Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 500
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
BMC Biol ; 22(1): 13, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273258

RESUMO

BACKGROUND: Single-nucleotide polymorphisms (SNPs) are the most widely used form of molecular genetic variation studies. As reference genomes and resequencing data sets expand exponentially, tools must be in place to call SNPs at a similar pace. The genome analysis toolkit (GATK) is one of the most widely used SNP calling software tools publicly available, but unfortunately, high-performance computing versions of this tool have yet to become widely available and affordable. RESULTS: Here we report an open-source high-performance computing genome variant calling workflow (HPC-GVCW) for GATK that can run on multiple computing platforms from supercomputers to desktop machines. We benchmarked HPC-GVCW on multiple crop species for performance and accuracy with comparable results with previously published reports (using GATK alone). Finally, we used HPC-GVCW in production mode to call SNPs on a "subpopulation aware" 16-genome rice reference panel with ~ 3000 resequenced rice accessions. The entire process took ~ 16 weeks and resulted in the identification of an average of 27.3 M SNPs/genome and the discovery of ~ 2.3 million novel SNPs that were not present in the flagship reference genome for rice (i.e., IRGSP RefSeq). CONCLUSIONS: This study developed an open-source pipeline (HPC-GVCW) to run GATK on HPC platforms, which significantly improved the speed at which SNPs can be called. The workflow is widely applicable as demonstrated successfully for four major crop species with genomes ranging in size from 400 Mb to 2.4 Gb. Using HPC-GVCW in production mode to call SNPs on a 25 multi-crop-reference genome data set produced over 1.1 billion SNPs that were publicly released for functional and breeding studies. For rice, many novel SNPs were identified and were found to reside within genes and open chromatin regions that are predicted to have functional consequences. Combined, our results demonstrate the usefulness of combining a high-performance SNP calling architecture solution with a subpopulation-aware reference genome panel for rapid SNP discovery and public deployment.


Assuntos
Genoma de Planta , Polimorfismo de Nucleotídeo Único , Fluxo de Trabalho , Melhoramento Vegetal , Software , Sequenciamento de Nucleotídeos em Larga Escala/métodos
2.
Cancer ; 130(6): 973-984, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38018448

RESUMO

BACKGROUND: Acute lymphoblastic leukemia (ALL) is the most common cancer in children. IKZF3 (IKAROS family zinc finger 3) is a hematopoietic-specific transcription factor, and it has been validated that it is involved in leukemia. However, the role of IKZF3 single-nucleotide polymorphisms (SNPs) remains unclear. In this case-control study, the authors investigated the association of IKZF3 SNPs with ALL in children. METHODS: Six IKZF3 reference SNPs (rs9635726, rs2060941, rs907092, rs12946510, rs1453559, and rs62066988) were genotyped in 692 patients who had ALL (cases) and in 926 controls. The associations between IKZF3 polymorphisms and ALL risk were determined using odds ratios (ORs) and 95% confidence intervals (CIs). The associations of rs9635726 and rs2060941 with the risk of ALL were further estimated by using false-positive report probability (FPRP) analysis. Functional analysis in silico was performed to evaluate the probability that rs9635726 and rs2060941 might influence the regulation of IKZF3. RESULTS: The authors observed that rs9635726C>T (adjusted OR, 1.49; 95% CI, 1.06-2.11; p = .023) and rs2060941G>T (adjusted OR, 1.51; 95% CI, 1.24-1.84; p = .001) were related to and increased risk of ALL in the recessive and dominant models, respectively. Furthermore, the associations of both rs9635726 (FPRP = .177) and rs2060941 (FPRP < .001) with ALL were noteworthy in the FPRP analysis. Functional analysis indicated that rs9635726 and rs2060941 might repress the transcription of IKZF3 by disrupting its binding to MLLT1, TAF1, POLR2A, and/or RAD21. CONCLUSIONS: This study revealed that IKZF3 polymorphisms were associated with increased ALL susceptibility in children and might influence the expression of IKZF3 by disrupting its binding to MLLT1, TAF1, POLR2A, and/or RAD21. IKZF3 polymorphisms were suggested as a biomarker for childhood ALL.


Assuntos
Polimorfismo de Nucleotídeo Único , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Estudos de Casos e Controles , Genótipo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Fator de Transcrição Ikaros/genética , Predisposição Genética para Doença
3.
Br J Haematol ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977031

RESUMO

Iron-refractory iron deficiency anaemia (IRIDA) is a rare autosomal recessive disorder, distinguished by hypochromic microcytic anaemia, low transferrin levels and inappropriately elevated hepcidin (HEPC) levels. It is caused by mutations in TMPRSS6 gene. Systematic screening of 500 pregnant women with iron deficiency anaemia having moderate to severe microcytosis with no other causes of anaemia were enrolled to rule out oral iron refractoriness. It identified a final cohort of 10 (2.15% prevalence) individuals with IRIDA phenotype. Haematological and biochemical analysis revealed significant differences between iron responders and iron non-responders, with iron non-responders showing lower haemoglobin, red blood cell count, serum iron and serum ferritin levels, along with elevated HEPC (9.47 ± 2.75 ng/mL, p = 0.0009) and erythropoietin (4.58 ± 4.07 µ/mL, p = 0.0196) levels. Genetic sequencing of the TMPRSS6 gene in this final cohort identified 10 novel variants, including seven missense and three frame-shift mutations, with four missense variants showing high functional impact defining the IRIDA phenotype. Structural analysis revealed significant damage caused by two variants (p.L83R and p.S235R). This study provides valuable insights into IRIDA among pregnant women in the Indian subcontinent, unveiling its underlying causes of unresponsiveness, genetic mechanisms and prevalence. Furthermore, research collaboration is essential to validate these findings and develop effective treatments.

4.
Immunogenetics ; 76(2): 123-135, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38427105

RESUMO

To examine whether circulating interleukin-6 (IL-6) levels (CirIL6) have a causal effect on blood pressure using Mendelian randomization (MR) methods. We used data from genome-wide association studies (GWAS) of European ancestry to obtain genetic instruments for circulating IL-6 levels and blood pressure measurements. We applied several robust MR methods to estimate the causal effects and to test for heterogeneity and pleiotropy. We found that circulating IL-6 had a significant positive causal effect on systolic blood pressure (SBP) and pulmonary arterial hypertension (PAH), but not on diastolic blood pressure (DBP) or hypertension. We found that as CirIL6 genetically increased, SBP increased using Inverse Variance Weighted (IVW) method (for ukb-b-20175, ß = 0.082 with SE = 0.032, P = 0.011; for ukb-a-360, ß = 0.075 with SE = 0.031, P = 0.014) and weighted median (WM) method (for ukb-b-20175, ß = 0.061 with SE = 0.022, P = 0.006; for ukb-a-360, ß = 0.065 with SE = 0.027, P = 0.014). Moreover, CirIL6 may be associated with an increased risk of PAH using WM method (odds ratio (OR) = 15.503, 95% CI, 1.025-234.525, P = 0.048), but not with IVW method. Our study provides novel evidence that circulating IL-6 has a causal role in the development of SBP and PAH, but not DBP or hypertension. These findings suggest that IL-6 may be a potential therapeutic target for preventing or treating cardiovascular diseases and metabolic disorders. However, more studies are needed to confirm the causal effects of IL-6 on blood pressure and to elucidate the underlying mechanisms and pathways.


Assuntos
Hipertensão , Interleucina-6 , Humanos , Pressão Sanguínea/genética , Interleucina-6/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Hipertensão/genética
5.
Syst Biol ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38141222

RESUMO

Diversification and demographic responses are key processes shaping species evolutionary history. Yet we still lack a full understanding of ecological mechanisms that shape genetic diversity at different spatial scales upon rapid environmental changes. In this study, we examined genetic differentiation in an extremophilic grass Puccinellia pamirica and factors affecting its population dynamics among the occupied hypersaline alpine wetlands on the arid Pamir Plateau in Central Asia. Using genomic data, we found evidence of fine-scale population structure and gene flow among the localities established across the high-elevation plateau as well as fingerprints of historical demographic expansion. We showed that an increase in the effective population size could coincide with the Last Glacial Period, which was followed by the species demographic decline during the Holocene. Geographic distance plays a vital role in shaping spatial genetic structure of P. pamirica alongside with isolation-by-environment and habitat fragmentation. Our results highlight a complex history of divergence and gene flow in this species-poor alpine region during the Late Quaternary. We demonstrate that regional climate specificity and a shortage of non-climate data largely impede predictions of future range changes of the alpine extremophile using ecological niche modelling. This study emphasises the importance of fine-scale environmental heterogeneity for population dynamics and species distribution shifts.

6.
Mol Biol Rep ; 51(1): 249, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300349

RESUMO

BACKGROUND: The incidence of single-nucleotide-polymorphisms with malignant potential in esophageal cancer tissues has only been sparsely investigated in the west. Hence, we explored the contribution of four long non-coding RNAs' polymorphisms HOTAIR rs920778, LINC00951 rs11752942, POLR2E rs3787016 and HULC rs7763881 in esophageal cancer susceptibility. METHODS AND RESULTS: Formalin-fixed paraffin-embedded tissue specimens from 95 consecutive patients operated for esophageal/esophagogastric junction carcinoma during 25/03/2014-25/09/2018 were processed. Demographic data, histopathological parameters, surgical and oncological outcomes were collected. DNA findings of the abovementioned population were compared with 121 healthy community controls. Both populations were of European/Greek ancestry. Sixty-seven patients underwent Ivor Lewis/McKeown esophagectomy for either squamous cell esophageal carcinoma (N = 6) or esophageal/esophagogastric junction Siewert I or II adenocarcinoma (N = 61). Twenty-eight patients were subjected to extended total gastrectomy for esophagogastric junction Siewert III adenocarcinoma. Neither LINC00951 rs11752942 nor HULC rs7763881 polymorphisms were detected more frequently in esophageal cancer patients compared with healthy community subjects. A significantly higher presence of HOTAIR rs920778 TT genotype in esophagogastric junction Siewert I/II adenocarcinoma was identified. POLR2E rs3787016 C allele and CC genotypes were overrepresented in the control group, and when found in esophageal cancer carriers were associated with earlier disease stages, as well as with minor lymph node involvement and lesser metastatic potential. CONCLUSIONS: HOTAIR rs920778 may serve as a potential therapeutic suppression target, while POLR2E rs3787016 may represent a valuable biomarker to evaluate esophageal cancer predisposition and predict treatment response and prognosis. Clinical implications of these findings need to be verified with further prospective studies with larger sample-size.


Assuntos
Adenocarcinoma , Neoplasias Esofágicas , Humanos , Estudos de Casos e Controles , Esofagectomia , Estudos Prospectivos , Junção Esofagogástrica , Neoplasias Esofágicas/genética , Polimorfismo de Nucleotídeo Único/genética , RNA Polimerases Dirigidas por DNA
7.
Clin Oral Investig ; 28(2): 135, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319382

RESUMO

OBJECTIVE: Studies of Wnt variants-related to bone resorption in periodontitis are limited. The aim of this study was to establish the genotype and allele frequency of gene variants associated with the Wnt pathway in systemically healthy individuals with and without periodontitis (PD). MATERIALS AND METHODS: One hundred fifty-seven systemically healthy individuals were evaluated, 90 with PD and 67 without PD. Periodontal clinical indexes, serological and clinical indices of inflammation, and the following variants associated with the Wnt pathway: DKK, SOST, LRP5, and KREMEN were analyzed by high resolution melting and confirmed by Sanger sequencing. RESULTS: In the PD-free group, 67.2% of the individuals presented the variant for DKKrs1896367 (p = 0.008) and 82.6% had the variant for KREMEN rs132274 (p = 0.016). The heterozygous variant for the DKK rs1896367 polymorphism was associated with the absence of PD and lower severity OR: 0.33 (CI95% 0.15-0.70) and OR: 0.24 (CI95% 0.11-0.53), respectively. Similarly, KREMEN rs132274 was the homozygous variant associated with the absence of PD (OR: 0.33 (CI95% 0.13-0.88)). On the contrary, 85.6% of individuals with PD presented a variant for DKK rs1896368 (p = 0.042), all suffering severe forms of periodontitis. CONCLUSION: The presence of DKKrs1896367 and KREMENrs132274 variants in individuals without PD suggests that these single nucleotide polymorphisms could be protective factors for bone loss in PD. A very interesting finding is that the DKKrs1896368 variant was found in a high percentage of severe cases, suggesting that the presence of this variant may be related to the severe bone loss observed in PD.


Assuntos
Doenças Periodontais , Periodontite , Humanos , Via de Sinalização Wnt/genética , Inflamação , Polimorfismo de Nucleotídeo Único , Periodontite/genética
8.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928186

RESUMO

The inflammasome regulates the innate inflammatory response and is involved in autoimmune diseases. In this study, we explored the levels of IL-18 and IL-1ß in serum and urine and the influence of various single-nucleotide polymorphisms (SNPs) on kidney lesions at diagnosis in patients with ANCA-associated vasculitis (AAV) and their clinical outcomes. Ninety-two patients with renal AAV were recruited, and blood and urine were collected at diagnosis. Serum and urine cytokine levels were measured by ELISA. DNA was extracted and genotyped using TaqMan assays for SNPs in several inflammasome genes. Lower serum IL-18 (p = 0.049) and the IL-18 rs187238 G-carrier genotype (p = 0.042) were associated with severe fibrosis. The IL-18 rs1946518 TT genotype was associated with an increased risk of relapse (p = 0.05), whereas GG was related to better renal outcomes (p = 0.031). The rs187238 GG genotype was identified as a risk factor for mortality within the first year after AAV diagnosis, independent of the requirement for dialysis or lung involvement (p = 0.013). We suggest that decreased cytokine levels could be a surrogate marker of scarring and chronicity of the renal lesions, together with the rs187238 GG genotype. If our results are validated, the rs1946518 TT genotype predicts the risk of relapse and renal outcomes during follow-up.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Inflamassomos , Interleucina-18 , Interleucina-1beta , Polimorfismo de Nucleotídeo Único , Humanos , Interleucina-18/genética , Interleucina-18/sangue , Masculino , Feminino , Inflamassomos/genética , Pessoa de Meia-Idade , Interleucina-1beta/genética , Interleucina-1beta/sangue , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/genética , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/sangue , Idoso , Rim/patologia , Rim/metabolismo , Genótipo , Adulto , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética
9.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338978

RESUMO

Age-related macular degeneration (AMD) is the leading cause of irreversible vision loss among the elderly in the developed world. Whilst AMD is a multifactorial disease, the involvement of the complement system in its pathology is well documented, with single-nucleotide polymorphisms (SNPs) in different complement genes representing an increased risk factor. With several complement inhibitors explored in clinical trials showing limited success, patients with AMD are still without a reliable treatment option. This indicates that there is still a gap of knowledge in the functional implications and manipulation of the complement system in AMD, hindering the progress towards translational treatments. Since the discovery of the CRISPR/Cas system and its development into a powerful genome engineering tool, the field of molecular biology has been revolutionised. Genetic variants in the complement system have long been associated with an increased risk of AMD, and a variety of haplotypes have been identified to be predisposing/protective, with variation in complement genes believed to be the trigger for dysregulation of the cascade leading to inflammation. AMD-haplotypes (SNPs) alter specific aspects of the activation and regulation of the complement cascade, providing valuable insights into the pathogenic mechanisms of AMD with important diagnostic and therapeutic implications. The effect of targeting these AMD-related SNPs on the regulation of the complement cascade has been poorly explored, and the CRISPR/Cas system provides an ideal tool with which to explore this avenue. Current research concentrates on the association events of specific AMD-related SNPs in complement genes without looking into the effect of targeting these SNPs and therefore influencing the complement system in AMD pathogenesis. This review will explore the current understanding of manipulating the complement system in AMD pathogenesis utilising the genomic manipulation powers of the CRISPR/Cas systems. A number of AMD-related SNPs in different complement factor genes will be explored, with a particular emphasis on factor H (CFH), factor B (CFB), and complement C3 (C3).


Assuntos
Fator B do Complemento , Degeneração Macular , Humanos , Idoso , Haplótipos , Degeneração Macular/genética , Degeneração Macular/terapia , Degeneração Macular/patologia , Ativação do Complemento/genética , Fatores de Risco , Polimorfismo de Nucleotídeo Único
10.
Int J Environ Health Res ; : 1-12, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864502

RESUMO

Epidemiological studies link COVID-19 to increased cardiac arrest (CA) risk, but causality remains unclear due to potential confounding factors in observational studies . We conducted a Mendelian randomization (MR) analysis using genome-wide association study (GWAS) data, employing COVID-19-associated single nucleotide polymorphisms (SNPs) with significance values smaller than 5 × 10⁻8. We calculated inverse-variance weighted (IVW) MR estimates and performed sensitivity analyses using MR methods robust to horizontal pleiotropy. Additionally, a reverse MR analysis was conducted using CA-associated SNPs with significance values smaller than 1 × 10⁻5. Results indicated that infected COVID-19 (OR = 1.12, 95% CI = 0.47-2.67, p = 0.79), hospitalized COVID-19 (OR = 1.02, 95% CI = 0.70-1.49, p = 0.920), and severe respiratory COVID-19 (OR = 0.99, 95% CI = 0.81-1.21, p = 0.945) did not causally influence CA risk. Reverse MR analysis also did not support a causal effect of CA on COVID-19. Thus, associations in observational studies may stem from shared biological factors or environmental confounding.

11.
Int J Environ Health Res ; 34(5): 2378-2386, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37634141

RESUMO

With the outbreak of coronavirus disease 2019 (COVID-19), there has been an increasing focus on exploring the relationship between SARS-CoV-2 infection and tumors. However, there is no consensus on the association between COVID-19 and lymphoma. In this study, genome-wide association study (GWAS) summary data sets for COVID-19 and lymphoma were obtained from the OPEN GWAS website. Single nucleotide polymorphisms (SNPs) were selected as genetic instrument variants for fulling P < 5 × 10-8 and linkage disequilibrium [LD] r2 < 0.001. Both palindromic and outlier SNPs were removed. Cochran's Q test, the MR‒Egger intercept test, and leave-one-out analysis were employed to assess the sensitivity of the effect of COVID-19 on lymphoma. The results showed that COVID-19 patients with very severe respiratory symptoms have an increased risk of developing diffuse large B-cell lymphoma (IVW, OR = 1.765, 95% CI 1.174-2.651, P = 0.006). There was no association between COVID-19 with very severe respiratory symptoms and Hodgkin's lymphoma or other types of non-Hodgkin's lymphoma. No horizontal or directional pleiotropy was observed in the Mendelian randomization analysis. In conclusion, SARS-CoV-2 infection with very severe respiratory symptoms may be a potential risk factor for diffuse large B-cell lymphoma (DLBCL), and follow-up studies with larger samples are needed.


Assuntos
COVID-19 , Linfoma Difuso de Grandes Células B , Humanos , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , COVID-19/genética , SARS-CoV-2 , Linfoma Difuso de Grandes Células B/epidemiologia , Linfoma Difuso de Grandes Células B/genética
12.
Curr Issues Mol Biol ; 45(7): 5776-5797, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37504281

RESUMO

Abaca (Musa textilis Née) is an economically important fiber crop in the Philippines. Its economic potential, however, is hampered by biotic and abiotic stresses, which are exacerbated by insufficient genomic resources for varietal identification vital for crop improvement. To address these gaps, this study aimed to discover genome-wide polymorphisms among abaca cultivars and other Musa species and analyze their potential as genetic marker resources. This was achieved through whole-genome Illumina resequencing of abaca cultivars and variant calling using BCFtools, followed by genetic diversity and phylogenetic analyses. A total of 20,590,381 high-quality single-nucleotide polymorphisms (SNP) and DNA insertions/deletions (InDels) were mined across 16 abaca cultivars. Filtering based on linkage disequilibrium (LD) yielded 130,768 SNPs and 13,620 InDels, accounting for 0.396 ± 0.106 and 0.431 ± 0.111 of gene diversity across these cultivars. LD-pruned polymorphisms across abaca, M. troglodytarum, M. acuminata and M. balbisiana enabled genetic differentiation within abaca and across the four Musa spp. Phylogenetic analysis revealed the registered varieties Abuab and Inosa to accumulate a significant number of mutations, eliciting further studies linking mutations to their advantageous phenotypes. Overall, this study pioneered in producing marker resources in abaca based on genome-wide polymorphisms vital for varietal authentication and comparative genotyping with the more studied Musa spp.

13.
Mol Genet Genomics ; 298(3): 767-776, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37029297

RESUMO

Microscopic polyangiitis (MPA) is an autoimmune disease, characterized by ANCA in blood and necrotizing inflammation of small and medium-sized vessels, one of the three clinical phenotypes of ANCA-associated vasculitis (AAV). Autophagy has been confirmed to be involved in the pathogenesis of AAV. AKT1 is one of the autophagy-regulated proteins. Its single nucleotide polymorphisms (SNPs) are associated with multiple immune-related diseases, but there are rarely studies in AAV. The incidence rate of AAV has a notable geographic difference, and MPA is predominant in China. The aim of this study was to investigate the association between AKT1 SNP and MPA risk. Genotypes of 8 loci in AKT1 were evaluated by multiplex polymerase chain reaction (PCR) and high-throughput sequencing in 416 people, including 208 MPA patients and 208 healthy volunteers from Guangxi in China. Additionally, data of 387 healthy volunteers from China were obtained from the 1000Genomes Project on public database. Differences were observed between the loci (rs2498786, rs2494752, and rs5811155) genotypes in AKT1 and MPA risk (P = 7.0 × 10-4, P = 3.0 × 10-4, and P = 5.9 × 10-5, respectively). A negative association was detected in the Dominant model (P = 1.2 × 10-3, P = 2.0 × 10-4 and P = 3.6 × 10-5, respectively). A haplotype (G-G-T) was associated with MPA risk negatively (P = 7.0 × 10-4). This study suggests that alleles (rs2498786 G, rs2494752 G and rs5811155 insT) are protective factors for MPA and alleles (rs2494752 G and rs5811155 insT) for MPO-ANCA in patients with MPA. There is a haplotype (G-G-T), which is a protective factor for MPA. It suggests that the role of AKT1 in MPA/AAV needs further study to provide more intervention targets for MPA/AAV.


Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Poliangiite Microscópica , Humanos , Poliangiite Microscópica/genética , Polimorfismo de Nucleotídeo Único/genética , Anticorpos Anticitoplasma de Neutrófilos/genética , População do Leste Asiático , China/epidemiologia , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/genética , Proteínas Proto-Oncogênicas c-akt/genética
14.
Mol Phylogenet Evol ; 182: 107715, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36707011

RESUMO

Consumption of buffalofish has been sporadically associated with Haff disease-like illnesses involving sudden onset muscle pain and weakness due to skeletal muscle rhabdomyolysis, but determination of precisely which species are associated with these illnesses has been impeded by a lack of species-specific DNA-based markers. Here, three closely related species of buffalofish native to the Mississippi River Basin (Ictiobus bubalus, Ictiobus cyprinellus and Ictiobus niger) that have previously proven genetically indistinguishable using both mitochondrial and nuclear single-locus sequencing were reliably discriminated using low-coverage whole genome sequencing ('genome skimming'). Using 44 specimens representing the three species collected from the mid/upper (Missouri) and lower (Louisiana) regions of the species' native ranges, the SISRS (Site Identification from Short Read Sequences) bioinformatics pipeline was adapted to (1) identify over 620Mbp of putatively homologous nuclear sequence data and (2) isolate over 140,000 single-nucleotide polymorphisms (SNPs) that supported accurate species delimitation, all without the use of a reference genome or annotation data. These sites were used to classify Ictiobus spp. samples with genome-skim data, along with a larger set (n = 67) where ultraconserved elements (UCEs) were sequenced. Analyses of whole mitochondrial data revealed more limited signal. Nearly all samples matched their purported species based on morphologic identification, but two Missouri samples morphologically identified as I. niger grouped with samples of I. bubalus, albeit with significant enrichment of I. niger SNPs. To our knowledge this is the first report of a DNA-based tool to reliably discriminate these three morphologically distinct species.


Assuntos
Búfalos , Genoma , Animais , Filogenia , Sequenciamento Completo do Genoma , DNA , Análise de Sequência de DNA
15.
Mol Breed ; 43(12): 83, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38009099

RESUMO

Low temperature and cold damage are natural factors that seriously reduce wheat yield. Thus, how to improve the cold resistance of wheat has been the focus of wheat breeders and geneticists. However, the genetic improvement for this trait has been slow, mainly because cold resistance is a complex quantitative trait and field phenotypic identification is relatively difficult. Therefore, the discovery, mapping, and cloning of the cold resistance genes of wheat provide a theoretical basis for the genetic improvement of wheat against cold resistance and facilitate the analysis of the molecular mechanisms of cold resistance in wheat. This study used the wheat line H261 and its EMS mutants LF2099 and XiNong 239 as materials. Cold trait segregation occurred in the F2 generation of mutants LF2099 and XiNong 239 at a 15:1 separation ratio. Genetic analysis showed that two dominant overlapping genes, temporarily named Wcr-3 and Wcr-4, control cold resistance in wheat. Furthermore, a combined BSA and SNP array established that Wcr-3 is between BU100519 (SSR marker) and AX-94843669 (SNP marker). The markers are 1.32 cM apart, corresponding to the 5.41 Mb physical interval on the Chinese Spring 2B chromosome with 67 functionally annotated genes. Wcr-4 is located between AX-94657955 (SNP marker) and LC-23 (SSR marker), which are 1.79 cM apart, corresponding to a 2.35 Mb physical interval on the Chinese Spring 2D chromosome, which contains 66 functionally annotated genes. Wcr-3 and Wcr-4 are two new cold resistance genes, laying the foundation for their fine mapping and cloning. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01425-w.

16.
Support Care Cancer ; 31(2): 139, 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36707490

RESUMO

BACKGROUND: Chemotherapy-induced peripheral neuropathy (CIPN) is a common toxicity of taxanes for which there is no effective intervention. Genomic CIPN risk determination has yielded promising, but inconsistent results. The present study assessed the utility of a collective SNP cluster identified using novel analytics to describe taxane-associated CIPN risk. METHODS: We analyzed GWAS data derived from ECOG-5103, first identifying SNPs that were most strongly associated with CIPN using Fisher's ratio (FR). We then ranked ordered those SNPs which discriminated CIPN-positive (CIPN +) from CIPN-negative phenotypes based on their discriminatory power and developed the cluster of SNPs which provided the highest predictive accuracy using leave-one-out cross-validation (LOOCV). RESULTS: Using aggregated genotype data obtained from the previously reported ECOG-5103 clinical trial (in which two different arrays were used, HumanOmniExpress (727,227 SNPs) and HumanOmni1-Quad1 (1,131,857 SNPs)), we identified a 267 SNP cluster which was associated with a CIPN + phenotype with an accuracy of 96.1%. CONCLUSIONS: A cluster of SNPs was identified which prospectively discriminated patients most likely to develop symptomatic CIPN following taxane exposure as part of a breast cancer chemotherapy regimen. Validation using an independent patient cohort should be performed.


Assuntos
Antineoplásicos , Neoplasias da Mama , Doenças do Sistema Nervoso Periférico , Taxoides , Humanos , Antineoplásicos/efeitos adversos , Estudo de Associação Genômica Ampla , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/genética , Polimorfismo de Nucleotídeo Único , Taxoides/efeitos adversos , Ensaios Clínicos como Assunto , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Feminino
17.
Int J Environ Health Res ; 33(9): 936-948, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35469493

RESUMO

We aimed to identify the relationship between variations in metabolic genes and human urinary changes in mercapturic acids (MAs), including CEMA, HMPMA, SPMA, HPMA and HEMA, before and after air pollution exposure. Genotype detection for 47 relevant single nucleotide polymorphisms (SNPs) collected by literature research was performed. Five MAs expression levels in the urinary samples of 50 young healthy individuals with short-term exposure to clean, polluted and purified air at five time points were detected by targeted online solid-phase extraction liquid chromatography tandem mass spectrometry (SPE-LC-MS/MS), followed with associations of SNPs with MAs changes. Difference in MAs between polluted and clean/purified air was significantly associated with 21 SNPs mapped into 9 genes. Five SNPs in GSTP1 showed the most prominent association with the changes in SPMA expression, indicating that those SNPs in GSTP1 and SPMA might serve as biomarkers for susceptibility and the prognosis of lung cancer.


Assuntos
Acetilcisteína , Poluição do Ar , Humanos , Cromatografia Líquida/métodos , Voluntários Saudáveis , Espectrometria de Massas em Tandem/métodos , Polimorfismo Genético , Biomarcadores
18.
BMC Med ; 20(1): 68, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35168626

RESUMO

BACKGROUND: Genome-wide association studies (GWASs) have identified multiple risk loci for Parkinson's disease (PD). However, identifying the functional (or potential causal) variants in the reported risk loci and elucidating their roles in PD pathogenesis remain major challenges. To identify the potential causal (or functional) variants in the reported PD risk loci and to elucidate their regulatory mechanisms, we report a functional genomics study of PD. METHODS: We first integrated chromatin immunoprecipitation sequencing (ChIP-Seq) (from neuronal cells and human brain tissues) data and GWAS-identified single-nucleotide polymorphisms (SNPs) in PD risk loci. We then conducted a series of experiments and analyses to validate the regulatory effects of these (i.e., functional) SNPs, including reporter gene assays, allele-specific expression (ASE), transcription factor (TF) knockdown, CRISPR-Cas9-mediated genome editing, and expression quantitative trait loci (eQTL) analysis. RESULTS: We identified 44 SNPs (from 11 risk loci) affecting the binding of 12 TFs and we validated the regulatory effects of 15 TF binding-disrupting SNPs. In addition, we also identified the potential target genes regulated by these TF binding-disrupting SNPs through eQTL analysis. Finally, we showed that 4 eQTL genes of these TF binding-disrupting SNPs were dysregulated in PD cases compared with controls. CONCLUSION: Our study systematically reveals the gene regulatory mechanisms of PD risk variants (including widespread disruption of CTCF binding), generates the landscape of potential PD causal variants, and pinpoints promising candidate genes for further functional characterization and drug development.


Assuntos
Estudo de Associação Genômica Ampla , Doença de Parkinson , Predisposição Genética para Doença/genética , Genômica , Humanos , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único/genética
19.
Cytokine ; 150: 155761, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34814015

RESUMO

Interleukin-9 (IL-9) plays important role in coronary artery disease (CAD). However, the exact relationship between them is not explored yet. Here, four tag SNPs covering IL9 (rs31563, rs2069868, rs2069870 and rs31564) were selected to conduct case-control association analyses in a total of 3704 individuals from Chinese Han population (1863 CAD vs 1841 control). Results showed that: first, rs2069868 was associated with CAD combined with hypertension (Padj = 0.027); second, IL9 haplotype (CGAT) was associated with CAD (Padj = 0.035), and the combination genotype of "rs31563_CC/rs31564_TT" would remarkably decrease the risk of CAD (Padj = 0.001); third, significant associations were found between rs2069870 and decreased LDL-c levels and decreased total cholesterol levels, and between rs31563 and increased HDL-c levels (Padj < 0.05). Therefore, we conclude that IL9 might play a causal role in CAD by interacted with CAD traditional risk factors, which might confer a new way to improve the prevention and treatment of CAD.


Assuntos
Doença da Artéria Coronariana , Interleucina-9 , Povo Asiático/genética , Estudos de Casos e Controles , China/epidemiologia , Doença da Artéria Coronariana/genética , Etnicidade , Predisposição Genética para Doença , Humanos , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco
20.
Genetica ; 150(6): 327-341, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36271978

RESUMO

The coastal waters of Cuba are home to a small, endangered population of West Indian manatee, which would benefit from a comprehensive characterization of the population's genetic variation. We conducted the first genetic assessment of Cuban manatees to determine the extent of the population's genetic structure and characterize the neutral genetic diversity among regions within the archipelago. We genotyped 49 manatees at 18 microsatellite loci, a subset of 27 samples on 1703 single nucleotide polymorphisms (SNPs), and sequenced 59 manatees at the mitochondrial control region. The Cuba manatee population had low nuclear (microsatellites HE = 0.44, and SNP HE = 0.29) and mitochondrial genetic diversity (h = 0.068 and π = 0.00025), and displayed moderate departures from random mating (microsatellite FIS = 0.12, SNP FIS = 0.10). Our results suggest that the western portion of the archipelago undergoes periodic exchange of alleles based on the evidence of shared ancestry and low but significant differentiation. The southeast Guantanamo Bay region and the western portion of the archipelago were more differentiated than southwest and northwest manatees. The genetic distinctiveness observed in the southeast supports its recognition as a demographically independent unit for natural resource management regardless of whether it is due to historical isolation or isolation by distance. Estimates of the regional effective population sizes, with the microsatellite and SNP datasets, were small (all Ne < 60). Subsequent analyses using additional samples could better examine how the observed structure is masking simple isolation by distance patterns or whether ecological or biogeographic forces shape genetic patterns.


Assuntos
Trichechus manatus , Animais , Trichechus manatus/genética , Cuba , Repetições de Microssatélites , Trichechus/genética , Variação Genética , Genética Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA