Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(6): 2704-2715, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38286788

RESUMO

New mosquito repellent products (NMRPs) are emerging popular repellents among children. There are increasing reports on children's sensitization reactions caused by NMRPs, while regulations on their productions, sales, or usage are still lacking. One of the reasons could be the missing comprehensive risk assessment. We first conducted a nationwide investigation on children's NMRP usage preferences. Then, we high-throughput screened volatile or semivolatile organic chemicals (VOCs/SVOCs) in five representative NMRPs by the headspace gas chromatography-orbitrap high-resolution mass spectrometry analytical method. After that, toxic compounds were recognized based on the toxicity forecaster (ToxCast) database. A total of 277 VOCs/SVOCs were recognized, and 70 of them were identified as toxic compounds. In a combination of concentrations, toxicities, absorption, distribution, metabolism, and excretion characteristics in the body, 28 chemicals were finally proposed as priority-controlled compounds in NMRPs. Exposure risks of recognized toxic chemicals through NMRPs by inhalation and dermal intake for children across the country were also assessed. Average daily intakes were in the range of 0.20-7.31 mg/kg/day for children in different provinces, and the children in southeastern coastal provinces were found to face higher exposure risks. By controlling the high-priority chemicals, the risks were expected to be reduced by about 46.8% on average. Results of this study are therefore believed to evaluate exposure risks, encourage safe production, and promote reasonable management of NMRPs.


Assuntos
Repelentes de Insetos , Compostos Orgânicos Voláteis , Criança , Humanos , Medição de Risco , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/toxicidade
2.
Arch Toxicol ; 98(1): 251-266, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37819454

RESUMO

A suite of in vitro assays and in silico models were evaluated to identify which best detected the endocrine-disrupting (ED) potential of 10 test chemicals according to their estrogenic, androgenic and steroidogenic (EAS) potential compared to the outcomes from ToxCast. In vitro methods included receptor-binding, CALUX transactivation, H295R steroidogenesis, aromatase activity inhibition and the Yeast oestrogen (YES) and Yeast androgen screen (YAS) assays. The impact of metabolism was also evaluated. The YES/YAS assays exhibited a high sensitivity for ER effects and, despite some challenges in predicting AR effects, is a good initial screening assay. Results from receptor-binding and CALUX assays generally correlated and were in accordance with classifications based on ToxCast assays. ER agonism and AR antagonism of benzyl butyl phthalate were abolished when CALUX assays included liver S9. In silico final calls were mostly in agreement with the in vitro assays, and predicted ER and AR effects well. The efficiency of the in silico models (reflecting applicability domains or inconclusive results) was 43-100%. The percentage of correct calls for ER (50-100%), AR (57-100%) and aromatase (33-100%) effects when compared to the final ToxCast call covered a wide range from highly reliable to less reliable models. In conclusion, Danish (Q)SAR, Opera, ADMET Lab LBD and ProToxII models demonstrated the best overall performance for ER and AR effects. These can be combined with the YES/YAS assays in an initial screen of chemicals in the early tiers of an NGRA to inform on the MoA and the design of mechanistic in vitro assays used later in the assessment. Inhibition of aromatase was best predicted by the Vega, AdmetLab and ProToxII models. Other mechanisms and exposure should be considered when making a conclusion with respect to ED effects.


Assuntos
Androgênios , Disruptores Endócrinos , Androgênios/metabolismo , Androgênios/farmacologia , Estrogênios/farmacologia , Aromatase , Saccharomyces cerevisiae/metabolismo , Receptores Androgênicos/metabolismo , Estrona , Disruptores Endócrinos/química
3.
Toxicol Mech Methods ; : 1-7, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38538091

RESUMO

BACKGROUND: The TGx-DDI biomarker identifies transcripts specifically induced by primary DNA damage. Profiling similarity of TGx-DDI signatures can allow clustering compounds by genotoxic mechanism. This transcriptomics-based approach complements conventional toxicology testing by enhancing mechanistic resolution. METHODS: Unsupervised hierarchical clustering and t-distributed stochastic neighbor embedding (tSNE) were utilized to assess similarity of publicly-available per- and polyfluoroalkyl substances (PFAS) and ToxCast chemicals based on TGx-DDI modulation. TempO-seq transcriptomic data after highest chemical concentrations were analyzed. RESULTS: Clustering discriminated between genotoxic and non-genotoxic compounds while drawing similarity among chemicals with shared mechanisms. PFAS largely clustered distinctly from classical mutagens. However, dynamic range across PFAS types and durations indicated variable potential for DNA damage. tSNE visualization reinforced phenotypic groupings, with genotoxins clustering separately from non-DNA damaging agents. DISCUSSION: Unsupervised learning approaches applied to TGx-DDI profiles effectively categorizes chemical genotoxicity potential, aiding elucidation of biological response pathways. This transcriptomics-based strategy gives further insight into the role and effect of individual TGx-DDI biomarker genes and complements existing assays by enhancing mechanistic resolution. Overall, TGx-DDI biomarker profiling holds promise for predictive safety screening.

4.
Environ Sci Technol ; 57(46): 18067-18079, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37279189

RESUMO

Nontarget high-resolution mass spectrometry screening (NTS HRMS/MS) can detect thousands of organic substances in environmental samples. However, new strategies are needed to focus time-intensive identification efforts on features with the highest potential to cause adverse effects instead of the most abundant ones. To address this challenge, we developed MLinvitroTox, a machine learning framework that uses molecular fingerprints derived from fragmentation spectra (MS2) for a rapid classification of thousands of unidentified HRMS/MS features as toxic/nontoxic based on nearly 400 target-specific and over 100 cytotoxic endpoints from ToxCast/Tox21. Model development results demonstrated that using customized molecular fingerprints and models, over a quarter of toxic endpoints and the majority of the associated mechanistic targets could be accurately predicted with sensitivities exceeding 0.95. Notably, SIRIUS molecular fingerprints and xboost (Extreme Gradient Boosting) models with SMOTE (Synthetic Minority Oversampling Technique) for handling data imbalance were a universally successful and robust modeling configuration. Validation of MLinvitroTox on MassBank spectra showed that toxicity could be predicted from molecular fingerprints derived from MS2 with an average balanced accuracy of 0.75. By applying MLinvitroTox to environmental HRMS/MS data, we confirmed the experimental results obtained with target analysis and narrowed the analytical focus from tens of thousands of detected signals to 783 features linked to potential toxicity, including 109 spectral matches and 30 compounds with confirmed toxic activity.


Assuntos
Aprendizado de Máquina , Espectrometria de Massas
5.
Regul Toxicol Pharmacol ; 142: 105439, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37392832

RESUMO

Recent studies have highlighted the potential of the ToxCast™ database for mechanism-based prioritization of chemicals. To explore the applicability of ToxCast data in the context of regulatory inventory chemicals, we screened 510 priority existing chemicals (PECs) regulated under the Act on the Registration and Evaluation, etc. of Chemical Substances (K-REACH) using ToxCast bioassays. In our analysis, a hit-call data matrix containing 298984 chemical-gene interactions was computed for 949 bioassays with the intended target genes, which enabled the identification of the putative toxicity mechanisms. Based on the reactivity to the chemicals, we analyzed 412 bioassays whose intended target gene families were cytochrome P450, oxidoreductase, transporter, nuclear receptor, steroid hormone, and DNA-binding. We also identified 141 chemicals based on their reactivity in the bioassays. These chemicals are mainly in consumer products including colorants, preservatives, air fresheners, and detergents. Our analysis revealed that in vitro bioactivities were involved in the relevant mechanisms inducing in vivo toxicity; however, this was not sufficient to predict more hazardous chemicals. Overall, the current results point to a potential and limitation in using ToxCast data for chemical prioritization in regulatory context in the absence of suitable in vivo data.


Assuntos
Bioensaio , Substâncias Perigosas , Bases de Dados Factuais
6.
Environ Sci Technol ; 56(11): 7288-7297, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35318849

RESUMO

Air pollution poses a major threat to global public health. Although there have been a few investigations into the relationships between organic pollutants and adverse outcomes, the responsible components and molecular mechanisms may be ignored. In this study, a suspect screening method combining comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOF MS) with the Toxicity Forecaster (ToxCast) database was applied to analyze complex hydrophobic compounds in ambient air and prospectively figure out toxicologically significant compounds. Seventy-six ToxCast compounds were screened, including seven pollutants receiving less attention and five chemicals never published in the air previously. Given the concentrations, bioactivities, as well as absorption, distribution, metabolism, and excretion properties in vivo, 29 contaminants were assigned high priority since they had active biological effects in the vascular, lung, liver, kidney, prostate, and bone tissues. Phenotypic linkages of key pollutants to potential mechanistic pathways were explored by systems toxicology. A total of 267 chemical-effect pathways involving 29 toxicants and 31 molecular targets were mapped in bipartite network, in which 12 key pathogenic pathways were clarified, which not only provided evidence supporting the previous hypothesis but also provided new insights into the molecular targets. The results would facilitate the development of pollutant priority control, population intervention, and clinical therapeutic strategies so as to substantially reduce human health hazards induced by urban air.


Assuntos
Poluição do Ar , Poluentes Ambientais , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Substâncias Perigosas , Humanos , Masculino
7.
Environ Sci Technol ; 55(14): 9508-9517, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33764750

RESUMO

Chemical mixtures in surface waters could have significant impacts on exposure risks to human beings and pollution stress to aquatic system. By suspect screening analysis of high-resolution mass spectrometry data, occurrence, and compositions of ToxCast chemicals were investigated in grab estuarine water samples from a combination of 20 rivers that represents approximately 70% of the total river flow discharge along the east coast of China. In total, 59 ToxCast chemicals in seven use categories were identified, in which pesticides, intermediates, and pharmaceuticals were the abundant analogues. Significant differences in pollutant composition profiles were noticed, which possibly reflected singular release pattern and geographical-relevant usage preference (especially for herbicides and fungicides in the pesticide category). With the aid of tentative quantitative/semiquantitative measurement, essential contributors to the cumulative pollutant mass discharges and aquatic acute toxicity potentials were focused onto few particular chemicals. Existence of transformation products was further explored, which indicated that the fates of the selected parent ToxCast chemicals could be influenced by dominating transformation reactions (e.g., N-dealkylation and hydroxylation) and possible environmental factors (i.e., microbial activity). The results emphasize the necessity of suspect screening analysis for assessing the influence of terrestrial emissions of pollutants to the surrounding environment.


Assuntos
Herbicidas , Praguicidas , Poluentes Químicos da Água , China , Monitoramento Ambiental , Humanos , Praguicidas/análise , Rios , Poluentes Químicos da Água/análise
8.
Arch Toxicol ; 95(1): 355-374, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32909075

RESUMO

Nuclear receptors (NRs) are key regulators of energy homeostasis, body development, and sexual reproduction. Xenobiotics binding to NRs may disrupt natural hormonal systems and induce undesired adverse effects in the body. However, many chemicals of concerns have limited or no experimental data on their potential or lack-of-potential endocrine-disrupting effects. Here, we propose a virtual screening method based on molecular docking for predicting potential endocrine-disrupting chemicals (EDCs) that bind to NRs. For 12 NRs, we systematically analyzed how multiple crystal structures can be used to distinguish actives and inactives found in previous high-throughput experiments. Our method is based on (i) consensus docking scores from multiple structures at a single functional state (agonist-bound or antagonist-bound), (ii) multiple functional states (agonist-bound and antagonist-bound), and (iii) multiple pockets (orthosteric site and alternative sites) of these NRs. We found that the consensus enrichment from multiple structures is better than or comparable to the best enrichment from a single structure. The discriminating power of this consensus strategy was further enhanced by a chemical similarity-weighted scoring scheme, yielding better or comparable enrichment for all studied NRs. Applying this optimized method, we screened 252 fatty acids against peroxisome proliferator-activated receptor gamma (PPARγ) and successfully identified 3 previously unknown fatty acids with Kd = 100-250 µM including two furan fatty acids: furannonanoic acid (FNA) and furanundecanoic acid (FUA), and one cyclopropane fatty acid: phytomonic acid (PTA). These results suggested that the proposed method can be used to rapidly screen and prioritize potential EDCs for further experimental evaluations.


Assuntos
Disruptores Endócrinos/metabolismo , Ácidos Graxos/metabolismo , Simulação de Acoplamento Molecular , PPAR gama/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Testes de Toxicidade , Sítios de Ligação , Bases de Dados de Proteínas , Disruptores Endócrinos/química , Disruptores Endócrinos/toxicidade , Ácidos Graxos/química , Ácidos Graxos/toxicidade , Estudos de Viabilidade , Ligantes , PPAR gama/química , PPAR gama/efeitos dos fármacos , Ligação Proteica , Conformação Proteica , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/efeitos dos fármacos , Medição de Risco , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície
9.
Int J Toxicol ; 40(4): 355-366, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33944624

RESUMO

Per- and polyfluorinated alkyl substances (PFAS) are ubiquitous, persistent, and toxic chemicals that pose public health risks. Recent carcinogenicity concerns have arisen based on epidemiological studies, animal tumor findings, and mechanistic data. Thousands of PFAS exist; however, current understanding of their toxicity is informed by studies of a select few, namely, perfluorooctanoic acid and perfluorooctanesulfonic acid. Hence, the computational, high-throughput screening tool, the US EPA CompTox Chemical Dashboard's ToxCast, was utilized to explore the carcinogenicity potential of PFAS. Twenty-three major PFAS that had sufficient in vitro ToxCast data and covered a range of structural subclasses were analyzed with the visual analytics software ToxPi, yielding a qualitative and quantitative assessment of PFAS activity in realms closely linked with carcinogenicity. A comprehensive literature search was also conducted to check the consistency of analyses with other mechanistic data streams. The PFAS were found to induce a vast range of biological perturbations, in line with several of the International Agency for Research on Cancer-defined key carcinogen characteristics. Patterns observed varied by length of fluorine-bonded chains and/or functional group within and between each key characteristic, suggesting some structure-based variability in activity. In general, the major conclusions drawn from the analysis, that is, the most notable activities being modulation of receptor-mediated effects and induction of oxidative stress, were supported by literature findings. The study helps enhance understanding of the mechanistic pathways that underlie the potential carcinogenicity of various PFAS and hence could assist in hazard identification and risk assessment for this emerging and relevant class of environmental toxicants.


Assuntos
Poluentes Ambientais/toxicidade , Ensaios de Triagem em Larga Escala/métodos , Hidrocarbonetos Fluorados/toxicidade , Animais , Testes de Carcinogenicidade , Bases de Dados de Compostos Químicos , Hidrocarbonetos Fluorados/química , Estrutura Molecular
10.
Molecules ; 26(6)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33803931

RESUMO

The CompTox Chemistry Dashboard (ToxCast) contains one of the largest public databases on Zebrafish (Danio rerio) developmental toxicity. The data consists of 19 toxicological endpoints on unique 1018 compounds measured in relatively low concentration ranges. The endpoints are related to developmental effects occurring in dechorionated zebrafish embryos for 120 hours post fertilization and monitored via gross malformations and mortality. We report the predictive capability of 209 quantitative structure-activity relationship (QSAR) models developed by machine learning methods using penalization techniques and diverse model quality metrics to cope with the imbalanced endpoints. All these QSAR models were generated to test how the imbalanced classification (toxic or non-toxic) endpoints could be predicted regardless which of three algorithms is used: logistic regression, multi-layer perceptron, or random forests. Additionally, QSAR toxicity models are developed starting from sets of classical molecular descriptors, structural fingerprints and their combinations. Only 8 out of 209 models passed the 0.20 Matthew's correlation coefficient value defined a priori as a threshold for acceptable model quality on the test sets. The best models were obtained for endpoints mortality (MORT), ActivityScore and JAW (deformation). The low predictability of the QSAR model developed from the zebrafish embryotoxicity data in the database is mainly due to a higher sensitivity of 19 measurements of endpoints carried out on dechorionated embryos at low concentrations.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Relação Quantitativa Estrutura-Atividade , Poluentes Químicos da Água/toxicidade , Algoritmos , Animais , Bioensaio/métodos , Aprendizado de Máquina , Peixe-Zebra
11.
Toxicol Appl Pharmacol ; 389: 114876, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31899216

RESUMO

The present study adapted an existing high content imaging-based high-throughput phenotypic profiling (HTPP) assay known as "Cell Painting" for bioactivity screening of environmental chemicals. This assay uses a combination of fluorescent probes to label a variety of organelles and measures a large number of phenotypic features at the single cell level in order to detect chemical-induced changes in cell morphology. First, a small set of candidate phenotypic reference chemicals (n = 14) known to produce changes in the cellular morphology of U-2 OS cells were identified and screened at multiple time points in concentration-response format. Many of these chemicals produced distinct cellular phenotypes that were qualitatively similar to those previously described in the literature. A novel workflow for phenotypic feature extraction, concentration-response modeling and determination of in vitro thresholds for chemical bioactivity was developed. Subsequently, a set of 462 chemicals from the ToxCast library were screened in concentration-response mode. Bioactivity thresholds were calculated and converted to administered equivalent doses (AEDs) using reverse dosimetry. AEDs were then compared to effect values from mammalian toxicity studies. In many instances (68%), the HTPP-derived AEDs were either more conservative than or comparable to the in vivo effect values. Overall, we conclude that the HTPP assay can be used as an efficient, cost-effective and reproducible screening method for characterizing the biological activity and potency of environmental chemicals for potential use in in vitro-based safety assessments.


Assuntos
Bioensaio/métodos , Poluentes Ambientais/química , Poluentes Ambientais/toxicidade , Ensaios de Triagem em Larga Escala/métodos , Testes de Toxicidade/métodos , Animais , Linhagem Celular Tumoral , Humanos , Medição de Risco/métodos
12.
Anal Bioanal Chem ; 412(6): 1303-1315, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31965249

RESUMO

High-resolution mass spectrometry (HRMS) enables rapid chemical annotation via accurate mass measurements and matching of experimentally derived spectra with reference spectra. Reference libraries are generated from chemical standards and are therefore limited in size relative to known chemical space. To address this limitation, in silico spectra (i.e., MS/MS or MS2 spectra), predicted via Competitive Fragmentation Modeling-ID (CFM-ID) algorithms, were generated for compounds within the U.S. Environmental Protection Agency's (EPA) Distributed Structure-Searchable Toxicity (DSSTox) database (totaling, at the time of analysis, ~ 765,000 substances). Experimental spectra from EPA's Non-Targeted Analysis Collaborative Trial (ENTACT) mixtures (n = 10) were then used to evaluate the performance of the in silico spectra. Overall, MS2 spectra were acquired for 377 unique compounds from the ENTACT mixtures. Approximately 53% of these compounds were correctly identified using a commercial reference library, whereas up to 50% were correctly identified as the top hit using the in silico library. Together, the reference and in silico libraries were able to correctly identify 73% of the 377 ENTACT substances. When using the in silico spectra for candidate filtering, an examination of binary classifiers showed a true positive rate (TPR) of 0.90 associated with false positive rates (FPRs) of 0.10 to 0.85, depending on the sample and method of candidate filtering. Taken together, these findings show the abilities of in silico spectra to correctly identify true positives in complex samples (at rates comparable to those observed with reference spectra), and efficiently filter large numbers of potential false positives from further consideration. Graphical abstract.

13.
Arch Toxicol ; 94(2): 469-484, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31822930

RESUMO

The US Environmental Protection Agency's ToxCast program has generated toxicity data for thousands of chemicals but does not adequately assess potential neurotoxicity. Networks of neurons grown on microelectrode arrays (MEAs) offer an efficient approach to screen compounds for neuroactivity and distinguish between compound effects on firing, bursting, and connectivity patterns. Previously, single concentrations of the ToxCast Phase II library were screened for effects on mean firing rate (MFR) in rat primary cortical networks. Here, we expand this approach by retesting 384 of those compounds (including 222 active in the previous screen) in concentration-response across 43 network activity parameters to evaluate neural network function. Using hierarchical clustering and machine learning methods on the full suite of chemical-parameter response data, we identified 15 network activity parameters crucial in characterizing activity of 237 compounds that were response actives ("hits"). Recognized neurotoxic compounds in this network function assay were often more potent compared to other ToxCast assays. Of these chemical-parameter responses, we identified three k-means clusters of chemical-parameter activity (i.e., multivariate MEA response patterns). Next, we evaluated the MEA clusters for enrichment of chemical features using a subset of ToxPrint chemotypes, revealing chemical structural features that distinguished the MEA clusters. Finally, we assessed distribution of neurotoxicants with known pharmacology within the clusters and found that compounds segregated differentially. Collectively, these results demonstrate that multivariate MEA activity patterns can efficiently screen for diverse chemical activities relevant to neurotoxicity, and that response patterns may have predictive value related to chemical structural features.


Assuntos
Bases de Dados de Compostos Químicos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Síndromes Neurotóxicas/patologia , Testes de Toxicidade/métodos , Animais , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Aprendizado de Máquina , Microeletrodos , Rede Nervosa/efeitos dos fármacos , Redes Neurais de Computação , Neurônios/efeitos dos fármacos , Ratos Long-Evans
14.
Regul Toxicol Pharmacol ; 116: 104724, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32640296

RESUMO

Computational Toxicology tools were used to predict toxicity for three pesticides: propyzamide (PZ), carbaryl (CB) and chlorpyrifos (CPF). The tools used included: a) ToxCast/Tox21 assays (AC50 s µM: concentration 50% maximum activity); b) in vitro-to-in vivo extrapolation (IVIVE) using ToxCast/Tox21 AC50s to predict administered equivalent doses (AED: mg/kg/d) to compare to known in vivo Lowest-Observed-Effect-Level (LOEL)/Benchmark Dose (BMD); c) high throughput toxicokinetics population based (HTTK-Pop) using AC50s for endpoints associated with the mode of action (MOA) to predict age-adjusted AED for comparison with in vivo LOEL/BMDs. ToxCast/Tox21 active-hit-calls for each chemical were predictive of targets associated with each MOA, however, assays directly relevant to the MOAs for each chemical were limited. IVIVE AEDs were predictive of in vivo LOEL/BMD10s for all three pesticides. HTTK-Pop was predictive of in vivo LOEL/BMD10s for PZ and CPF but not for CB after human age adjustments 11-15 (PZ) and 6-10 (CB) or 6-10 and 11-20 (CPF) corresponding to treated rat ages (in vivo endpoints). The predictions of computational tools are useful for risk assessment to identify targets in chemical MOAs and to support in vivo endpoints. Data can also aid is decisions about the need for further studies.


Assuntos
Medição de Risco/métodos , Toxicologia/métodos , Animais , Benzamidas/toxicidade , Bioensaio , Carbaril/toxicidade , Clorpirifos/toxicidade , Simulação por Computador , Humanos , Praguicidas/toxicidade
15.
Regul Toxicol Pharmacol ; 114: 104656, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32437818

RESUMO

Additional non-animal methods are urgently needed to meet regulatory and animal welfare goals. TTC is a broadly used risk assessment tool. TTC based on external dose has limited utility for multi-route exposure and some types of structure activity relationship assessments. An internal TTC (iTTC), where thresholds are based on blood concentration, would extend the applicability of TTC. While work is on-going to develop robust iTTC thresholds, we propose an interim conservative iTTC. Specifically, an interim iTTC of 1 µM, supported by the published experience of the pharmaceutical industry, a literature review of non-drug chemical/receptor interactions, and analysis of ToxCast™ data. ToxCast™ data were used to explore activity versus the 1 µM interim iTTC and recommendations for the analysis and interpretation of HTS data. Test concentration-based points of departure were classified to identify quality of fit to the Hill Model. We identified, for exclusion from the approach, estrogen receptor and androgen receptor targets as potent chemical/receptor interactions potentially associated with low dose exposure to non-pharmaceutical active ingredients in addition to the original TTC exclusions. With these exclusions, we conclude that a 1 µM plasma concentration is unlikely to be associated with significant biological effects from chemicals not intentionally designed for biological activity.


Assuntos
Ácido Acético/efeitos adversos , Aspirina/efeitos adversos , Automação , Receptores Androgênicos/metabolismo , Ácido Salicílico/efeitos adversos , Ácido Acético/química , Ácido Acético/metabolismo , Animais , Aspirina/química , Aspirina/metabolismo , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Nível de Efeito Adverso não Observado , Receptores Androgênicos/química , Medição de Risco , Ácido Salicílico/química , Ácido Salicílico/metabolismo , Relação Estrutura-Atividade
16.
Toxicol Appl Pharmacol ; 380: 114706, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31400414

RESUMO

High throughput screening (HTS) and functional genomics (toxicogenomics) have opened new avenues in toxicity testing. Their advantages include the potential for developing short-term in vivo bioassays and in vitro assays in order to keep pace with the growing backlog of chemicals that need to be evaluated for potential human health risk. In addition, these approaches have the potential to address some of the difficulties that arise with interpreting traditional rodent bioassays, such as the relevance of apical outcomes induced by chemical exposure in animals to humans. The wealth of information associated with the HTS and toxicogenomic data can inform human health risk assessment primarily through (i) insight into potential mechanism of action, (ii) prediction of adverse outcomes of chemical exposures, and (iii) dose-response assessment for derivation of toxicity values. In this article we outline current and expected future progress in these three directions and argue for increased role of HTS and toxicogenomic data in chemical risk assessment. We conclude that these approaches can help fulfill the NRC vision for toxicity testing in the 21st century and we discuss specific examples of chemicals whose health assessments can potentially benefit from available HTS or toxicogenomic data.


Assuntos
Ensaios de Triagem em Larga Escala , Medição de Risco/métodos , Toxicogenética/métodos , Animais , Carcinógenos/toxicidade , Humanos , Transcriptoma
17.
Biometrics ; 75(1): 193-201, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30081432

RESUMO

Many modern datasets are sampled with error from complex high-dimensional surfaces. Methods such as tensor product splines or Gaussian processes are effective and well suited for characterizing a surface in two or three dimensions, but they may suffer from difficulties when representing higher dimensional surfaces. Motivated by high throughput toxicity testing where observed dose-response curves are cross sections of a surface defined by a chemical's structural properties, a model is developed to characterize this surface to predict untested chemicals' dose-responses. This manuscript proposes a novel approach that models the multidimensional surface as a sum of learned basis functions formed as the tensor product of lower dimensional functions, which are themselves representable by a basis expansion learned from the data. The model is described and a Gibbs sampling algorithm is proposed. The approach is investigated in a simulation study and through data taken from the US EPA's ToxCast high throughput toxicity testing platform.


Assuntos
Teorema de Bayes , Testes de Toxicidade/estatística & dados numéricos , Animais , Simulação por Computador , Relação Dose-Resposta a Droga , Poluentes Ambientais/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Humanos , Distribuição Normal , Relação Quantitativa Estrutura-Atividade , Testes de Toxicidade/métodos
18.
Anal Bioanal Chem ; 411(4): 835-851, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30612177

RESUMO

Non-targeted analysis (NTA) methods are increasingly used to discover contaminants of emerging concern (CECs), but the extent to which these methods can support exposure and health studies remains to be determined. EPA's Non-Targeted Analysis Collaborative Trial (ENTACT) was launched in 2016 to address this need. As part of ENTACT, 1269 unique substances from EPA's ToxCast library were combined to make ten synthetic mixtures, with each mixture containing between 95 and 365 substances. As a participant in the trial, we first performed blinded NTA on each mixture using liquid chromatography (LC) coupled with high-resolution mass spectrometry (HRMS). We then performed an unblinded evaluation to identify limitations of our NTA method. Overall, at least 60% of spiked substances could be observed using selected methods. Discounting spiked isomers, true positive rates from the blinded and unblinded analyses reached a maximum of 46% and 65%, respectively. An overall reproducibility rate of 75% was observed for substances spiked into more than one mixture and observed at least once. Considerable discordance in substance identification was observed when comparing a subset of our results derived from two separate reversed-phase chromatography methods. We conclude that a single NTA method, even when optimized, can likely characterize only a subset of ToxCast substances (and, by extension, other CECs). Rigorous quality control and self-evaluation practices should be required of labs generating NTA data to support exposure and health studies. Accurate and transparent communication of performance results will best enable meaningful interpretations and defensible use of NTA data. Graphical abstract ᅟ.


Assuntos
Cromatografia Líquida/métodos , Cromatografia de Fase Reversa/métodos , Misturas Complexas , Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Espectrometria de Massas/métodos , Poluentes Ambientais/toxicidade , Traçadores Radioativos , Padrões de Referência , Reprodutibilidade dos Testes
19.
Anal Bioanal Chem ; 411(4): 853-866, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30519961

RESUMO

In August 2015, the US Environmental Protection Agency (EPA) convened a workshop entitled "Advancing non-targeted analyses of xenobiotic chemicals in environmental and biological media." The purpose of the workshop was to bring together the foremost experts in non-targeted analysis (NTA) to discuss the state-of-the-science for generating, interpreting, and exchanging NTA measurement data. During the workshop, participants discussed potential designs for a collaborative project that would use EPA resources, including the ToxCast library of chemical substances, the DSSTox database, and the CompTox Chemicals Dashboard, to evaluate cutting-edge NTA methods. That discussion was the genesis of EPA's Non-Targeted Analysis Collaborative Trial (ENTACT). Nearly 30 laboratories have enrolled in ENTACT and used a variety of chromatography, mass spectrometry, and data processing approaches to characterize ten synthetic chemical mixtures, three standardized media (human serum, house dust, and silicone band) extracts, and thousands of individual substances. Initial results show that nearly all participants have detected and reported more compounds in the mixtures than were intentionally added, with large inter-lab variability in the number of reported compounds. A comparison of gas and liquid chromatography results shows that the majority (45.3%) of correctly identified compounds were detected by only one method and 15.4% of compounds were not identified. Finally, a limited set of true positive identifications indicates substantial differences in observable chemical space when employing disparate separation and ionization techniques as part of NTA workflows. This article describes the genesis of ENTACT, all study methods and materials, and an analysis of results submitted to date. Graphical abstract ᅟ.


Assuntos
Comportamento Cooperativo , Poluentes Ambientais/análise , Projetos de Pesquisa , Xenobióticos/análise , Cromatografia/métodos , Misturas Complexas , Coleta de Dados , Poeira , Educação , Exposição Ambiental , Poluentes Ambientais/normas , Poluentes Ambientais/toxicidade , Humanos , Laboratórios/organização & administração , Espectrometria de Massas/métodos , Controle de Qualidade , Padrões de Referência , Soro , Silicones/química , Estados Unidos , United States Environmental Protection Agency , Xenobióticos/normas , Xenobióticos/toxicidade
20.
Regul Toxicol Pharmacol ; 109: 104510, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31676319

RESUMO

Synthesis of 11 steroid hormones in human adrenocortical carcinoma cells (H295R) was measured in a high-throughput steroidogenesis assay (HT-H295R) for 656 chemicals in concentration-response as part of the US Environmental Protection Agency's ToxCast program. This work extends previous analysis of the HT-H295R dataset and model by examining the utility of a novel prioritization metric based on the Mahalanobis distance that reduced these 11-dimensional data to 1-dimension via calculation of a mean Mahalanobis distance (mMd) at each chemical concentration screened for all hormone measures available. Herein, we evaluated the robustness of mMd values, and demonstrate that covariance and variance of the hormones measured appear independent of the chemicals screened and are inherent to the assay; the Type I error rate of the mMd method is less than 1%; and, absolute fold changes (up or down) of 1.5 to 2-fold have sufficient power for statistical significance. As a case study, we examined hormone responses for aromatase inhibitors in the HT-H295R assay and found high concordance with other ToxCast assays for known aromatase inhibitors. Finally, we used mMd and other ToxCast cytotoxicity data to demonstrate prioritization of the most selective and active chemicals as candidates for further in vitro or in silico screening.


Assuntos
Inibidores da Aromatase/toxicidade , Disruptores Endócrinos/toxicidade , Ensaios de Triagem em Larga Escala/métodos , Esteroides/biossíntese , Linhagem Celular Tumoral , Interpretação Estatística de Dados , Conjuntos de Dados como Assunto , Reações Falso-Positivas , Ensaios de Triagem em Larga Escala/normas , Humanos , Reprodutibilidade dos Testes , Testes de Toxicidade/métodos , Testes de Toxicidade/normas , Estados Unidos , United States Environmental Protection Agency/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA