Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
EMBO J ; 42(1): e111661, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36345779

RESUMO

In rod-shaped bacteria, type IV pili (Tfp) promote twitching motility by assembling and retracting at the cell pole. In Myxococcus xanthus, a bacterium that moves in highly coordinated cell groups, Tfp are activated by a polar activator protein, SgmX. However, while it is known that the Ras-like protein MglA is required for unipolar targeting, how SgmX accesses the cell pole to activate Tfp is unknown. Here, we demonstrate that a polar beacon protein, FrzS, recruits SgmX at the cell pole. We identified two main functional domains, including a Tfp-activating domain and a polar-binding domain. Within the latter, we show that the direct binding of MglA-GTP unveils a hidden motif that binds directly to the FrzS N-terminal response regulator (CheY). Structural analyses reveal that this binding occurs through a novel binding interface for response regulator domains. In conclusion, the findings unveil the protein interaction network leading to the spatial activation of Tfp at the cell pole. This tripartite system is at the root of complex collective behaviours in this predatory bacterium.


Assuntos
Proteínas de Bactérias , Myxococcus xanthus , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Myxococcus xanthus/metabolismo , Fímbrias Bacterianas/química
2.
Plant J ; 118(6): 2020-2036, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38525679

RESUMO

Photoperiod insensitivity (auto-flowering) in drug-type Cannabis sativa circumvents the need for short day (SD) flowering requirements making outdoor cultivation in high latitudes possible. However, the benefits of photoperiod insensitivity are counterbalanced by low cannabinoid content and poor flower quality in auto-flowering genotypes. Despite recent studies in cannabis flowering, a mechanistic understanding of photoperiod insensitivity is still lacking. We used a combination of genome-wide association study and genetic fine-mapping to identify the genetic cause of auto-flowering in cannabis. We then used gene expression analyses and transient transformation assays to characterize flowering time control. Herein, we identify a splice site mutation within circadian clock gene PSEUDO-RESPONSE REGULATOR 37 (CsPRR37) in auto-flowering cannabis. We show that CsPRR37 represses FT expression and its circadian oscillations transition to a less repressive state during SD as compared to long days (LD). We identify several key circadian clock genes whose expression is altered in auto-flowering cannabis, particularly under non-inductive LD. Research into the pervasiveness of this mutation and others affecting flowering time will help elucidate cannabis domestication history and advance cannabis breeding toward a more sustainable outdoor cultivation system.


Assuntos
Cannabis , Flores , Regulação da Expressão Gênica de Plantas , Mutação , Fotoperíodo , Cannabis/genética , Cannabis/crescimento & desenvolvimento , Cannabis/fisiologia , Relógios Circadianos , Ritmo Circadiano , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Estudo de Associação Genômica Ampla , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sítios de Splice de RNA
3.
J Biol Chem ; 299(8): 104943, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37343699

RESUMO

The specialized sigma factor RpoS mediates a general stress response in Escherichia coli and related bacteria, activating promoters that allow cells to survive stationary phase and many stresses. RpoS synthesis and stability are regulated at multiple levels. Translation of RpoS is positively regulated by multiple small RNAs in response to stress. Degradation of RpoS, dependent upon the adaptor protein RssB, is rapid during exponential growth and ceases upon starvation or other stresses, increasing accumulation of RpoS. E. coli carrying mutations that block the synthesis of polyamines were previously found to have low levels of RpoS, while levels increased rapidly when polyamines were added. We have used a series of reporters to examine the basis for the lack of RpoS in polyamine-deficient cells. The polyamine requirement was independent of small RNA-mediated positive regulation of RpoS translation. Mutations in rssB stabilize RpoS and significantly bypassed the polyamine deficit, suggesting that lack of polyamines might lead to rapid RpoS degradation. However, rates of degradation of mature RpoS were unaffected by polyamine availability. Codon optimization in rpoS partially relieved the polyamine dependence, suggesting a defect in RpoS translation in the absence of polyamines. Consistent with this, a hyperproofreading allele of ribosomal protein S12, encoded by rpsL, showed a decrease in RpoS levels, and this decrease was also suppressed by either codon optimization or blocking RpoS degradation. We suggest that rpoS codon usage leads it to be particularly sensitive to slowed translation, due to either lack of polyamines or hyperproofreading, leading to cotranslational degradation. We dedicate this study to Herb Tabor and his foundational work on polyamines, including the basis for this study.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Regulação Bacteriana da Expressão Gênica , Poliaminas , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Poliaminas/metabolismo , Estresse Fisiológico , Proteólise , Fases de Leitura Aberta/genética
4.
BMC Genomics ; 25(1): 794, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39169310

RESUMO

BACKGROUND: PSEUDO RESPONSE REGULATOR (PRR) genes are essential components of circadian clock, playing vital roles in multiple processes including plant growth, flowering and stress response. Nonetheless, little is known about the evolution and function of PRR family in Rosaceae species. RESULTS: In this study, a total of 43 PRR genes in seven Rosaceae species were identified through comprehensive analysis. The evolutionary relationships were analyzed with phylogenetic tree, duplication events and synteny. PRR genes were classified into three groups (PRR1, PRR5/9, PRR3/7). The expansion of PRR family was mainly derived from dispersed and whole-genome duplication events. Purifying selection was the major force for PRR family evolution. Synteny analysis indicated the existence of multiple orthologous PRR gene pairs between pear and other Rosaceae species. Moreover, the conserved motifs of eight PbPRR proteins supported the phylogenetic relationship. PRR genes showed diverse expression pattern in various tissues of pear (Pyrus bretschneideri). Transcript analysis under 12-h light/ dark cycle and constant light conditions revealed that PRR genes exhibited distinct rhythmic oscillations in pear. PbPRR59a and PbPRR59b highly homologous to AtPRR5 and AtPRR9 were cloned for further functional verification. PbPRR59a and PbPRR59b proteins were localized in the nucleus. The ectopic overexpression of PbPRR59a and PbPRR59b significantly delayed flowering in Arabidopsis transgenic plants by repress the expression of AtGI, AtCO and AtFT under long-day conditions. CONCLUSIONS: These results provide information for exploring the evolution of PRR genes in plants, and contribute to the subsequent functional studies of PRR genes in pear and other Rosaceae species.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Rosaceae , Flores/genética , Flores/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rosaceae/genética , Pyrus/genética , Arabidopsis/genética , Evolução Molecular , Sintenia , Família Multigênica
5.
Mol Microbiol ; 120(3): 439-461, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37485800

RESUMO

The Spo0A transcription factor is activated by phosphorylation in starving Bacillus subtilis cells. The activated Spo0A (Spo0A~P) regulates genes controlling entry into sporulation and appears to control mother-cell-specific gene expression after asymmetric division, but the latter remains elusive. Here, we found that Spo0A~P directly binds to three conserved DNA sequences (0A1-3) in the promoter region of the mother cell-specific lytic transglycosylase gene spoIID, which is transcribed by σE -RNA polymerase (RNAP) and negatively controlled by the SpoIIID transcription factor and required for forespore engulfment. Systematic mutagenesis of the 0A boxes revealed that the 0A1 and 0A2 boxes located upstream of the promoter positively control the transcription of spoIID. In contrast, the 0A3 box located downstream of the promoter negatively controls the transcription of spoIID. The mutated SpoIIID binding site located between the -35 and -10 promoter elements causes increased expression of spoIID and reduced sporulation. When the mutations of 0A1, 0A2, and IIID sites are combined, sporulation is restored. Collectively, our data suggest that the mother cell-specific spoIID expression is precisely controlled by the coordination of three factors, Spo0A~P, SpoIIID, and σE -RNAP, for proper sporulation. The conservation of this mechanism across spore-forming species was discussed.


Assuntos
Bacillus subtilis , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Bacillus subtilis/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Regiões Promotoras Genéticas/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Células-Tronco/metabolismo , Esporos Bacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Transcrição Gênica , Fator sigma/genética , Fator sigma/metabolismo
6.
Mol Microbiol ; 119(5): 599-611, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36929159

RESUMO

Phototrophic bacteria face diurnal variations of environmental conditions such as light and osmolarity that affect their carbon metabolism and ability to generate organic compounds. The model cyanobacterium, Synechocystis sp. PCC 6803 forms a biofilm when it encounters extreme conditions like high salt stress, but the molecular mechanisms involved in perception of environmental changes that lead to biofilm formation are unknown. Here, we studied two two-component regulatory systems (TCSs) that contain diguanylate cyclases (DGCs), which produce the second messenger c-di-GMP, as potential components of the biofilm-inducing signaling pathway in Synechocystis. Analysis of single mutants provided evidence for involvement of the response regulators, Rre2 and Rre8 in biofilm formation. A bacterial two-hybrid assay showed that Rre2 and Rre8 each formed a TCS with a specific histidine kinase, Hik12 and Hik14, respectively. The in vitro assay showed that Rre2 had DGC activity regardless of its de/phosphorylation status, whereas Rre8 required phosphorylation for DGC activity. Hik14-Rre8 likely functioned as an inducible sensing system in response to environmental change. Biofilm assays with Synechocystis mutants suggested that pairs of hik12-rre2 and hik14-rre8 responded to high salinity-induced biofilm formation. Inactivation of hik12-rre2 and hik14-rre8 did not affect the performance of the light reactions of photosynthesis. These data suggest that Hik12-Rre2 and Hik14-Rre8 participate in biofilm formation in Synechocystis by regulating c-di-GMP production via the DGC activity of Rre2 and Rre8.


Assuntos
Proteínas de Escherichia coli , Synechocystis , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Biofilmes , Synechocystis/genética , Synechocystis/metabolismo , GMP Cíclico/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
7.
Trends Genet ; 37(3): 211-215, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32977998

RESUMO

Cyanobacterial genomes encode several isoforms of the D1 (PsbA) subunit of Photosystem II (PSII). The distinct regulation of each isoform ensures adaptation under changing environmental conditions. Uncovering the missing elements of signal transduction pathways and psbA gene expression could open new avenues in engineering programs of cyanobacterial strains.


Assuntos
Cianobactérias/genética , Regulação Bacteriana da Expressão Gênica/genética , Complexo de Proteína do Fotossistema II/genética , Sequência de Aminoácidos/genética , Genoma Bacteriano/genética , Isoformas de Proteínas/genética , Transdução de Sinais/genética
8.
Biochem Biophys Res Commun ; 733: 150734, 2024 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-39332156

RESUMO

Pseudo-Response Regulator (PRR) proteins constitute a fundamental set of circadian clock components in plants. PRRs have an amino acid sequence stretch with similarity to the receiver (REC) domain of response regulators (RRs) in the Multi-Step Phosphorelay (MSP). However, it has never been elucidated whether PRRs interact with Histidine-containing Phosphotransfer (HPt) proteins, which transfer a phosphate to RRs. Here, we studied whether PRRs interact with HPts in the moss Physcomitrium patens by the Yeast Two-Hybrid system and Bimolecular Fluorescence Complementation. P. patens PRR1/2/3 interacted with HPt1/2 in the nucleus, but not with HPt3, suggesting that P. patens PRRs function as authentic RRs. We discuss these results in relation to the evolution and diversity of the plant circadian clocks.


Assuntos
Bryopsida , Núcleo Celular , Proteínas de Plantas , Bryopsida/metabolismo , Bryopsida/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Núcleo Celular/metabolismo , Relógios Circadianos/fisiologia , Proteínas CLOCK/metabolismo , Proteínas CLOCK/genética , Histidina/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Regulação da Expressão Gênica de Plantas
9.
Chembiochem ; : e202400392, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967093

RESUMO

Two-component signal transduction systems (TCSs) are regulatory systems widely distributed in eubacteria, archaea, and a few eukaryotic organisms, but not in mammalian cells. A typical TCS consists of a histidine kinase and a response regulator protein. Functional and mechanistic studies on different TCSs have greatly advanced the understanding of cellular phosphotransfer signal transduction mechanisms. In this concept paper, we focus on the His-Asp phosphotransfer mechanism, the ATP synthesis function, antimicrobial drug design, cellular biosensors design, and protein allostery mechanisms based on recent TCS investigations to inspire new applications and future research perspectives.

10.
Planta ; 259(5): 96, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517516

RESUMO

MAIN CONCLUSION: OsRR26 is a cytokinin-responsive response regulator that promotes phytohormone-mediated ROS accumulation in rice roots, regulates seedling growth, spikelet fertility, awn development, represses NADPH oxidases, and negatively affects salinity tolerance. Plant two-component systems (TCS) play a pivotal role in phytohormone signaling, stress responses, and circadian rhythm. However, a significant knowledge gap exists regarding TCS in rice. In this study, we utilized a functional genomics approach to elucidate the role of OsRR26, a type-B response regulator in rice. Our results demonstrate that OsRR26 is responsive to cytokinin, ABA, and salinity stress, serving as the ortholog of Arabidopsis ARR11. OsRR26 primarily localizes to the nucleus and plays a crucial role in seedling growth, spikelet fertility, and the suppression of awn development. Exogenous application of cytokinin led to distinct patterns of reactive oxygen species (ROS) accumulation in the roots of both WT and transgenic plants (OsRR26OE and OsRR26KD), indicating the potential involvement of OsRR26 in cytokinin-mediated ROS signaling in roots. The application of exogenous ABA resulted in varied cellular compartmentalization of ROS between the WT and transgenic lines. Stress tolerance assays of these plants revealed that OsRR26 functions as a negative regulator of salinity stress tolerance across different developmental stages in rice. Physiological and biochemical analyses unveiled that the knockdown of OsRR26 enhances salinity tolerance, characterized by improved chlorophyll retention and the accumulation of soluble sugars, K+ content, and amino acids, particularly proline.


Assuntos
Arabidopsis , Oryza , Oryza/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Tolerância ao Sal/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Plantas Geneticamente Modificadas/metabolismo , Citocininas/metabolismo , Plântula/genética , Plântula/metabolismo , Arabidopsis/genética , Salinidade , Regulação da Expressão Gênica de Plantas
11.
Annu Rev Microbiol ; 73: 175-197, 2019 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-31100988

RESUMO

Response regulators function as the output components of two-component systems, which couple the sensing of environmental stimuli to adaptive responses. Response regulators typically contain conserved receiver (REC) domains that function as phosphorylation-regulated switches to control the activities of effector domains that elicit output responses. This modular design is extremely versatile, enabling different regulatory strategies tuned to the needs of individual signaling systems. This review summarizes structural features that underlie response regulator function. An abundance of atomic resolution structures and complementary biochemical data have defined the mechanisms for response regulator enzymatic activities, revealed trends in regulatory strategies utilized by response regulators of different subfamilies, and provided insights into interactions of response regulators with their cognate histidine kinases. Among the hundreds of thousands of response regulators identified, variations abound. This article provides a framework for understanding structural features that enable function of canonical response regulators and a basis for distinguishing noncanonical configurations.


Assuntos
Histidina Quinase/química , Histidina Quinase/metabolismo , Transdução de Sinais , Conformação Proteica , Domínios Proteicos
12.
Annu Rev Microbiol ; 73: 199-223, 2019 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-31112439

RESUMO

Bacteria depend on two-component systems to detect and respond to threats. Simple pathways comprise a single sensor kinase (SK) that detects a signal and activates a response regulator protein to mediate an appropriate output. These simple pathways with only a single SK are not well suited to making complex decisions where multiple different stimuli need to be evaluated. A recently emerging theme is the existence of multikinase networks (MKNs) where multiple SKs collaborate to detect and integrate numerous different signals to regulate a major lifestyle switch, e.g., between virulence, sporulation, biofilm formation, and cell division. In this review, the role of MKNs and the phosphosignaling mechanisms underpinning their signal integration and decision making are explored.


Assuntos
Bactérias/enzimologia , Redes Reguladoras de Genes , Histidina Quinase/metabolismo , Transdução de Sinais , Estresse Fisiológico
13.
J Exp Bot ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39171371

RESUMO

Multistep phosphorelay (MSP) signaling integrates hormonal and environmental signals to control both plant development and adaptive responses. The type-A RESPONSE REGULATORs (RRAs), the downstream members of the MSP cascade and cytokinin primary response genes are supposed to mediate primarily the negative feedback regulation of (cytokinin-induced) MSP signaling. However, the transcriptional data suggest the involvement of RRAs in stress-related responses as well. By employing evolutionary conservation with the well-characterized Arabidopsis thaliana RRAs, we identified 5 and 38 novel putative RRAs in Brassica oleracea and Brassica napus, respectively. Our phylogenetic analysis suggests the existence of gene-specific selective pressure, maintaining the homologs of ARR3, ARR6, and ARR16 as singletons during the evolution of Brassicaceae. We categorized RRAs based on the kinetics of their cytokinin-mediated upregulation and observed both similarities and specificities in this type of response across Brassicaceae species. Using bioinformatic analysis and experimental data demonstrating the cytokinin and abiotic stress responsiveness of A. thaliana-derived TCSv2 reporter, we unveil the mechanistic conservation of cytokinin- and stress-mediated upregulation of RRAs in Brassica rapa and Brassica napus. Notably, we identify partial cytokinin dependency of cold stress-induced RRA transcription, thus corroborating the role of cytokinin signaling in the crop adaptive responses.

14.
Bioorg Chem ; 150: 107606, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38968903

RESUMO

The number of new antibacterial agents currently being discovered is insufficient to combat bacterial resistance. It is extremely challenging to find new antibiotics and to introduce them to the pharmaceutical market. Therefore, special attention must be given to find new strategies to combat bacterial resistance and prevent bacteria from developing resistance. Two-component system is a transduction system and the most prevalent mechanism employed by bacteria to respond to environmental changes. This signaling system consists of a membrane sensor histidine kinase that perceives environmental stimuli and a response regulator which acts as a transcription factor. The approach consisting of developing response regulators inhibitors with antibacterial activity or antibiotic adjuvant activity is a novel approach that has never been previously reviewed. In this review we report for the first time, the importance of targeting response regulators and summarizing all existing studies carried out from 2008 until now on response regulators inhibitors as antibacterial agents or / and antibiotic adjuvants. Moreover, we describe the antibacterial activity and/or antibiotic adjuvants activity against the studied bacterial strains and the mechanism of different response regulator inhibitors when it's possible.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Farmacorresistência Bacteriana/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Humanos , Adjuvantes Farmacêuticos/farmacologia , Adjuvantes Farmacêuticos/química
15.
Appl Microbiol Biotechnol ; 108(1): 306, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656376

RESUMO

The Streptomyces genus comprises Gram-positive bacteria known to produce over two-thirds of the antibiotics used in medical practice. The biosynthesis of these secondary metabolites is highly regulated and influenced by a range of nutrients present in the growth medium. In Streptomyces coelicolor, glucose inhibits the production of actinorhodin (ACT) and undecylprodigiosin (RED) by a process known as carbon catabolite repression (CCR). However, the mechanism mediated by this carbon source still needs to be understood. It has been observed that glucose alters the transcriptomic profile of this actinobacteria, modifying different transcriptional regulators, including some of the one- and two-component systems (TCSs). Under glucose repression, the expression of one of these TCSs SCO6162/SCO6163 was negatively affected. We aimed to study the role of this TCS on secondary metabolite formation to define its influence in this general regulatory process and likely establish its relationship with other transcriptional regulators affecting antibiotic biosynthesis in the Streptomyces genus. In this work, in silico predictions suggested that this TCS can regulate the production of the secondary metabolites ACT and RED by transcriptional regulation and protein-protein interactions of the transcriptional factors (TFs) with other TCSs. These predictions were supported by experimental procedures such as deletion and complementation of the TFs and qPCR experiments. Our results suggest that in the presence of glucose, the TCS SCO6162/SCO6163, named GarR/GarS, is an important negative regulator of the ACT and RED production in S. coelicolor. KEY POINTS: • GarR/GarS is a TCS with domains for signal transduction and response regulation • GarR/GarS is an essential negative regulator of the ACT and RED production • GarR/GarS putatively interacts with and regulates activators of ACT and RED.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Streptomyces coelicolor , Antraquinonas/metabolismo , Antibacterianos/biossíntese , Antibacterianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Benzoisocromanequinonas , Repressão Catabólica , Glucose/metabolismo , Prodigiosina/análogos & derivados , Prodigiosina/biossíntese , Prodigiosina/metabolismo , Metabolismo Secundário/genética , Streptomyces coelicolor/metabolismo , Streptomyces coelicolor/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Int J Mol Sci ; 25(18)2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-39337660

RESUMO

Helicobacter pylori infection constitutes a silent pandemic of global concern. In the last decades, the alarming increase in multidrug resistance evolved by this pathogen has led to a marked drop in the eradication rates of traditional therapies worldwide. By using a high-throughput screening strategy, in combination with in vitro DNA binding assays and antibacterial activity testing, we identified a battery of novel drug-like HsrA inhibitors with MIC values ranging from 0.031 to 4 mg/L against several antibiotic-resistant strains of H. pylori, and minor effects against both Gram-negative and Gram-positive species of human microbiota. The most potent anti-H. pylori candidate demonstrated a high therapeutic index, an additive effect in combination with metronidazole and clarithromycin as well as a strong antimicrobial action against Campylobacter jejuni, another clinically relevant pathogen of phylum Campylobacterota. Transcriptomic analysis suggests that the in vivo inhibition of HsrA triggers lethal global disturbances in H. pylori physiology including the arrest of protein biosynthesis, malfunction of respiratory chain, detriment in ATP generation, and oxidative stress. The novel drug-like HsrA inhibitors described here constitute valuable candidates to a new family of narrow-spectrum antibiotics that allow overcoming the current resistome, protecting from dysbiosis, and increasing therapeutic options for novel personalized treatments against H. pylori.


Assuntos
Antibacterianos , Proteínas de Bactérias , Helicobacter pylori , Testes de Sensibilidade Microbiana , Helicobacter pylori/efeitos dos fármacos , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Humanos , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Claritromicina/farmacologia , Metronidazol/farmacologia
17.
World J Microbiol Biotechnol ; 40(5): 153, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564115

RESUMO

Ralstonia solanacearum, the bacterium that causes bacterial wilt, is a destructive phytopathogen that can infect over 450 different plant species. Several agriculturally significant crop plants, including eggplant, tomato, pepper, potato, and ginger, are highly susceptible to this plant disease, which has a global impact on crop quality and yield. There is currently no known preventive method that works well for bacterial wilt. Bacteria use two-component systems (TCSs) to sense their environment constantly and react appropriately. This is achieved by an extracellular sensor kinase (SK) capable of sensing a suitable signal and a cytoplasmic response regulator (RR) which gives a downstream response. Moreover, our investigation revealed that R. solanacearum GMI1000 possesses a substantial count of TCSs, specifically comprising 36 RRs and 27 SKs. While TCSs are known targets for various human pathogenic bacteria, such as Salmonella, the role of TCSs in R. solanacearum remains largely unexplored in this context. Notably, numerous inhibitors targeting TCSs have been identified, including GHL (Gyrase, Hsp, and MutL) compounds, Walk inhibitors, and anti-TCS medications like Radicicol. Consequently, the investigation into the involvement of TCSs in virulence and pathogenesis has gained traction; however, further research is imperative to ascertain whether TCSs could potentially supplant conventional anti-wilt therapies. This review delves into the prospective utilization of TCSs as an alternative anti-wilt therapy, focusing on the lethal phytopathogen R. solanacearum.


Assuntos
Ralstonia solanacearum , Humanos , Estudos Prospectivos , Bactérias , Citoplasma , Citosol
18.
J Bacteriol ; 205(1): e0039022, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36622228

RESUMO

Bacterial lipoproteins are membrane-associated proteins with a characteristic acylated N-terminal cysteine residue anchoring C-terminal globular domains to the membrane surface. While all lipoproteins are modified with acyl chains, the number, length, and position can vary depending on host. The acylation pattern also alters ligand recognition by the Toll-like receptor 2 (TLR2) protein family, a signaling system that is central to bacterial surveillance and innate immunity. In select Listeria monocytogenes isolates carrying certain plasmids, copper exposure converts the lipoprotein chemotype into a weak TLR2 ligand through expression of the enzyme lipoprotein intramolecular acyltransferase (Lit). In this study, we identify the response regulator (CopR) from a heavy metal-sensing two-component system as the transcription factor that integrates external copper levels with lipoprotein structural modifications. We show that phosphorylated CopR controls the expression of three distinct transcripts within the plasmid cassette encoding Lit2, prolipoprotein diacylglyceryl transferase (Lgt2), putative copper resistance determinants, and itself (the CopRS two-component system). CopR recognizes a direct repeat half-site consensus motif (TCTACACA) separated by 3 bp that overlaps the -35 promoter element. Target gene expression and lipoprotein conversion were not observed in the absence of the response regulator, indicating that CopR phosphorylation is the dominant mechanism of regulation. IMPORTANCE Copper is a frontline antimicrobial used to limit bacterial growth in multiple settings. Here, we demonstrate how the response regulator CopR from a plasmid-borne two-component system in the opportunistic pathogen L. monocytogenes directly induces lipoprotein remodeling in tandem with copper resistance genes due to extracellular copper stress. Activation of CopR by phosphorylation converts the lipoprotein chemotype from a high- to low-immunostimulatory TLR2 ligand. The two-component system-mediated coregulation of copper resistance determinants, in tandem with lipoprotein biosynthesis demonstrated here in L. monocytogenes, may be a common feature of transmissible copper resistance cassettes found in other Firmicutes.


Assuntos
Listeria monocytogenes , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Receptor 2 Toll-Like , Cobre/metabolismo , Ligantes , Lipoproteínas/genética , Lipoproteínas/metabolismo , Proteínas de Bactérias/metabolismo
19.
Genes Cells ; 27(11): 657-674, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36057789

RESUMO

Escherichia coli (E. coli) has multiple copies of the chaperone-usher (CU) pili operon in five fimbria groups: CU pili, curli, type IV pili, type III secretion pili, and type IV secretion pili. Commensal E. coli K-12 contains 12 CU pili operons. Among these operons, Sfm is expressed by the sfmACDHF operon. Transcriptome analyses, reporter assays, and chromatin immunoprecipitation PCR analyses reported that FimZ directly binds to and activates the sfmA promoter, transcribing sfmACDHF. In addition, FimZ regularly induces constant cell elongation in E. coli, which is required for F-type ATPase function. The bacterial two-hybrid system showed a specific interaction between FimZ and the α subunit of the cytoplasmic F1 domain of F-type ATPase. Studies performed using mutated FimZs have revealed two active forms, I and II. Active form I is required for constant cell elongation involving amino acid residues K106 and D109. Active form II additionally required D56, a putative phosphorylation site, to activate the sfmA promoter. The chromosomal fimZ was hardly expressed in parent strain but functioned in phoB and phoP double-gene knockout strains. These insights may help to understand bacterial invasion restricted host environments by the sfm γ-type pili.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Chaperonas Moleculares/genética , Adenosina Trifosfatases/genética
20.
Appl Environ Microbiol ; 89(10): e0101723, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37787570

RESUMO

The foodborne bacterial pathogen Listeria monocytogenes exhibits remarkable survival capabilities under challenging conditions, severely threatening food safety and human health. The orphan regulator DegU is a pleiotropic regulator required for bacterial environmental adaptation. However, the specific mechanism of how DegU participates in oxidative stress tolerance remains unknown in L. monocytogenes. In this study, we demonstrate that DegU suppresses carbohydrate uptake under stress conditions by altering global transcriptional profiles, particularly by modulating the transcription of the phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS)-related genes, such as ptsH, ptsI, and hprK. Specifically, in the absence of degU, the transcripts of ptsI are significantly upregulated and those of hprK are significantly downregulated in response to copper ion-induced stress. Overexpression of ptsI significantly increases bacterial growth in vitro, while overexpression of hprK leads to a decrease in growth. We further demonstrate that DegU directly senses oxidative stress, downregulates ptsI transcription, and upregulates hprK transcription. Additionally, through an electrophoretic mobility shift assay, we demonstrate that DegU directly regulates the transcription of ptsI and hprK by binding to specific regions within their respective promoter sequences. Notably, the putative pivotal DegU binding sequence for ptsI is located from 38 to 68 base pairs upstream of the ptsH transcription start site (TSS), whereas for hprK, it is mapped from 36 to 124 base pairs upstream of the hprK TSS. In summary, we elucidate that DegU plays a significant role in suppressing carbohydrate uptake in response to oxidative stress through the direct regulation of ptsI and hprK.ImportanceUnderstanding the adaptive mechanisms employed by Listeria monocytogenes in harsh environments is of great significance. This study focuses on investigating the role of DegU in response to oxidative stress by examining global transcriptional profiles. The results highlight the noteworthy involvement of DegU in this stress response. Specifically, DegU acts as a direct sensor of oxidative stress, leading to the modulation of gene transcription. It downregulates ptsI transcription while it upregulates hprK transcription through direct binding to their promoters. Consequently, these regulatory actions impede bacterial growth, providing a defense mechanism against stress-induced damage. These findings gained from this study may have broader implications, serving as a reference for studying adaptive mechanisms in other pathogenic bacteria and aiding in the development of targeted strategies to control L. monocytogenes and ensure food safety.


Assuntos
Listeria monocytogenes , Humanos , Listeria monocytogenes/fisiologia , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Carboidratos , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA