Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 172(3): 465-477.e15, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29358048

RESUMO

The ring-shaped structural maintenance of chromosome (SMC) complexes are multi-subunit ATPases that topologically encircle DNA. SMC rings make vital contributions to numerous chromosomal functions, including mitotic chromosome condensation, sister chromatid cohesion, DNA repair, and transcriptional regulation. They are thought to do so by establishing interactions between more than one DNA. Here, we demonstrate DNA-DNA tethering by the purified fission yeast cohesin complex. DNA-bound cohesin efficiently and topologically captures a second DNA, but only if that is single-stranded DNA (ssDNA). Like initial double-stranded DNA (dsDNA) embrace, second ssDNA capture is ATP-dependent, and it strictly requires the cohesin loader complex. Second-ssDNA capture is relatively labile but is converted into stable dsDNA-dsDNA cohesion through DNA synthesis. Our study illustrates second-DNA capture by an SMC complex and provides a molecular model for the establishment of sister chromatid cohesion.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Proteínas Cromossômicas não Histona/metabolismo , DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Cromátides/metabolismo , Replicação do DNA , Saccharomyces cerevisiae , Schizosaccharomyces , Coesinas
2.
Cell ; 173(4): 1031-1044.e13, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29727662

RESUMO

Full understanding of eukaryotic transcriptomes and how they respond to different conditions requires deep knowledge of all sites of intron excision. Although RNA sequencing (RNA-seq) provides much of this information, the low abundance of many spliced transcripts (often due to their rapid cytoplasmic decay) limits the ability of RNA-seq alone to reveal the full repertoire of spliced species. Here, we present "spliceosome profiling," a strategy based on deep sequencing of RNAs co-purifying with late-stage spliceosomes. Spliceosome profiling allows for unambiguous mapping of intron ends to single-nucleotide resolution and branchpoint identification at unprecedented depths. Our data reveal hundreds of new introns in S. pombe and numerous others that were previously misannotated. By providing a means to directly interrogate sites of spliceosome assembly and catalysis genome-wide, spliceosome profiling promises to transform our understanding of RNA processing in the nucleus, much as ribosome profiling has transformed our understanding mRNA translation in the cytoplasm.


Assuntos
Schizosaccharomyces/genética , Spliceossomos/metabolismo , Transcriptoma , Algoritmos , Íntrons , Splicing de RNA , RNA Fúngico/metabolismo , Ribonucleoproteínas/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Análise de Sequência de RNA , Sítio de Iniciação de Transcrição
3.
Mol Cell ; 83(21): 3787-3800.e9, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37820734

RESUMO

Condensin is a structural maintenance of chromosomes (SMC) complex family member thought to build mitotic chromosomes by DNA loop extrusion. However, condensin variants unable to extrude loops, yet proficient in chromosome formation, were recently described. Here, we explore how condensin might alternatively build chromosomes. Using bulk biochemical and single-molecule experiments with purified fission yeast condensin, we observe that individual condensins sequentially and topologically entrap two double-stranded DNAs (dsDNAs). Condensin loading transitions through a state requiring DNA bending, as proposed for the related cohesin complex. While cohesin then favors the capture of a second single-stranded DNA (ssDNA), second dsDNA capture emerges as a defining feature of condensin. We provide complementary in vivo evidence for DNA-DNA capture in the form of condensin-dependent chromatin contacts within, as well as between, chromosomes. Our results support a "diffusion capture" model in which condensin acts in mitotic chromosome formation by sequential dsDNA-dsDNA capture.


Assuntos
Proteínas de Ligação a DNA , Schizosaccharomyces , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/química , DNA/genética , Cromossomos , Proteínas de Ciclo Celular/genética , Schizosaccharomyces/genética , Mitose
4.
Mol Cell ; 77(3): 501-513.e7, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31837996

RESUMO

The histone chaperone FACT and histone H2B ubiquitination (H2Bub) facilitate RNA polymerase II (Pol II) passage through chromatin, yet it is not clear how they cooperate mechanistically. We used genomics, genetic, biochemical, and microscopic approaches to dissect their interplay in Schizosaccharomyces pombe. We show that FACT and H2Bub globally repress antisense transcripts near the 5' end of genes and inside gene bodies, respectively. The accumulation of these transcripts is accompanied by changes at genic nucleosomes and Pol II redistribution. H2Bub is required for FACT activity in genic regions. In the H2Bub mutant, FACT binding to chromatin is altered and its association with histones is stabilized, which leads to the reduction of genic nucleosomes. Interestingly, FACT depletion globally restores nucleosomes in the H2Bub mutant. Moreover, in the absence of Pob3, the FACT Spt16 subunit controls the 3' end of genes. Furthermore, FACT maintains nucleosomes in subtelomeric regions, which is crucial for their compaction.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Cromatina/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Grupo de Alta Mobilidade/genética , Histonas/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Nucleossomos/metabolismo , Ligação Proteica , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/genética , Ubiquitinação
5.
Mol Cell ; 79(6): 917-933.e9, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32755595

RESUMO

Despite key roles in sister chromatid cohesion and chromosome organization, the mechanism by which cohesin rings are loaded onto DNA is still unknown. Here we combine biochemical approaches and cryoelectron microscopy (cryo-EM) to visualize a cohesin loading intermediate in which DNA is locked between two gates that lead into the cohesin ring. Building on this structural framework, we design experiments to establish the order of events during cohesin loading. In an initial step, DNA traverses an N-terminal kleisin gate that is first opened upon ATP binding and then closed as the cohesin loader locks the DNA against the ATPase gate. ATP hydrolysis will lead to ATPase gate opening to complete DNA entry. Whether DNA loading is successful or results in loop extrusion might be dictated by a conserved kleisin N-terminal tail that guides the DNA through the kleisin gate. Our results establish the molecular basis for cohesin loading onto DNA.


Assuntos
Proteínas de Ciclo Celular/ultraestrutura , Cromátides/ultraestrutura , Proteínas Cromossômicas não Histona/ultraestrutura , DNA/ultraestrutura , Troca de Cromátide Irmã/genética , Adenosina Trifosfatases/genética , Proteínas de Ciclo Celular/genética , Cromátides/genética , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos/genética , Microscopia Crioeletrônica , DNA/genética , Conformação de Ácido Nucleico , Conformação Proteica , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Coesinas
6.
Genes Dev ; 33(9-10): 565-577, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30808655

RESUMO

Heterochromatin protein 1 (HP1) proteins are key factors of eukaryotic heterochromatin that coordinate chromatin compaction and transcriptional gene silencing. Through their multivalency they act as adaptors between histone H3 Lys9 di/trimethyl marks in chromatin and effector complexes that bind to the HP1 chromoshadow domain. Most organisms encode for multiple HP1 isoforms and the molecular mechanisms that underpin their diverse functions in genome regulation remain poorly understood. In fission yeast, the two HP1 proteins Chp2 and Swi6 assume distinct roles and Chp2 is tightly associated with the nucleosome remodeling and deacetylation complex SHREC. Here we show that Chp2 directly engages the SHREC nucleosome remodeler subunit Mit1. The crystal structure of the interaction interface reveals an extraordinarily extensive and specific interaction between the chromoshadow domain of Chp2 and the N terminus of Mit1. The integrity of this interface is critical for high affinity binding and for heterochromatin formation. Comparison with Swi6 shows that the Chp2-Mit1 interface is highly selective and thereby provides the molecular basis for the functional specialization of an HP1 isoform.


Assuntos
Regulação Fúngica da Expressão Gênica , Inativação Gênica , Proteínas Repressoras/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Cristalização , Heterocromatina/metabolismo , Ligação Proteica , Isoformas de Proteínas , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética
7.
Development ; 149(14)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35713287

RESUMO

Biological systems are increasingly viewed through a quantitative lens that demands accurate measures of gene expression and local protein concentrations. CRISPR/Cas9 gene tagging has enabled increased use of fluorescence to monitor proteins at or near endogenous levels under native regulatory control. However, owing to typically lower expression levels, experiments using endogenously tagged genes run into limits imposed by autofluorescence (AF). AF is often a particular challenge in wavelengths occupied by commonly used fluorescent proteins (GFP, mNeonGreen). Stimulated by our work in C. elegans, we describe and validate Spectral Autofluorescence Image Correction By Regression (SAIBR), a simple platform-independent protocol and FIJI plug-in to correct for autofluorescence using standard filter sets and illumination conditions. Validated for use in C. elegans embryos, starfish oocytes and fission yeast, SAIBR is ideal for samples with a single dominant AF source; it achieves accurate quantitation of fluorophore signal, and enables reliable detection and quantification of even weakly expressed proteins. Thus, SAIBR provides a highly accessible low-barrier way to incorporate AF correction as standard for researchers working on a broad variety of cell and developmental systems.


Assuntos
Caenorhabditis elegans , Proteínas , Animais , Fluorescência , Corantes Fluorescentes , Genes Reporter
8.
Curr Issues Mol Biol ; 46(5): 4609-4629, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38785548

RESUMO

Ermp1 is a putative metalloprotease from Schizosaccharomyces pombe and a member of the Fxna peptidases. Although their function is unknown, orthologous proteins from rats and humans have been associated with the maturation of ovarian follicles and increased ER stress. This study focuses on proposing the first prediction of PPI by comparison of the interologues between humans and yeasts, as well as the molecular docking and dynamics of the M28 domain of Ermp1 with possible target proteins. As results, 45 proteins are proposed that could interact with the metalloprotease. Most of these proteins are related to the transport of Ca2+ and the metabolism of amino acids and proteins. Docking and molecular dynamics suggest that the M28 domain of Ermp1 could hydrolyze leucine and methionine residues of Amk2, Ypt5 and Pex12. These results could support future experimental investigations of other Fxna peptidases, such as human ERMP1.

9.
J Cell Sci ; 135(24)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36524422

RESUMO

The budding and fission yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe have served as invaluable model organisms to study conserved fundamental cellular processes. Although super-resolution microscopy has in recent years paved the way to a better understanding of the spatial organization of molecules in cells, its wide use in yeasts has remained limited due to the specific know-how and instrumentation required, contrasted with the relative ease of endogenous tagging and live-cell fluorescence microscopy. To facilitate super-resolution microscopy in yeasts, we have extended the ultrastructure expansion microscopy (U-ExM) method to both S. cerevisiae and S. pombe, enabling a 4-fold isotropic expansion. We demonstrate that U-ExM allows imaging of the microtubule cytoskeleton and its associated spindle pole body, notably unveiling the Sfi1p-Cdc31p spatial organization on the appendage bridge structure. In S. pombe, we validate the method by monitoring the homeostatic regulation of nuclear pore complex number through the cell cycle. Combined with NHS-ester pan-labelling, which provides a global cellular context, U-ExM reveals the subcellular organization of these two yeast models and provides a powerful new method to augment the already extensive yeast toolbox. This article has an associated First Person interview with Kerstin Hinterndorfer and Felix Mikus, two of the joint first authors of the paper.


Assuntos
Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces , Humanos , Schizosaccharomyces/metabolismo , Saccharomyces cerevisiae/metabolismo , Microscopia , Proteínas de Saccharomyces cerevisiae/metabolismo , Corpos Polares do Fuso/metabolismo
10.
Curr Genet ; 70(1): 8, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913087

RESUMO

The Byr2 kinase of fission yeast Schizosaccharomyces pombe is recruited to the membrane with the assistance of Ras1. Byr2 is also negatively regulated by 14-3-3 proteins encoded by rad24 and rad25. We conducted domain and mutational analysis of Byr2 to determine which region is critical for its binding to 14-3-3 proteins. Rad24 and Rad25 bound to both the Ras interaction domain in the N-terminus and to the C-terminal catalytic domain of Byr2. When amino acid residues S87 and T94 of the Ras-interacting domain of Byr2 were mutated to alanine, Rad24 could no longer bind to Byr2. S402, S566, S650, and S654 mutations in the C-terminal domain of Byr2 also abolished its interaction with Rad24 and Rad25. More than three mutations in the C-terminal domain were required to abolish completely its interaction with 14-3-3 protein, suggesting that multiple residues are involved in this interaction. Expression of the N-terminal domain of Byr2 in wild-type cells lowered the mating ratio, because it likely blocked the interaction of Byr2 with Ste4 and Ras1, whereas expression of the catalytic domain of Byr2 increased the mating ratio as a result of freeing from intramolecular regulation by the N-terminal domain of Byr2. The S87A and T94A mutations of Byr2 increased the mating ratio and attenuated inhibition of Byr2 by Rad24; therefore, these two amino acids are critical for its regulation by Rad24. S566 of Byr2 is critical for activity of Byr2 but not for its interaction with 14-3-3 proteins. In this study, we show that 14-3-3 proteins interact with two separate domains in Byr2 as negative regulators.


Assuntos
Proteínas 14-3-3 , Ligação Proteica , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Mutação , Análise Mutacional de DNA , Domínios Proteicos/genética , Domínios e Motivos de Interação entre Proteínas , Proteínas de Ciclo Celular , Peptídeos e Proteínas de Sinalização Intracelular
11.
Adv Exp Med Biol ; 1441: 313-339, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884719

RESUMO

Posttranscriptional regulation comprises those mechanisms occurring after the initial copy of the DNA sequence is transcribed into an intermediate RNA molecule (i.e., messenger RNA) until such a molecule is used as a template to generate a protein. A subset of these posttranscriptional regulatory mechanisms essentially are destined to process the immature mRNA toward its mature form, conferring the adequate mRNA stability, providing the means for pertinent introns excision, and controlling mRNA turnover rate and quality control check. An additional layer of complexity is added in certain cases, since discrete nucleotide modifications in the mature RNA molecule are added by RNA editing, a process that provides large mature mRNA diversity. Moreover, a number of posttranscriptional regulatory mechanisms occur in a cell- and tissue-specific manner, such as alternative splicing and noncoding RNA-mediated regulation. In this chapter, we will briefly summarize current state-of-the-art knowledge of general posttranscriptional mechanisms, while major emphases will be devoted to those tissue-specific posttranscriptional modifications that impact on cardiac development and congenital heart disease.


Assuntos
Processamento Pós-Transcricional do RNA , RNA não Traduzido , Animais , Humanos , Processamento Alternativo/genética , Regulação da Expressão Gênica , Edição de RNA , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo
12.
Genes Dev ; 30(13): 1558-72, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27401558

RESUMO

Termination of RNA polymerase II (RNAPII) transcription is associated with RNA 3' end formation. For coding genes, termination is initiated by the cleavage/polyadenylation machinery. In contrast, a majority of noncoding transcription events in Saccharomyces cerevisiae does not rely on RNA cleavage for termination but instead terminates via a pathway that requires the Nrd1-Nab3-Sen1 (NNS) complex. Here we show that the Schizosaccharomyces pombe ortholog of Nrd1, Seb1, does not function in NNS-like termination but promotes polyadenylation site selection of coding and noncoding genes. We found that Seb1 associates with 3' end processing factors, is enriched at the 3' end of genes, and binds RNA motifs downstream from cleavage sites. Importantly, a deficiency in Seb1 resulted in widespread changes in 3' untranslated region (UTR) length as a consequence of increased alternative polyadenylation. Given that Seb1 levels affected the recruitment of conserved 3' end processing factors, our findings indicate that the conserved RNA-binding protein Seb1 cotranscriptionally controls alternative polyadenylation.


Assuntos
Poliadenilação/genética , Processamento Pós-Transcricional do RNA/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Motivos de Aminoácidos , Domínios Proteicos , RNA Polimerase II , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Elongação da Transcrição Genética
13.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673778

RESUMO

Pre-mRNA splicing plays a key role in the regulation of gene expression. Recent discoveries suggest that defects in pre-mRNA splicing, resulting from the dysfunction of certain splicing factors, can impact the expression of genes crucial for genome surveillance mechanisms, including those involved in cellular response to DNA damage. In this study, we analyzed how cells with a non-functional spliceosome-associated Gpl1-Gih35-Wdr83 complex respond to DNA damage. Additionally, we investigated the role of this complex in regulating the splicing of factors involved in DNA damage repair. Our findings reveal that the deletion of any component within the Gpl1-Gih35-Wdr83 complex leads to a significant accumulation of unspliced pre-mRNAs of DNA repair factors. Consequently, mutant cells lacking this complex exhibit increased sensitivity to DNA-damaging agents. These results highlight the importance of the Gpl1-Gih35-Wdr83 complex in regulating the expression of DNA repair factors, thereby protecting the stability of the genome following DNA damage.


Assuntos
Dano ao DNA , Reparo do DNA , Fatores de Processamento de RNA , Splicing de RNA , Dano ao DNA/genética , Reparo do DNA/genética , Regulação Fúngica da Expressão Gênica , Precursores de RNA/genética , Precursores de RNA/metabolismo , Fatores de Processamento de RNA/metabolismo , Fatores de Processamento de RNA/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Spliceossomos/metabolismo , Spliceossomos/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo
14.
J Cell Sci ; 134(4)2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33526714

RESUMO

Meiotic recombination forms crossovers important for proper chromosome segregation and offspring viability. This complex process involves many proteins acting at each of the multiple steps of recombination. Recombination initiates by formation of DNA double-strand breaks (DSBs), which in the several species examined occur with high frequency at special sites (DSB hotspots). In Schizosaccharomyces pombe, DSB hotspots are bound with high specificity and strongly activated by linear element (LinE) proteins Rec25, Rec27 and Mug20, which form colocalized nuclear foci with Rec10, essential for all DSB formation and recombination. Here, we test the hypothesis that the nuclear localization signal (NLS) of Rec10 is crucial for coordinated nuclear entry after forming a complex with other LinE proteins. In NLS mutants, all LinE proteins were abundant in the cytoplasm, not the nucleus; DSB formation and recombination were much reduced but not eliminated. Nuclear entry of limited amounts of Rec10, apparently small enough for passive nuclear entry, can account for residual recombination. LinE proteins are related to synaptonemal complex proteins of other species, suggesting that they also share an NLS, not yet identified, and undergo protein complex formation before nuclear entry.This article has an associated First Person interview with Mélody Wintrebert, joint first author of the paper.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Transporte Ativo do Núcleo Celular , Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Meiose/genética , Proteínas Nucleares/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
15.
Mol Microbiol ; 115(6): 1323-1338, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33400299

RESUMO

Mitochondria play essential roles in eukaryotic cells for glucose metabolism to produce ATP. In Schizosaccharomyces pombe, transcription factor Rst2 can be activated upon glucose deprivation. However, the link between Rst2 and mitochondrial function remains elusive. Here, we monitored Rst2 transcriptional activity in living cells using a Renilla luciferase reporter system, and found that inhibition of mitochondrial complex III/IV caused cells to produce reactive oxygen species (ROS) and nitric oxide (NO), which in turn activated Rst2. Furthermore, Rst2-GFP was observed to translocate from cytoplasm to nucleus upon mitochondrial complex III/IV inhibitors treatment, and deletion of genes associated with complex III/IV resulted in delayed process of Rst2-GFP nuclear exportation under glucose-rich condition. In particular, we found that Rst2 was phosphorylated following the treatment of complex III/IV inhibitors or SNAP. Altogether, our findings suggest that mitochondrial complex III/IV participates in the activation of Rst2 through ROS and NO generation in Schizosaccharomyces pombe.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo IV da Cadeia de Transporte de Elétrons/genética , Ativação Enzimática/fisiologia , Mitocôndrias/metabolismo , Fosforilação , S-Nitroso-N-Acetilpenicilamina/farmacologia , Schizosaccharomyces/genética , Transcrição Gênica/genética
16.
J Cell Sci ; 133(10)2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32317395

RESUMO

Translesion synthesis polymerases (TLSPs) are non-essential error-prone enzymes that ensure cell survival by facilitating DNA replication in the presence of DNA damage. In addition to their role in bypassing lesions, TLSPs have been implicated in meiotic double-strand break repair in several systems. Here, we examine the joint contribution of four TLSPs to meiotic progression in the fission yeast Schizosaccharomyces pombe. We observed a dramatic loss of spore viability in fission yeast lacking all four TLSPs, which is accompanied by disruptions in chromosome segregation during meiosis I and II. Rec8 cohesin dynamics are altered in the absence of the TLSPs. These data suggest that the TLSPs contribute to multiple aspects of meiotic chromosome dynamics.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona , Segregação de Cromossomos/genética , Replicação do DNA/genética , Meiose/genética , Fosfoproteínas/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Coesinas
17.
FEMS Yeast Res ; 22(1)2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35262697

RESUMO

Schizosaccharomyces pombe is an established yeast model for studying the cellular mechanisms conserved in humans, such as the DNA replication checkpoint. The replication checkpoint deals with replication stress caused by numerous endogenous and exogenous factors that perturb fork movement. If undealt with, perturbed forks collapse, causing chromosomal DNA damage or cell death. Hydroxyurea (HU) is an inhibitor of ribonucleotide reductase (RNR) commonly used in checkpoint studies. It produces replication stress by depleting dNTPs, which slows the movement of ongoing forks and thus activates the replication checkpoint. However, HU also causes side effects such as oxidative stress, particularly under chronic exposure conditions, which complicates the studies. To find a drug that generates replication stress more specifically, we tested three other RNR inhibitors gemcitabine, guanazole and triapine in S. pombe under various experimental conditions. Our results show that guanazole and triapine can produce replication stress more specifically than HU under chronic, not acute drug treatment conditions. Therefore, using the two drugs in spot assay, the method commonly used for testing drug sensitivity in yeasts, should benefit the checkpoint studies in S. pombe and likely the research in other model systems.


Assuntos
Ribonucleotídeo Redutases , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Replicação do DNA , Desoxicitidina/análogos & derivados , Inibidores Enzimáticos/metabolismo , Guanazol , Humanos , Hidroxiureia/farmacologia , Piridinas , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/metabolismo , Ribonucleotídeo Redutases/farmacologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Tiossemicarbazonas , Gencitabina
18.
EMBO Rep ; 21(11): e50845, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32896087

RESUMO

When glucose is available, many organisms repress mitochondrial respiration in favour of aerobic glycolysis, or fermentation in yeast, that suffices for ATP production. Fission yeast cells, however, rely partially on respiration for rapid proliferation under fermentative conditions. Here, we determined the limiting factors that require respiratory function during fermentation. When inhibiting the electron transport chain, supplementation with arginine was necessary and sufficient to restore rapid proliferation. Accordingly, a systematic screen for mutants growing poorly without arginine identified mutants defective in mitochondrial oxidative metabolism. Genetic or pharmacological inhibition of respiration triggered a drop in intracellular levels of arginine and amino acids derived from the Krebs cycle metabolite alpha-ketoglutarate: glutamine, lysine and glutamic acid. Conversion of arginine into these amino acids was required for rapid proliferation when blocking the respiratory chain. The respiratory block triggered an immediate gene expression response diagnostic of TOR inhibition, which was muted by arginine supplementation or without the AMPK-activating kinase Ssp1. The TOR-controlled proteins featured biased composition of amino acids reflecting their shortage after respiratory inhibition. We conclude that respiration supports rapid proliferation in fermenting fission yeast cells by boosting the supply of Krebs cycle-derived amino acids.


Assuntos
Schizosaccharomyces , Aminoácidos/metabolismo , Proliferação de Células , Fermentação , Respiração , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
19.
Int J Mol Sci ; 23(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35055152

RESUMO

As part of a complex network of genome control, long regulatory RNAs exert significant influences on chromatin dynamics. Understanding how this occurs could illuminate new avenues for disease treatment and lead to new hypotheses that would advance gene regulatory research. Recent studies using the model fission yeast Schizosaccharomyces pombe (S. pombe) and powerful parallel sequencing technologies have provided many insights in this area. This review will give an overview of key findings in S. pombe that relate long RNAs to multiple levels of chromatin regulation: histone modifications, gene neighborhood regulation in cis and higher-order chromosomal ordering. Moreover, we discuss parallels recently found in mammals to help bridge the knowledge gap between the study systems.


Assuntos
Cromatina/metabolismo , RNA Longo não Codificante/genética , Schizosaccharomyces/crescimento & desenvolvimento , Código das Histonas , Processamento de Proteína Pós-Traducional , RNA Fúngico/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
20.
Yi Chuan ; 44(7): 609-617, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858772

RESUMO

Mono-ubiquitination of histone H2B plays a critical role in the regulation of gene transcription, DNA replication, and DNA damage repair. In Schizosaccharomyces pombe, Brl2 is an E3 ubiquitin ligase and required for the ubiquitination of H2B at lysine residue 119. Currently, there are few studies related to the function of Brl2 in DNA damage repair. Using camptothecin (CPT) to induce DNA double-strand breaks (DSBs) in S. pombe, we investigated the effect of Brl2 on DSB repair, and found that brl2-null mutants showed greater sensitivity to CPT when compared with wild-type (WT) cells, as well as having a drastically reduced spontaneous recombinant frequency. The fluorescent analysis demonstrated that Brl2 was co-localized with the recombination factor Rad52 at DSBs. Moreover, Brl2 promoted the recruitment of Rad52 to DSBs. Under CPT-induced DSBs, Brl2 was phosphorylated. These findings indicate that Brl2 plays a critical role in DNA homologous recombination and its mediated repair of DSBs.


Assuntos
Quebras de DNA de Cadeia Dupla , Ubiquitina , Dano ao DNA , Reparo do DNA , Histonas/metabolismo , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA