACLR + SAPS group were remarkably higher than in the ACLR group on Day 14. However, no significant difference was observed between the two groups on Day 28. The number of α-SMA-positive cells in the tendon graft was highest on Day 7 after ACLR in both the groups and was significantly higher in the ACLR + SAPS group than in the ACLR group. Conclusion: This study highlighted the latent healing potential of KI24RGDS in facilitating early-stage zonal attachment of tendon grafts and bone tunnels post-ACLR. These findings may expedite rehabilitation protocols and shorten the timeline for returning to sports. Level of Evidence: Not applicable.

7.
J Biomol Struct Dyn ; : 1-9, 2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38247271

RESUMO

Bioactive peptides (BPs) are a natural and important alternative to synthetic angiotensin-converting enzyme (ACE) inhibitors used in the treatment of hypertension. In this study, ACE was 3575-fold purified from human serum with the affinity chromatography process in one step. The molecular weight and purity of ACE were identified using the SDS-PAGE process and seen in two bands at around 60 kDa and 70 kDa on the gel. Vmax and KM values from the Lineweaver-Burk graphic were determined as 96.15 (µmol/min) mL-1 and 0.2 mM, respectively. The effects of Gly-Pro (GP), Arg-Gly-Asp-Ser (RGDS) and Ser-Asp-Gly-Arg-Gly (SDGRG) BPs on purified ACE were researched. Also, lisinopril was used as a reference inhibitor. GP, RGDS and SDGRG on purified ACE demonstrated an inhibitory effect. IC50 values for these peptides were found as 184.71, 107.16 and 32.54 µM, respectively. Ki values and type of inhibitory for GP, RGDS and SDGRG by the Lineweaver-Burk chart were found. The type of inhibitory for these peptides was calculated as reversible-competitive inhibitory. Ki values for GP, RGDS and SDGRG were calculated to be 260.02, 63.44 and 11.42 µM, respectively. Also, the SDGRG indicated a higher inhibition effect on ACE activity than the GP and RGDS. The IC50 value of lisinopril was designated as 0.35 nM. The inhibition type of lisinopril was designated as reversible noncompetitive inhibition from the Lineweaver-Burk chart and the Ki value was 0.15 nM. Herein, it was concluded that GP, RGDS and SDGRG have ACE inhibitor potential.Communicated by Ramaswamy H. Sarma.

8.
Biomedicines ; 10(7)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35884877

RESUMO

Earlier studies with nanoparticles carrying siRNA were restricted to investigating the inhibition of target-specific protein expression, while almost ignoring effects related to the nanoparticle composition. Here, we demonstrate how the design and surface decoration of nanoparticles impact the p65 nuclear factor-kappa B (NF-κB) protein expression in inflamed leucocytes and endothelial cells in vitro. We prepared silica-coated calcium phosphate nanoparticles carrying encapsulated siRNA against p65 NF-κB and surface-decorated with peptides or antibodies. We show that RGD-decorated nanoparticles are efficient in down-regulating p65 NF-κB protein expression in endothelial cells as a result of an enhanced specific cellular binding and subsequent uptake of nanoparticles. In contrast, nanoparticles decorated with IgG (whether specific or not for CD69) are efficient in down-regulating p65 NF-κB protein expression in T-cells, but not in B-cells. Thus, an optimized nanoparticle decoration with xenogenic IgG may stimulate a specific cellular uptake. In summary, the composition of siRNA-loaded calcium phosphate nanoparticles can either weaken or stimulate p65 NF-κB protein expression in targeted inflamed leucocytes and endothelial cells. In general, unveiling such interactions may be very useful for the future design of anti-p65 siRNA-based nanomedicines for treatment of inflammation-associated diseases.

9.
Front Chem ; 8: 497, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32596210

RESUMO

Lanthanide-doped upconversion nanoparticles (UCNPs) have a unique capability of upconverting near-infrared (NIR) excitation into ultraviolet, visible, and NIR emission. Conventional UCNPs composed of NaYF4:Yb3+/Er3+(Tm3+) are excited by NIR light at 980 nm, where undesirable absorption by water can cause overheating or damage of living tissues and reduce nanoparticle luminescence. Incorporation of Nd3+ ions into the UCNP lattice shifts the excitation wavelength to 808 nm, where absorption of water is minimal. Herein, core-shell NaYF4:Yb3+/Er3+@NaYF4:Nd3+ nanoparticles, which are doubly doped by sensitizers (Yb3+ and Nd3+) and an activator (Er3+) in the host NaYF4 matrix, were synthesized by high-temperature coprecipitation of lanthanide chlorides in the presence of oleic acid as a stabilizer. Uniform core (24 nm) and core-shell particles with tunable shell thickness (~0.5-4 nm) were thoroughly characterized by transmission electron microscopy (TEM), energy-dispersive analysis, selected area electron diffraction, and photoluminescence emission spectra at 808 and 980 nm excitation. To ensure dispersibility of the particles in biologically relevant media, they were coated by in-house synthesized poly(ethylene glycol) (PEG)-neridronate terminated with an alkyne (Alk). The stability of the NaYF4:Yb3+/Er3+@NaYF4:Nd3+-PEG-Alk nanoparticles in water or 0.01 M PBS and the presence of PEG on the surface were determined by dynamic light scattering, ζ-potential measurements, thermogravimetric analysis, and FTIR spectroscopy. Finally, the adhesive azidopentanoyl-modified GGGRGDSGGGY-NH2 (RGDS) peptide was immobilized on the NaYF4:Yb3+/Er3+@NaYF4:Nd3+-PEG-Alk particles via Cu(I)-catalyzed azide-alkyne cycloaddition. The toxicity of the unmodified core-shell NaYF4:Yb3+/Er3+@NaYF4:Nd3+, NaYF4:Yb3+/Er3+@NaYF4:Nd3+-PEG-Alk, and NaYF4:Yb3+/Er3+@NaYF4:Nd3+-PEG-RGDS nanoparticles on both Hep-G2 and HeLa cells was determined, confirming no adverse effect on their survival and proliferation. The interaction of the nanoparticles with Hep-G2 cells was monitored by confocal microscopy at both 808 and 980 nm excitation. The NaYF4:Yb3+/Er3+@NaYF4:Nd3+-PEG-RGDS nanoparticles were localized on the cell membranes due to specific binding of the RGDS peptide to integrins, in contrast to the NaYF4:Yb3+/Er3+@NaYF4:Nd3+-PEG-Alk particles, which were not engulfed by the cells. The NaYF4:Yb3+/Er3+@NaYF4:Nd3+-PEG-RGDS nanoparticles thus appear to be promising as a new non-invasive probe for specific bioimaging of cells and tissues. This development makes the nanoparticles useful for diagnostic and/or, after immobilization of a bioactive compound, even theranostic applications in the treatment of various fatal diseases.

10.
Acta Biomater ; 51: 75-88, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28087486

RESUMO

Recapitulation of the articular cartilage microenvironment for regenerative medicine applications faces significant challenges due to the complex and dynamic biochemical and biomechanical nature of native tissue. Towards the goal of biomaterial designs that enable the temporal presentation of bioactive sequences, recombinant bacterial collagens such as Streptococcal collagen-like 2 (Scl2) proteins can be employed to incorporate multiple specific bioactive and biodegradable peptide motifs into a single construct. Here, we first modified the backbone of Scl2 with glycosaminoglycan-binding peptides and cross-linked the modified Scl2 into hydrogels via matrix metalloproteinase 7 (MMP7)-cleavable or non-cleavable scrambled peptides. The cross-linkers were further functionalized with a tethered RGDS peptide creating a system whereby the release from an MMP7-cleavable hydrogel could be compared to a system where release is not possible. The release of the RGDS peptide from the degradable hydrogels led to significantly enhanced expression of collagen type II (3.9-fold increase), aggrecan (7.6-fold increase), and SOX9 (5.2-fold increase) by human mesenchymal stem cells (hMSCs) undergoing chondrogenesis, as well as greater extracellular matrix accumulation compared to non-degradable hydrogels (collagen type II; 3.2-fold increase, aggrecan; 4-fold increase, SOX9; 2.8-fold increase). Hydrogels containing a low concentration of the RGDS peptide displayed significantly decreased collagen type I and X gene expression profiles, suggesting a major advantage over either hydrogels functionalized with a higher RGDS peptide concentration, or non-degradable hydrogels, in promoting an articular cartilage phenotype. These highly versatile Scl2 hydrogels can be further manipulated to improve specific elements of the chondrogenic response by hMSCs, through the introduction of additional bioactive and/or biodegradable motifs. As such, these hydrogels have the possibility to be used for other applications in tissue engineering. STATEMENT OF SIGNIFICANCE: Recapitulating aspects of the native tissue biochemical microenvironment faces significant challenges in regenerative medicine and tissue engineering due to the complex and dynamic nature of the tissue. The ability to take advantage of, mimic, and modulate cell-mediated processes within novel naturally-derived hydrogels is of great interest in the field of biomaterials to generate constructs that more closely resemble the biochemical microenvironment and functions of native biological tissues such as articular cartilage. Towards this goal, the temporal presentation of bioactive sequences such as RGDS on the chondrogenic differentiation of human mesenchymal stem cells is considered important as it has been shown to influence the chondrogenic phenotype. Here, a novel and versatile platform to recreate a high degree of biological complexity is proposed, which could also be applicable to other tissue engineering and regenerative medicine applications.


Assuntos
Materiais Biomiméticos/farmacologia , Cartilagem Articular/citologia , Colágeno/farmacologia , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Metaloproteinase 7 da Matriz/metabolismo , Células-Tronco Mesenquimais/citologia , Oligopeptídeos/farmacologia , Proteínas de Bactérias/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Condrogênese/efeitos dos fármacos , Colágeno/metabolismo , Força Compressiva , DNA/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glicosaminoglicanos/metabolismo , Humanos , Cinética , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo
11.
Carbohydr Polym ; 166: 31-44, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28385238

RESUMO

In the present study, we developed a biomimetic injectable hydrogel system based on hyaluronic acid-adipic dihydrazide and the oligopeptide G4RGDS-grafted oxidized pectin, in which their hydrazide and aldehyde-derivatives enable covalent hydrazone crosslinking of polysaccharides. The hydrazone crosslinking strategy is simple, while circumventing toxicity, making this injectable system feasible, minimally invasive and easily translatable for regenerative purposes. By varying their weight ratios, the physicochemical properties of the mechanically stable hydrogel system were easily adjustable. Additionally, the preliminary studies demonstrated that chondrocyte behavior was dependent on HA/pectin composition and the presence of integrin binding moieties. Specifically, the incorporation of a certain amount of G4RGDS oligopeptide into HA/pectin-based hydrogels could serve as a biologically active microenvironment that supported chondrocyte phenotype and facilitated chondrogenesis. Furthermore, the hydrogel system exhibited acceptable tissue compatibility by using a mouse subcutaneous implantation model. Overall, the novel injectable multicomponent hydrogel presented here is expected to be useful biomaterial scaffold for cartilage tissue regeneration.


Assuntos
Condrogênese , Ácido Hialurônico/química , Hidrogéis , Pectinas/química , Engenharia Tecidual , Animais , Cartilagem , Células Cultivadas , Condrócitos/efeitos dos fármacos , Oligopeptídeos , Suínos
12.
J Tissue Eng Regen Med ; 11(3): 694-703, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-25393526

RESUMO

The main goal of this study was to investigate pancreatic islet function with mesenchymal stem cells (MSCs) in a ligand-functionalized poly(ethylene glycol) (PEG) hydrogel for the treatment of type 1 diabetes (T1D). Rat bone marrow-derived MSCs (rBM-MSCs) were encapsulated within synthetic PEG hydrogel, and cell viability and apoptosis within this 3D environment was examined in detail. ATP content and caspase-3 activity of encapsulated MSCs showed that fibronectin-derived RGDS, laminin-derived IKVAV and/or insulinotropic glucagon-like peptide (GLP-1) were required to maintain MSC survival. Incorporation of these peptides into the hydrogel environment also improved pancreatic islet viability, where combinations of peptides had altered effects on islet survival. GLP-1 alone was the leading stimulator for insulin secretion. Cell adhesion peptides RGDS and IKVAV improved insulin secretion only when they were used in combination, but could not surpass the effect of GLP-1. Further, when pancreatic islets were co-encapsulated with MSCs within synthetic PEG hydrogel, a two-fold increase in the stimulation index was measured. Synergistic effects of MSCs and peptides were observed, with a seven-fold increase in the stimulation index. The results are promising and suggest that simultaneous incorporation of MSCs and ECM-derived peptides and/or GLP-1 can improve pancreatic islet function in response to altered glucose levels in the physiological environment. Copyright © 2014 John Wiley & Sons, Ltd.


Assuntos
Materiais Biomiméticos/farmacologia , Hidrogéis/farmacologia , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Células-Tronco Mesenquimais/citologia , Polietilenoglicóis/farmacologia , Animais , Caspases/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Hidrogéis/química , Proteínas Imobilizadas/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Ligantes , Peptídeos/metabolismo , Polietilenoglicóis/química , Ratos Wistar
13.
J Thorac Dis ; 9(10): 3961-3972, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29268407

RESUMO

INTRODUCTION: The central objective of the study was to determine the possibility and potential mechanism by which the laminin-integrin α7ß1 signaling pathway acts on mechanical ventilation (MV)-induced pulmonary fibrosis in a rat model. METHODS: Fibrosis rat models were established via the mechanical injury method. Ninety rats were recruited and divided into the normal, low tidal volume (LVT), huge VT (HVT), Arg-Gly-Asp-Ser (RGDS), LVT + RGDS and HVT + RGDS groups. On day 0, 3, and 7 after model establishment, the pulmonary hydroxyproline content was measured using alkaline hydrolysis and the pulmonary index was also calculated. All rats in each group were executed on day 0, 3 and 7. The histopathological changes detected in the left pulmonary tissues were observed using hematoxylin-eosin (HE) and Masson staining methods. DISCUSSION: The mRNA and protein expressions of Wnt-5A, ß-catenin, E-cadherin and Collagen I in the Wnt/ß-catenin signaling pathway were detected using both reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blotting methods. Immunohistochemistry was employed to detect the fibronectin (FN) expression in the pulmonary tissues on the 7th day. All indexes in the RGDS and LVT + RGDS groups indicated no explicit differences compared with the normal group. In the LVT, HVT, HVT + RGDS groups, the respective weights of the rats and the expression of E-cadherin on the 7th day exhibited decreases, however the pulmonary index, hydroxyproline, pulmonary alveolar inflammation, pulmonary fibrosis, FN expression, and protein expressions of Wnt-5A, ß-catenin, and Collagen I all displayed increased levels (all P<0.05). The index changes detected in the HVT group were the most blatant results observed in the study. The rat pulmonary index on the 7th day, hydroxyproline (HYP), pulmonary alveolar inflammation, pulmonary fibrosis, FN expression, and protein expressions of Wnt-5A, ß-catenin, and type I-collagen were all down-regulated, in contrast the expression of E-cadherin was up-regulated in the LVT + RGDS and HVT + RGDS groups in comparison with the LVT and HVT groups, respectively (all P<0.05). CONCLUSIONS: The findings of the study suggested that RGDS could act to block the laminin-integrin α7ß1-signaling pathway, ultimately contributing to the inhibition of the progression of MV-induced pulmonary fibrosis.

14.
ACS Appl Mater Interfaces ; 8(31): 20422-31, 2016 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-27428386

RESUMO

Starting NaYF4:Yb(3+)/Er(3+) nanoparticles with size tuned from 24 to 33 nm were prepared by high-temperature coprecipitation of lanthanide chlorides in high-boiling organic solvents. To enhance colloidal stability in aqueous medium, an aminosilica shell was introduced on the surface by hydrolysis and condensation of tetramethyl orthosilicate and (3-aminopropyl)trimethoxysilane using a reverse microemulsion technique; to form alkyne groups, reaction with 4-pentynoic acid followed. Finally, the cell adhesive and cell penetrating azidopentanoyl-GGGRGDSGGGY-NH2 (RGDS) and azidopentanoyl-GGGRKKRRQRRR-NH2 (TAT) peptides were conjugated to the upconversion particles via Cu(I)-catalyzed alkyne-azide cycloaddition. The concentrations of the peptides bound to the nanoparticle surfaces and amount of adsorbed residual Cu(I) catalyst were determined using an (125)I-radiolabeled RGDS peptide and a (64)Cu(I)-doped catalyst, respectively. Targeting and uptake of the RGDS- and TAT-conjugated NaYF4:Yb(3+)/Er(3+)&SiO2 nanoparticles by human cervix carcinoma HeLa cells were monitored by confocal microscopy. RGDS-conjugated nanoparticle probes were mainly localized on the cell plasma membrane due to specific binding of the peptide to the corresponding integrins. In contrast, the TAT-conjugated nanoparticles were able to cross the cell membrane and accumulate in the cell cytoplasm. Thus, this new peptide bioconjugation approach supported both extra- and intracellular nanoparticle uptake, enabling targeting and imaging of the specific tumor phenotypes.

15.
Biomater Sci ; 3(3): 530-532, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25745558

RESUMO

Incorporating bioactivity into artificial scaffolds using peptide epitopes present in the extracellular matrix (ECM) is a well-known approach. A common strategy has involved epitopes that provide cells with attachment points and external cues through interaction with integrin receptors. Although a variety of bioactive sequences have been identified so far, less is known about their optimal display in a scaffold. We report here on the use of self-assembled peptide amphiphile (PA) nanofiber matrices to investigate the impact of spatial presentation of the fibronectin derived epitope RGDS on cell response. Using one, three, or five glycine residues, RGDS epitopes were systematically spaced out from the surface of the rigid nanofibers. We found that cell morphology was strongly affected by the separation of the epitope from the nanofiber surface, with the longest distance yielding the most cell-spreading, bundling of actin filaments, and a round-to-polygonal transformation of cell shape. Cell response to this type of epitope display was also accompanied with activated integrin-mediated signaling and formation of stronger adhesions between cells and substrate. Interestingly, unlike length, changing the molecular flexibility of the linker had minimal influence on cell behavior on the substrate for reasons that remain poorly understood. The use in this study of high persistence length nanofibers rather than common flexible polymers allows us to conclude that epitope topography at the nanoscale structure of a scaffold influences its bioactive properties independent of epitope density and mechanical properties.

16.
Acta Biomater ; 13: 42-51, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25463493

RESUMO

Mechanotransduction in the regulation of cellular responses has been previously studied using elastic hydrogels. Because cells interact only with the surface of biomaterials, we are focusing on the molecular mobility at the outermost surface of biomaterials. In this study, surfaces with the mobile Arg-Gly-Asp-Ser (RGDS) peptide have been constructed. Cell culture substrates were coated with ABA-type block copolymers composed of poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) segments (A) and a polyrotaxane (PRX) unit with RGDS bound to α-cyclodextrin (B). Adhesion, morphological changes and actin filament formation of human umbilical vein endothelial cells were reduced on the surfaces containing mobile PRX-RGDS in comparison to the immobile RGDS surfaces constructed from random copolymers with RGDS side groups (Prop-andom-RGDS). In the neurite outgrowth assay using rat adrenal pheochromocytoma cells (PC12), only ∼20% of adherent PC12 cells had neurites on PRX-RGDS surfaces, but more than 50% did on the Random-RGDS surface. The beating colony of dimethyl-sulfoxide-treated mouse embryonic carcinoma cells (P19CL6) were found 10 and 14 days after induction on PRX-RGDS and Random-RGDS surfaces, respectively. After 22 days, the beating colony disappeared on PRX-RGDS surfaces, but many colonies remained on Random-RGDS surfaces. These data suggest that the molecular mobility of the cell-binding ligand on the outermost surface of materials effectively suppresses the actin filament formation and differentiation of these functional cell lines, and may be used as a culture substrate for immature stem cells or progenitor cells.


Assuntos
Diferenciação Celular , Células Endoteliais da Veia Umbilical Humana/metabolismo , Mecanotransdução Celular , Oligopeptídeos/química , Células-Tronco/metabolismo , alfa-Ciclodextrinas/metabolismo , Citoesqueleto de Actina , Animais , Movimento Celular , Ciclodextrinas/química , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Camundongos , Células PC12 , Poloxâmero/química , Ácidos Polimetacrílicos/química , Ratos , Rotaxanos/química , Células-Tronco/citologia , alfa-Ciclodextrinas/química
17.
Acta Biomater ; 23 Suppl: S42-51, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26235345

RESUMO

There is great clinical interest in cell-based therapies for ischemic tissue repair in cardiovascular disease. However, the regenerative potential of these therapies is limited due to poor cell viability and minimal retention following application. We report here the development of bioactive peptide amphiphile nanofibers displaying the fibronectin-derived RGDS cell adhesion epitope as a scaffold for therapeutic delivery of bone marrow derived stem and progenitor cells. When grown on flat substrates, a binary peptide amphiphile system consisting of 10 wt.% RGDS-containing molecules and 90 wt.% negatively charged diluent molecules was found to promote optimal cell adhesion. This binary system enhanced adhesion 1.4-fold relative to substrates composed of only the non-bioactive diluent. Additionally, no enhancement was found upon scrambling the epitope and adhesion was no longer enhanced upon adding soluble RGDS to the cell media, indicating RGDS-specific adhesion. When encapsulated within self-assembled scaffolds of the binary RGDS nanofibers in vitro, cells were found to be viable and proliferative, increasing in number by 5.5 times after only 5 days, an effect again lost upon adding soluble RGDS. Cells encapsulated within a non-bioactive scaffold and those within a binary scaffold with scrambled epitope showed minimal viability and no proliferation. Cells encapsulated within this RGDS nanofiber gel also increase in endothelial character, evident by a decrease in the expression of CD34 paired with an increase in the expression of endothelial-specific markers VE-Cadherin, VEGFR2 and eNOS after 5days. In an in vivo study, nanofibers and luciferase-expressing cells were co-injected subcutaneously in a mouse model. The binary RGDS material supported these cells in vivo, evident by a 3.2-fold increase in bioluminescent signal attributable to viable cells; this suggests the material has an anti-apoptotic and/or proliferative effect on the transplanted bone marrow cells. We conclude that the binary RGDS-presenting nanofibers developed here demonstrate enhanced viability, proliferation and adhesion of associated bone marrow derived stem and progenitor cells. This study suggests potential for this material as a scaffold to overcome current limitations of stem cell therapies for ischemic diseases.

18.
ACS Nano ; 8(10): 10815-25, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25210842

RESUMO

A significant barrier to the therapeutic use of stem cells is poor cell retention in vivo. Here, we evaluate the therapeutic potential and long-term engraftment of cardiomyocytes (CMs) derived from mouse embryonic stem cells (mESCs) encapsulated in an injectable nanomatrix gel consisting of peptide amphiphiles incorporating cell adhesive ligand Arg-Gly-Asp-Ser (PA-RGDS) in experimental myocardial infarction (MI). We cultured rat neonatal CMs in PA-RGDS for 7 days and found that more than 90% of the CMs survived. Next, we intramyocardially injected mouse CM cell line HL-1 CMs with or without PA-RGDS into uninjured hearts. Histologic examination and flow cytometry analysis of digested heart tissues showed approximately 3-fold higher engraftment in the mice that received CMs with PA-RGDS compared to those without PA-RGDS. We further investigated the therapeutic effects and long-term engraftment of mESC-CMs with PA-RGDS on MI in comparison with PBS control, CM-only, and PA-RGDS only. Echocardiography demonstrated that the CM-only and CM+PA-RGDS groups showed higher cardiac function at week 2 compared to other groups. However, from 3 weeks, higher cardiac function was maintained only in the CM+PA-RGDS group; this was sustained for 12 weeks. Confocal microscopic examination of the cardiac tissues harvested at 14 weeks demonstrated sustained engraftment and integration of mESC-CMs into host myocardium in the CM+PA-RGDS group only. This study for the first time demonstrated that PA-RGDS encapsulation can enhance survival of mESC-derived CMs and improve cardiac function post-MI. This nanomatrix gel-mediated stem cell therapy can be a promising option for treating MI.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Células-Tronco Embrionárias/citologia , Coração/fisiopatologia , Miócitos Cardíacos/citologia , Nanoestruturas , Animais , Ratos
20.
Chinese Journal of Ultrasonography ; (12): 997-1000, 2010.
Artigo em Zh | WPRIM | ID: wpr-385873

RESUMO

Objective To determine the effect of the combined use of urokinase and glycoprotein Ⅱb/Ⅲa-targeted microbubbles prepared by direct conjugation method to dissolve the thromb in vivo and analyse the velocity tracing change of blood flow and explore the possible mechanism. Methods A total of 42 rabbits with platelet-rich thrombi in the femoral artery were randomized into 7 treatment groups ( n = 6 in each group): 1) ultrasound alone (US); 2) ultrasound plus non-targeted microbubbles ( US + M); 3) urokinase alone (UK) ;4) ultrasound, non-targeted microbubble and urokinase (US + M + UK); 5) ultrasound plus platelet-targeted microbubble ( US + R); 6) platelet-targeted microbubble plus urokinase (R + UK); 7)ultrasound, platelet-targeted microbubble and urokinase (US + R + UK). A total of 6 ml of infusion liquor of Urokinase,RGDS and microbubbles (SonoVue) were mixed by 1 ∶ 1 ∶ 1 ratio by the direct conjugation method, infusion via vein within 20 min. Ultrasound was conducted to lyse the clot for 30 min. The recanalization and the velocity tracing change of blood flow in thrombolytic process were evaluated at 120 min post treatment. Results For US, UK, US + M, US + R and US + M + UK groups, recanalization was failed. The R + UK and US + R + UK was recanalizated ( P <0.001 ). The blood flow velocity tracing was small and low width in US,UK, US + M, US + R and US + M + UK groups. The wave was high width and disorderly under the thrombolysis therapy in the R + UK and US + R + UK. The thrombolytic effect was demonstrated by the high-width and disorderly resonance changes in the blood flow spectrum during the thrombolytic therapy of US + R + UK. Conclusions The blood flow spectrum of groups had different characteristics in vivo when thrombus was issolved,ultrasonic resonance might be the possible mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA