Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Front Zool ; 14: 25, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28491118

RESUMO

BACKGROUND: The understanding of concerted movements and its underlying biomechanics is often complex and elusive. Functional principles and hypothetical functions of these complex movements can provide a solid basis for biomechanical experiments and modelling. Here a description of the cephalic anatomy of Pyrrhosoma nymphula (Zygoptera, Coenagrionidae) focusing on functional aspects of the mouthparts using micro computed tomography (µCT) is presented. RESULTS: We compared six different instars of the damselfly P. nymphula as well as one instar of the dragonfly Aeshna cyanea and Epiophlebia superstes each. In total 42 head muscles were described with only minor differences of the attachment points between the examined species and the absence of antennal muscle M. scapopedicellaris medialis (0an7) in Epiophlebia as a probable apomorphy of this group. Furthermore, the ontogenetic differences between the six larval instars are minor; the only considerable finding is the change of M. submentopraementalis (0la8), which is dichotomous in the early instars (I1,I2 and I3) with a second point of origin at the postero-lateral base of the submentum. This dichotomy is not present in any of the older instars studied (I6, middle-late and pen-ultimate). CONCLUSION: However, the main focus of the study herein, is to use these detailed morphological descriptions as basis for hypothetic functional models of the odonatan mouthparts. We present blueprint like description of the mouthparts and their musculature, highlighting the caused direction of motion for every single muscle. This data will help to elucidate the complex concerted movements of the mouthparts and will contribute to the understanding of its biomechanics not in Odonata only.

2.
Bioact Mater ; 30: 154-168, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37575877

RESUMO

The utilization of biodegradable magnesium (Mg)-based implants for restoration of bone function following trauma represents a transformative approach in orthopaedic application. One such alloy, magnesium-10 weight percent gadolinium (Mg-10Gd), has been specifically developed to address the rapid degradation of Mg while enhancing its mechanical properties to promote bone healing. Previous studies have demonstrated that Mg-10Gd exhibits favorable osseointegration; however, it exhibits distinct ultrastructural adaptation in comparison to conventional implants like titanium (Ti). A crucial aspect that remains unexplored is the impact of Mg-10Gd degradation on the bone microarchitecture. To address this, we employed hierarchical three-dimensional imaging using synchrotron radiation in conjunction with image-based finite element modelling. By using the methods outlined, the vascular porosity, lacunar porosity and the lacunar-canaliculi network (LCN) morphology of bone around Mg-10Gd in comparison to Ti in a rat model from 4 weeks to 20 weeks post-implantation was investigated. Our investigation revealed that within our observation period, the degradation of Mg-10Gd implants was associated with significantly lower (p < 0.05) lacunar density in the surrounding bone, compared to Ti. Remarkably, the LCN morphology and the fluid flow analysis did not significantly differ for both implant types. In summary, a more pronounced lower lacunae distribution rather than their morphological changes was detected in the surrounding bone upon the degradation of Mg-10Gd implants. This implies potential disparities in bone remodelling rates when compared to Ti implants. Our findings shed light on the intricate relationship between Mg-10Gd degradation and bone microarchitecture, contributing to a deeper understanding of the implications for successful osseointegration.

3.
Acta Pharm Sin B ; 12(5): 2568-2577, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35646529

RESUMO

Defining and visualizing the three-dimensional (3D) structures of pharmaceuticals provides a new and important tool to elucidate the phenomenal behavior and underlying mechanisms of drug delivery systems. The mechanism of drug release from complex structured dosage forms, such as bilayer osmotic pump tablets, has not been investigated widely for most solid 3D structures. In this study, bilayer osmotic pump tablets undergoing dissolution, as well as after dissolution in a desiccated solid state were examined, and visualized by synchrotron radiation micro-computed tomography (SR-µCT). In situ formed 3D structures at different in vitro drug release states were characterized comprehensively. A distinct movement pattern of NaCl crystals from the push layer to the drug layer was observed, beneath the semi-permeable coating in the desiccated tablet samples. The 3D structures at different dissolution time revealed that the pushing upsurge in the bilayer osmotic pump tablet was directed via peripheral "roadways". Typically, different regions of the osmotic front, infiltration region, and dormant region were classified in the push layer during the dissolution of drug from tablet samples. According to the observed 3D microstructures, a "subterranean river model" for the drug release mechanism has been defined to explain the drug release mechanism.

4.
J Mech Behav Biomed Mater ; 110: 103897, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32957202

RESUMO

Augmentation materials, such as ceramic and polymeric bone cements, have been frequently used to improve the physical engagement of screws inserted into bone. While ceramic, degradable cements may ultimately improve fixation stability, reports regarding their effect on early fixation stability have been inconsistent. On the other hand, a newly developed degradable ceramic adhesive that can bond with tissues surrounding the screw, may improve the pullout performance, ensure early stability, and subsequent bony integration. The aim of this study was to investigate failure mechanisms of screw/trabecular bone constructs by comparing non-augmented screws with screws augmented with a calcium phosphate cement or an adhesive, i.e. a phosphoserine-modified calcium phosphate. Pullout tests were performed on screws inserted into trabecular cylinders extracted from human femoral bone. Continuous and stepwise pullout loading was applied with and without real-time imaging in a synchrotron radiation micro-computed tomograph, respectively. Statistical analysis that took the bone morphology into account confirmed that augmentation with the adhesive supported significantly higher pullout loads compared to cement-augmented, or non-augmented screws. However, the adhesive also allowed for a higher injection volume compared to the cement. In-situ imaging showed cracks in the vicinity of the screw threads in all groups, and detachment of the augmentation materials from the trabecular bone in the augmented specimens. Additional cracks at the periphery of the augmentation and the bone-material interfaces were only observed in the adhesive-augmented specimen, indicating a contribution of surface bonding to the pullout resistance. An adhesive that has potential for bonding with tissues, displayed superior pullout resistance, compared to a brushite cement, and may be a promising material for cementation or augmentation of implants.


Assuntos
Adesivos , Cimentos Ósseos , Fenômenos Biomecânicos , Parafusos Ósseos , Osso Esponjoso , Humanos , Teste de Materiais
5.
J Craniomaxillofac Surg ; 46(9): 1569-1575, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30098873

RESUMO

A three-dimensional (3D) X-ray tomogram evaluation gives a full view of the bone distribution around an entire implant in contrast to the often-used two-dimensional (2D) histological methods. High-resolution X-ray absorption tomography was used to evaluate the 3D bone growth around dental implants in an experimental goat mandible reconstruction model. The tomograms allowed for the construction of virtual histological cross-sections that could be used to evaluate the statistical uncertainty of the histological methods, which was the purpose of this paper. The virtual 2D histological results showed a significantly higher uncertainty within the same sample than did the full 3D volume results.


Assuntos
Interface Osso-Implante/diagnóstico por imagem , Implantes Dentários , Imageamento Tridimensional/métodos , Reconstrução Mandibular , Osseointegração/fisiologia , Osteogênese/fisiologia , Síncrotrons , Microtomografia por Raio-X/métodos , Animais , Implantação Dentária Endóssea , Feminino , Cabras , Incerteza
6.
J Biomech ; 64: 103-111, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-28988680

RESUMO

Children with severe osteogenesis imperfecta (OI) typically experience numerous fractures and progressive skeletal deformities over their lifetime. Recent studies proposed finite element models to assess fracture risk and guide clinicians in determining appropriate intervention in children with OI, but lack of appropriate material property inputs remains a challenge. This study aimed to characterize macroscopic anisotropic cortical bone material properties and investigate relationships with bone density measures in children with severe OI. Specimens were obtained from tibial or femoral shafts of nine children with severe OI and five controls. The specimens were cut into beams, characterized in bending, and imaged by synchrotron radiation X-ray micro-computed tomography. Longitudinal modulus of elasticity, yield strength, and bending strength were 32-65% lower in the OI group (p<0.001). Yield strain did not differ between groups (p≥0.197). In both groups, modulus and strength were lower in the transverse direction (p≤0.009), but anisotropy was less pronounced in the OI group. Intracortical vascular porosity was almost six times higher in the OI group (p<0.001), but no differences were observed in osteocyte lacunar porosity between the groups (p=0.086). Volumetric bone mineral density was lower in the OI group (p<0.001), but volumetric tissue mineral density was not (p=0.770). Longitudinal OI bone modulus and strength were correlated with volumetric bone mineral density (p≤0.024) but not volumetric tissue mineral density (p≥0.099). Results indicate that cortical bone in children with severe OI yields at the same strain as normal bone, and that their decreased bone material strength is associated with reduced volumetric bone mineral density. These results will enable the advancement of fracture risk assessment capability in children with severe OI.


Assuntos
Osso e Ossos/fisiopatologia , Fenômenos Mecânicos , Osteogênese Imperfeita/fisiopatologia , Adolescente , Anisotropia , Fenômenos Biomecânicos , Densidade Óssea , Osso e Ossos/diagnóstico por imagem , Criança , Elasticidade , Feminino , Análise de Elementos Finitos , Humanos , Masculino , Osteogênese Imperfeita/diagnóstico por imagem , Porosidade , Microtomografia por Raio-X
7.
Acta Pharmaceutica Sinica B ; (6): 2568-2577, 2022.
Artigo em Inglês | WPRIM | ID: wpr-929388

RESUMO

Defining and visualizing the three-dimensional (3D) structures of pharmaceuticals provides a new and important tool to elucidate the phenomenal behavior and underlying mechanisms of drug delivery systems. The mechanism of drug release from complex structured dosage forms, such as bilayer osmotic pump tablets, has not been investigated widely for most solid 3D structures. In this study, bilayer osmotic pump tablets undergoing dissolution, as well as after dissolution in a desiccated solid state were examined, and visualized by synchrotron radiation micro-computed tomography (SR-μCT). In situ formed 3D structures at different in vitro drug release states were characterized comprehensively. A distinct movement pattern of NaCl crystals from the push layer to the drug layer was observed, beneath the semi-permeable coating in the desiccated tablet samples. The 3D structures at different dissolution time revealed that the pushing upsurge in the bilayer osmotic pump tablet was directed via peripheral "roadways". Typically, different regions of the osmotic front, infiltration region, and dormant region were classified in the push layer during the dissolution of drug from tablet samples. According to the observed 3D microstructures, a "subterranean river model" for the drug release mechanism has been defined to explain the drug release mechanism.

8.
J Mech Behav Biomed Mater ; 48: 210-219, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25955563

RESUMO

The objective of this study was to investigate the sensitivity of the nonlinear elastic properties of cortical bone to the presence of a single submillimetric crack. Nonlinear elasticity was measured by nonlinear resonant ultrasound spectroscopy (NRUS) in 14 human cortical bone specimens. The specimens were parallelepiped beams (50×2×2 mm(3)). A central notch of 500 µm was made to control crack initiation and propagation during four-point bending. The nonlinear hysteretic elastic and dissipative parameters αf and αQ, and Young׳s modulus Eus were measured in dry condition for undamaged (control) specimens and in dry and wet conditions for damaged specimens. The length of the crack was assessed using synchrotron radiation micro-computed tomography (SR-µCT) with a voxel size of 1.4 µm. The initial values of αf, measured on the intact specimens, were remarkably similar for all the specimens (αf =-5.5±1.5). After crack propagation, the nonlinear elastic coefficient αf increased significantly (p<0.006), with values ranging from -4.0 to -296.7. Conversely, no significant variation was observed for αQ and Eus. A more pronounced nonlinear elastic behavior was observed in hydrated specimens compared to dry specimens (p<0.001) after propagation of a single submillimetric crack. The nonlinear elastic parameter αf was found to be significantly correlated to the crack length both in dry (R=0.79, p<0.01) and wet (R=0.84, p<0.005) conditions. Altogether these results show that nonlinear elasticity assessed by NRUS is sensitive to a single submillimetric crack induced mechanically and suggest that the humidity must be strictly controlled during measurements.


Assuntos
Osso e Ossos/fisiologia , Elasticidade , Modelos Biológicos , Idoso , Idoso de 80 Anos ou mais , Humanos , Estresse Mecânico
9.
Bone ; 63: 7-14, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24582804

RESUMO

High resolution-peripheral quantitative computed tomography (HR-pQCT) measurements are carried out in clinical research protocols to analyze cortical bone. Micro-computed tomography (micro-CT) is a standard tool for ex vivo examination of bone in 3D. The aim of this work was to evaluate cortical measurements derived from HR-pQCT images compared to those from synchrotron radiation (SR) micro-CT in a distal position (4.2 cm from the distal pilon). Twenty-nine tibia specimens were scanned with HR-pQCT using protocols provided by the manufacturer. The standard measured outcomes included volumetric bone density (gHA/cm(3)) of the cortical region (Dcomp), and the cortical thickness (Ct.Th, mm). New features, such as cortical porosity (Ct.Po) and mean pore diameter (Ct.Po.Dm), were measured by an auto-contouring process. All tibias were harvested from the posterior region and imaged with SR micro-CT (voxel size=7.5 µm). The cortical thickness, (Ct.Thmicro-CT), porosity (PoV/TV), pore diameter, pore spacing, pore number, and degree of mineralization of bone (DMB) were obtained for SR micro-CT images. For standard measurements on HR-pQCT images, site matched analyses with micro-CT were completed to obtain Dcomplocal and Ct.Thlocal. Dcomp was highly correlated to PoV/TV (r=-0.84, p<10(-4)) but not to DMB. Dcomplocal was correlated to PoV/TV (r=-0.72, p<10(-4)) and to DMB (r=0.40, p>0.05). Ct.Thlocal and Ct.Thmicro-CT were moderately correlated (r=0.53, p<0.01). Ct.Th and Ct.Po results from the autocontouring process are influenced by the level of trabecularization of the cortical bone and need manual correction of the endosteal contour. Distal tibia is a reliable region to study cortical bone with Dcomp as the best parameter because it reflects both the micro-porosity (Havers canals) and macro-porosity (resorption lacunae) of the cortical bone.


Assuntos
Síncrotrons , Tíbia/diagnóstico por imagem , Microtomografia por Raio-X/métodos , Idoso , Idoso de 80 Anos ou mais , Densidade Óssea/fisiologia , Feminino , Humanos , Masculino
10.
Acta Pharmaceutica Sinica ; (12): 659-666, 2017.
Artigo em Zh | WPRIM | ID: wpr-779643

RESUMO

Strategies and techniques are extremely important to improve the evaluation efficiency and fully guarantee the consistency of dosage forms. For preparations with a structural feature as solid dosage forms and particulate dispersion systems, the structures of dosage forms are the outcome of the specific formulation and production process, which determine the drug delivery behaviors as well as the pharmacokinetics of the dosage forms. Conventional techniques failed to quantitatively determine the structures of dosage forms. Synchrotron radiation micro-computed tomography is a new generation of structural quantitative characterization technology in revealing the internal structure of dosage forms with unprecedented capability for quantitative characterization of the static and dynamic structures of dosage forms, enabling to reversely analyze the production process and identify the structure differences between the generics and brand products. Based on synchrotron radiation micro-computed tomography methodology researches and applications in static structures (powders, particulate systems, tablets, films, membranes, etc.), dynamic structures (hydration) and de-formulation of production process, we have classified the structures of dosage forms into four levels from macro-scope to molecular level as dosage forms, granular intermediates for formulation, dynamic structure and molecular structures, and proposed dosage form structure based new strategy for consistency evaluation. Along with conventional dissolution/ release behavior similarity, the internal structure consistency ensures high consistency between the brand product and the generics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA