Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.267
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(10): e2317026121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38408250

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been detected in almost all organs of coronavirus disease-19 patients, although some organs do not express angiotensin-converting enzyme-2 (ACE2), a known receptor of SARS-CoV-2, implying the presence of alternative receptors and/or co-receptors. Here, we show that the ubiquitously distributed human transferrin receptor (TfR), which binds to diferric transferrin to traffic between membrane and endosome for the iron delivery cycle, can ACE2-independently mediate SARS-CoV-2 infection. Human, not mouse TfR, interacts with Spike protein with a high affinity (KD ~2.95 nM) to mediate SARS-CoV-2 endocytosis. TfR knock-down (TfR-deficiency is lethal) and overexpression inhibit and promote SARS-CoV-2 infection, respectively. Humanized TfR expression enables SARS-CoV-2 infection in baby hamster kidney cells and C57 mice, which are known to be insusceptible to the virus infection. Soluble TfR, Tf, designed peptides blocking TfR-Spike interaction and anti-TfR antibody show significant anti-COVID-19 effects in cell and monkey models. Collectively, this report indicates that TfR is a receptor/co-receptor of SARS-CoV-2 mediating SARS-CoV-2 entry and infectivity by likely using the TfR trafficking pathway.


Assuntos
COVID-19 , Animais , Humanos , Camundongos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
2.
Traffic ; 25(1): e12921, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37926552

RESUMO

ESCRTs (Endosomal Sorting Complex Required for Transports) are a modular set of protein complexes with membrane remodeling activities that include the formation and release of intraluminal vesicles (ILVs) to generate multivesicular endosomes. While most of the 12 ESCRT-III proteins are known to play roles in ILV formation, IST1 has been associated with a wider range of endosomal remodeling events. Here, we extend previous studies of IST1 function in endosomal trafficking and confirm that IST1, along with its binding partner CHMP1B, contributes to scission of early endosomal carriers. Functionally, depleting IST1 impaired delivery of transferrin receptor from early/sorting endosomes to the endocytic recycling compartment and instead increased its rapid recycling to the plasma membrane via peripheral endosomes enriched in the clathrin adaptor AP-1. IST1 is also important for export of mannose 6-phosphate receptor from early/sorting endosomes. Examination of IST1 binding partners on endosomes revealed that IST1 interacts with the MIT domain-containing sorting nexin SNX15, a protein previously reported to regulate endosomal recycling. Our kinetic and spatial analyses establish that SNX15 and IST1 occupy a clathrin-containing subdomain on the endosomal perimeter distinct from those previously implicated in cargo retrieval or degradation. Using live-cell microscopy, we see that SNX15 and CHMP1B alternately recruit IST1 to this subdomain or the base of endosomal tubules. These findings indicate that IST1 contributes to a subset of recycling pathways from the early/sorting endosome.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Endossomos , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Transporte Proteico , Endossomos/metabolismo , Corpos Multivesiculares/metabolismo , Transporte Biológico
3.
Bioessays ; 46(7): e2400053, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38713161

RESUMO

Trypanosoma brucei is the causal agent of African Trypanosomiasis in humans and other animals. It maintains a long-term infection through an antigenic variation based population survival strategy. To proliferate in a mammal, T. brucei acquires iron and haem through the receptor mediated uptake of host transferrin and haptoglobin-hemoglobin respectively. The receptors are exposed to host antibodies but this does not lead to clearance of the infection. Here we discuss how the trypanosome avoids this fate in the context of recent findings on the structure and cell biology of the receptors.


Assuntos
Trypanosoma brucei brucei , Tripanossomíase Africana , Trypanosoma brucei brucei/imunologia , Trypanosoma brucei brucei/metabolismo , Humanos , Animais , Tripanossomíase Africana/imunologia , Tripanossomíase Africana/parasitologia , Haptoglobinas/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/imunologia , Transferrina/metabolismo , Hemoglobinas/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/imunologia , Interações Hospedeiro-Parasita/imunologia , Ferro/metabolismo , Anticorpos Antiprotozoários/imunologia
4.
Proc Natl Acad Sci U S A ; 120(21): e2214936120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37192162

RESUMO

Influenza A virus (IAV) enters host cells mostly through clathrin-dependent receptor-mediated endocytosis. A single bona fide entry receptor protein supporting this entry mechanism remains elusive. Here we performed proximity ligation of biotin to host cell surface proteins in the vicinity of attached trimeric hemagglutinin-HRP and characterized biotinylated targets using mass spectrometry. This approach identified transferrin receptor 1 (TfR1) as a candidate entry protein. Genetic gain-of-function and loss-of-function experiments, as well as in vitro and in vivo chemical inhibition, confirmed the functional involvement of TfR1 in IAV entry. Recycling deficient mutants of TfR1 do not support entry, indicating that TfR1 recycling is essential for this function. The binding of virions to TfR1 via sialic acids confirmed its role as a directly acting entry factor, but unexpectedly even headless TfR1 promoted IAV particle uptake in trans. TIRF microscopy localized the entering virus-like particles in the vicinity of TfR1. Our data identify TfR1 recycling as a revolving door mechanism exploited by IAV to enter host cells.


Assuntos
Vírus da Influenza A , Transferrina , Vírus da Influenza A/fisiologia , Internalização do Vírus , Endocitose/fisiologia , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(39): e2307899120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37733740

RESUMO

The human blood-brain barrier (BBB) comprises a single layer of brain microvascular endothelial cells (HBMECs) protecting the brain from bloodborne pathogens. Meningitis is among the most serious diseases, but the mechanisms by which major meningitis-causing bacterial pathogens cross the BBB to reach the brain remain poorly understood. We found that Streptococcus pneumoniae, group B Streptococcus, and neonatal meningitis Escherichia coli commonly exploit a unique vesicle fusion mechanism to hitchhike on transferrin receptor (TfR) transcytosis to cross the BBB and illustrated the details of this process in human BBB model in vitro and mouse model. Toll-like receptor signals emanating from bacteria-containing vesicles (BCVs) trigger K33-linked polyubiquitination at Lys168 and Lys181 of the innate immune regulator TRAF3 and then activate the formation of a protein complex containing the guanine nucleotide exchange factor RCC2, the small GTPase RalA and exocyst subcomplex I (SC I) on BCVs. The distinct function of SEC6 in SC I, interacting directly with RalA on BCVs and the SNARE protein SNAP23 on TfR vesicles, tethers these two vesicles and initiates the fusion. Our results reveal that innate immunity triggers a unique modification of TRAF3 and the formation of the HBMEC-specific protein complex on BCVs to authenticate the precise recognition and selection of TfR vesicles to fuse with and facilitate bacterial penetration of the BBB.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Humanos , Animais , Camundongos , Recém-Nascido , Fator 3 Associado a Receptor de TNF , Transcitose , Bactérias , Receptores da Transferrina
6.
Circulation ; 150(2): 151-161, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38733252

RESUMO

A serum ferritin level <15 to 20 µg/L historically identified patients who had absent bone marrow iron stores, but serum ferritin levels are distorted by the systemic inflammatory states seen in patients with chronic kidney disease or heart failure. As a result, nearly 25 years ago, the diagnostic ferritin threshold was increased 5- to 20-fold in patients with chronic kidney disease (ie, iron deficiency was identified if the serum ferritin level was <100 µg/L, regardless of transferrin saturation [TSAT], or 100 to 299 µg/L if TSAT was <20%). This guidance was motivated not by the findings of studies of total body or tissue iron depletion, but by a desire to encourage the use of iron supplements to potentiate the response to erythropoiesis-stimulating agents in patients with renal anemia. However, in patients with heart failure, this definition does not reliably identify patients with an absolute or functional iron-deficiency state, and it includes individuals with TSATs (≥20%) and serum ferritin levels in the normal range (20-100 mg/L) who are not iron deficient, have an excellent prognosis, and do not respond favorably to iron therapy. Furthermore, serum ferritin levels may be distorted by the use of both neprilysin and sodium-glucose cotransporter 2 inhibitors, both of which may act to mobilize endogenous iron stores. The most evidence-based and trial-tested definition of iron deficiency is the presence of hypoferremia, as reflected by as a TSAT <20%. These hypoferremic patients are generally iron deficient on bone marrow examination, and after intravenous iron therapy, they exhibit an improvement in exercise tolerance and functional capacity (when meaningfully impaired) and show the most marked reduction (ie, 20%-30%) in the risk of cardiovascular death or total heart failure hospitalizations. Therefore, we propose that the current ferritin-driven definition of iron deficiency in heart failure should be abandoned and that a definition based on hypoferremia (TSAT <20%) should be adopted.


Assuntos
Anemia Ferropriva , Ferritinas , Insuficiência Cardíaca , Humanos , Insuficiência Cardíaca/sangue , Ferritinas/sangue , Anemia Ferropriva/diagnóstico , Anemia Ferropriva/tratamento farmacológico , Anemia Ferropriva/sangue , Doença Crônica , Deficiências de Ferro , Ferro/metabolismo , Ferro/sangue
7.
RNA ; 29(8): 1117-1125, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37160355

RESUMO

The interactions of iron regulatory proteins (IRPs) with mRNAs containing an iron-responsive element (IRE) maintain cellular iron homeostasis and coordinate it with metabolism and possibly cellular behavior. The mRNA encoding transferrin receptor-1 (TFRC, TfR1), which is a major means of iron importation, has five IREs within its 3' UTR, and IRP interactions help maintain cytosolic iron through the protection of the TfR1 mRNA from degradation. An IRE within the 3' UTR of an mRNA splice variant encoding human cell division cycle 14A (CDC14A) has the potential to coordinate the cellular iron status with cellular behavior through a similar IRP-mediated mechanism. However, the stability of the CDC14A splice variant was reported earlier to be unaffected by the cellular iron status, which suggested that the IRE is not functional. We labeled newly synthesized mRNA in HEK293 cells with 5-ethynyl uridine and found that the stability of the CDC14A variant is responsive to iron deprivation, but there are two major differences from the regulation of TfR1 mRNA stability. First, the decay of the CDC14A mRNA does not utilize the Roquin-mediated reaction that acts on the TfR1 mRNA, indicating that there is flexibility in the degradative machinery antagonized by the IRE-IRP interactions. Second, the stabilization of the CDC14A mRNA is delayed relative to the TfR1 mRNA and does not occur until IRP binding activity has been induced. The result is consistent with a hierarchy of IRP interactions in which the maintenance of cellular iron through the stabilization of the TfR1 mRNA is initially prioritized.


Assuntos
Deficiências de Ferro , Ferro , Humanos , Ferro/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas , Células HEK293 , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo
8.
FASEB J ; 38(1): e23331, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38031991

RESUMO

Adequate and timely delivery of iron is essential for brain development. The uptake of transferrin-bound (Tf) iron into the brain peaks at the time of myelination, whereas the recently discovered H-ferritin (FTH1) transport of iron into the brain continues to increase beyond the peak in myelination. Here, we interrogate the impact of dietary iron deficiency (ID) on the uptake of FTH1- and Tf-bound iron. In the present study, we used C57BL/6J male and female mice at a developing (post-natal day (PND) 15) and adult age (PND 85). In developing mice, ID results in increased iron delivery from both FTH1 and Tf for both males and females. The amount of iron uptake from FTH1 was higher than the Tf and this difference between the iron delivery was much greater in females. In contrast, in the adult model, ID was associated with increased brain iron uptake by both FTH1 and Tf but only in the males. There was no increased uptake from either protein in the females. Moreover, transferrin receptor expression on the microvasculature as well as whole brain iron, and H and L ferritin levels revealed the male brains became iron deficient but not the female brains. Last, under normal dietary conditions, 55 Fe uptake was higher in the developing group from both delivery proteins than in the adult group. These results indicate that there are differences in iron acquisition between the developing and adult brain for FTH1 and Tf during nutritional ID and demonstrate a level of regulation of brain iron uptake that is age and sex-dependent.


Assuntos
Deficiências de Ferro , Ferro , Camundongos , Masculino , Animais , Feminino , Ferro/metabolismo , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Transferrina , Ferro da Dieta/metabolismo
9.
Mol Ther ; 32(5): 1387-1406, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38414247

RESUMO

Cisplatin-induced hearing loss is a common side effect of cancer chemotherapy in clinics; however, the mechanism of cisplatin-induced ototoxicity is still not completely clarified. Cisplatin-induced ototoxicity is mainly associated with the production of reactive oxygen species, activation of apoptosis, and accumulation of intracellular lipid peroxidation, which also is involved in ferroptosis induction. In this study, the expression of TfR1, a ferroptosis biomarker, was upregulated in the outer hair cells of cisplatin-treated mice. Moreover, several key ferroptosis regulator genes were altered in cisplatin-damaged cochlear explants based on RNA sequencing, implying the induction of ferroptosis. Ferroptosis-related Gpx4 and Fsp1 knockout mice were established to investigate the specific mechanisms associated with ferroptosis in cochleae. Severe outer hair cell loss and progressive damage of synapses in inner hair cells were observed in Atoh1-Gpx4-/- mice. However, Fsp1-/- mice showed no significant hearing phenotype, demonstrating that Gpx4, but not Fsp1, may play an important role in the functional maintenance of HCs. Moreover, findings showed that FDA-approved luteolin could specifically inhibit ferroptosis and alleviate cisplatin-induced ototoxicity through decreased expression of transferrin and intracellular concentration of ferrous ions. This study indicated that ferroptosis inhibition through the reduction of intracellular ferrous ions might be a potential strategy to prevent cisplatin-induced hearing loss.


Assuntos
Cisplatino , Ferroptose , Perda Auditiva , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Animais , Cisplatino/efeitos adversos , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Camundongos , Perda Auditiva/induzido quimicamente , Perda Auditiva/genética , Perda Auditiva/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Modelos Animais de Doenças , Receptores da Transferrina/metabolismo , Receptores da Transferrina/genética , Espécies Reativas de Oxigênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/efeitos dos fármacos , Células Ciliadas Auditivas Externas/patologia , Ototoxicidade/etiologia , Ototoxicidade/metabolismo , Antineoplásicos/efeitos adversos , Apoptose/efeitos dos fármacos
10.
Mol Ther ; 32(3): 609-618, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38204164

RESUMO

Mucopolysaccharidosis type I (MPS I) causes systemic accumulation of glycosaminoglycans due to a genetic deficiency of α-L-iduronidase (IDUA), which results in progressive systemic symptoms affecting multiple organs, including the central nervous system (CNS). Because the blood-brain barrier (BBB) prevents enzymes from reaching the brain, enzyme replacement therapy is effective only against the somatic symptoms. Hematopoietic stem cell transplantation can address the CNS symptoms, but the risk of complications limits its applicability. We have developed a novel genetically modified protein consisting of IDUA fused with humanized anti-human transferrin receptor antibody (lepunafusp alfa; JR-171), which has been shown in nonclinical studies to be distributed to major organs, including the brain, bringing about systemic reductions in heparan sulfate (HS) and dermatan sulfate concentrations. Subsequently, a first-in-human study was conducted to evaluate the safety, pharmacokinetics, and exploratory efficacy of JR-171 in 18 patients with MPS I. No notable safety issues were observed. Plasma drug concentration increased dose dependently and reached its maximum approximately 4 h after the end of drug administration. Decreased HS in the cerebrospinal fluid suggested successful delivery of JR-171 across the BBB, while suppressed urine and serum concentrations of the substrates indicated that its somatic efficacy was comparable to that of laronidase.


Assuntos
Mucopolissacaridose I , Humanos , Mucopolissacaridose I/terapia , Mucopolissacaridose I/tratamento farmacológico , Iduronidase/efeitos adversos , Iduronidase/genética , Iduronidase/metabolismo , Encéfalo/metabolismo , Barreira Hematoencefálica/metabolismo , Receptores da Transferrina/genética , Heparitina Sulfato/metabolismo
11.
Eur Heart J ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38917062

RESUMO

BACKGROUND AND AIMS: Intravenous iron therapies contain iron-carbohydrate complexes, designed to ensure iron becomes bioavailable via the intermediary of spleen and liver reticuloendothelial macrophages. How other tissues obtain and handle this iron remains unknown. This study addresses this question in the context of the heart. METHODS: A prospective observational study was conducted in 12 patients receiving ferric carboxymaltose (FCM) for iron deficiency. Myocardial, spleen, and liver magnetic resonance relaxation times and plasma iron markers were collected longitudinally. To examine the handling of iron taken up by the myocardium, intracellular labile iron pool (LIP) was imaged in FCM-treated mice and cells. RESULTS: In patients, myocardial relaxation time T1 dropped maximally 3 h post-FCM, remaining low 42 days later, while splenic T1 dropped maximally at 14 days, recovering by 42 days. In plasma, non-transferrin-bound iron (NTBI) peaked at 3 h, while ferritin peaked at 14 days. Changes in liver T1 diverged among patients. In mice, myocardial LIP rose 1 h and remained elevated 42 days after FCM. In cardiomyocytes, FCM exposure raised LIP rapidly. This was prevented by inhibitors of NTBI transporters T-type and L-type calcium channels and divalent metal transporter 1. CONCLUSIONS: Intravenous iron therapy with FCM delivers iron to the myocardium rapidly through NTBI transporters, independently of reticuloendothelial macrophages. This iron remains labile for weeks, reflecting the myocardium's limited iron storage capacity. These findings challenge current notions of how the heart obtains iron from these therapies and highlight the potential for long-term dosing to cause cumulative iron build-up in the heart.

12.
Eur Heart J ; 45(26): 2281-2293, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38733250

RESUMO

Current understanding of iron-deficient heart failure is based on blood tests that are thought to reflect systemic iron stores, but the available evidence suggests greater complexity. The entry and egress of circulating iron is controlled by erythroblasts, which (in severe iron deficiency) will sacrifice erythropoiesis to supply iron to other organs, e.g. the heart. Marked hypoferraemia (typically with anaemia) can drive the depletion of cardiomyocyte iron, impairing contractile performance and explaining why a transferrin saturation < ≈15%-16% predicts the ability of intravenous iron to reduce the risk of major heart failure events in long-term trials (Type 1 iron-deficient heart failure). However, heart failure may be accompanied by intracellular iron depletion within skeletal muscle and cardiomyocytes, which is disproportionate to the findings of systemic iron biomarkers. Inflammation- and deconditioning-mediated skeletal muscle dysfunction-a primary cause of dyspnoea and exercise intolerance in patients with heart failure-is accompanied by intracellular skeletal myocyte iron depletion, which can be exacerbated by even mild hypoferraemia, explaining why symptoms and functional capacity improve following intravenous iron, regardless of baseline haemoglobin or changes in haemoglobin (Type 2 iron-deficient heart failure). Additionally, patients with advanced heart failure show myocardial iron depletion due to both diminished entry into and enhanced egress of iron from the myocardium; the changes in iron proteins in the cardiomyocytes of these patients are opposite to those expected from systemic iron deficiency. Nevertheless, iron supplementation can prevent ventricular remodelling and cardiomyopathy produced by experimental injury in the absence of systemic iron deficiency (Type 3 iron-deficient heart failure). These observations, taken collectively, support the possibility of three different mechanistic pathways for the development of iron-deficient heart failure: one that is driven through systemic iron depletion and impaired erythropoiesis and two that are characterized by disproportionate depletion of intracellular iron in skeletal and cardiac muscle. These mechanisms are not mutually exclusive, and all pathways may be operative at the same time or may occur sequentially in the same patients.


Assuntos
Anemia Ferropriva , Insuficiência Cardíaca , Ferro , Músculo Esquelético , Miócitos Cardíacos , Humanos , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Ferro/metabolismo , Miócitos Cardíacos/metabolismo , Músculo Esquelético/metabolismo , Anemia Ferropriva/metabolismo , Miocárdio/metabolismo , Deficiências de Ferro , Eritropoese/fisiologia , Eritroblastos/metabolismo
13.
Eur Heart J ; 45(16): 1410-1426, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38446126

RESUMO

BACKGROUND AND AIMS: What is the relationship between blood tests for iron deficiency, including anaemia, and the response to intravenous iron in patients with heart failure? METHODS: In the IRONMAN trial, 1137 patients with heart failure, ejection fraction ≤ 45%, and either serum ferritin < 100 µg/L or transferrin saturation (TSAT) < 20% were randomized to intravenous ferric derisomaltose (FDI) or usual care. Relationships were investigated between baseline anaemia severity, ferritin and TSAT, to changes in haemoglobin from baseline to 4 months, Minnesota Living with Heart Failure (MLwHF) score and 6-minute walk distance achieved at 4 months, and clinical events, including heart failure hospitalization (recurrent) or cardiovascular death. RESULTS: The rise in haemoglobin after administering FDI, adjusted for usual care, was greater for lower baseline TSAT (Pinteraction < .0001) and ferritin (Pinteraction = .028) and more severe anaemia (Pinteraction = .014). MLwHF scores at 4 months were somewhat lower (better) with FDI for more anaemic patients (overall Pinteraction = .14; physical Pinteraction = .085; emotional Pinteraction = .043) but were not related to baseline TSAT or ferritin. Blood tests did not predict difference in achieved walking distance for those randomized to FDI compared to control. The absence of anaemia or a TSAT ≥ 20% was associated with lower event rates and little evidence of benefit from FDI. More severe anaemia or TSAT < 20%, especially when ferritin was ≥100 µg/L, was associated with higher event rates and greater absolute reductions in events with FDI, albeit not statistically significant. CONCLUSIONS: This hypothesis-generating analysis suggests that anaemia or TSAT < 20% with ferritin > 100 µg/L might identify patients with heart failure who obtain greater benefit from intravenous iron. This interpretation requires confirmation.


Assuntos
Anemia Ferropriva , Anemia , Insuficiência Cardíaca , Deficiências de Ferro , Humanos , Ferro/uso terapêutico , Anemia Ferropriva/tratamento farmacológico , Ferritinas/uso terapêutico , Compostos Férricos/uso terapêutico , Hemoglobinas , Insuficiência Cardíaca/tratamento farmacológico
14.
J Neurosci ; 43(20): 3614-3629, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-36977582

RESUMO

To test the hypothesis that the transferrin (Tf) cycle has unique importance for oligodendrocyte development and function, we disrupted the expression of the Tf receptor (Tfr) gene in oligodendrocyte progenitor cells (OPCs) on mice of either sex using the Cre/lox system. This ablation results in the elimination of iron incorporation via the Tf cycle but leaves other Tf functions intact. Mice lacking Tfr, specifically in NG2 or Sox10-positive OPCs, developed a hypomyelination phenotype. Both OPC differentiation and myelination were affected, and Tfr deletion resulted in impaired OPC iron absorption. Specifically, the brains of Tfr cKO animals presented a reduction in the quantity of myelinated axons, as well as fewer mature oligodendrocytes. In contrast, the ablation of Tfr in adult mice affected neither mature oligodendrocytes nor myelin synthesis. RNA-seq analysis performed in Tfr cKO OPCs revealed misregulated genes involved in OPC maturation, myelination, and mitochondrial activity. Tfr deletion in cortical OPCs also disrupted the activity of the mTORC1 signaling pathway, epigenetic mechanisms critical for gene transcription and the expression of structural mitochondrial genes. RNA-seq studies were additionally conducted in OPCs in which iron storage was disrupted by deleting the ferritin heavy chain. These OPCs display abnormal regulation of genes associated with iron transport, antioxidant activity, and mitochondrial activity. Thus, our results indicate that the Tf cycle is central for iron homeostasis in OPCs during postnatal development and suggest that both iron uptake via Tfr and iron storage in ferritin are critical for energy production, mitochondrial activity, and maturation of postnatal OPCs.SIGNIFICANCE STATEMENT By knocking-out transferrin receptor (Tfr) specifically in oligodendrocyte progenitor cells (OPCs), we have established that iron incorporation via the Tf cycle is key for OPC iron homeostasis and for the normal function of these cells during the postnatal development of the CNS. Moreover, RNA-seq analysis indicated that both Tfr iron uptake and ferritin iron storage are critical for proper OPC mitochondrial activity, energy production, and maturation.


Assuntos
Oligodendroglia , Receptores da Transferrina , Camundongos , Animais , Camundongos Knockout , Oligodendroglia/metabolismo , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , Ferro/metabolismo , Diferenciação Celular/fisiologia , Ferritinas/metabolismo , Homeostase , Transferrina/metabolismo
15.
J Neurosci ; 43(27): 5092-5113, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37308296

RESUMO

Hereditary spastic paraplegia (HSP) is a severe neurodegenerative movement disorder, the underlying pathophysiology of which remains poorly understood. Mounting evidence has suggested that iron homeostasis dysregulation can lead to motor function impairment. However, whether deficits in iron homeostasis are involved in the pathophysiology of HSP remains unknown. To address this knowledge gap, we focused on parvalbumin-positive (PV+) interneurons, a large category of inhibitory neurons in the central nervous system, which play a critical role in motor regulation. The PV+ interneuron-specific deletion of the gene encoding transferrin receptor 1 (TFR1), a key component of the neuronal iron uptake machinery, induced severe progressive motor deficits in both male and female mice. In addition, we observed skeletal muscle atrophy, axon degeneration in the spinal cord dorsal column, and alterations in the expression of HSP-related proteins in male mice with Tfr1 deletion in the PV+ interneurons. These phenotypes were highly consistent with the core clinical features of HSP cases. Furthermore, the effects on motor function induced by Tfr1 ablation in PV+ interneurons were mostly concentrated in the dorsal spinal cord; however, iron repletion partly rescued the motor defects and axon loss seen in both sexes of conditional Tfr1 mutant mice. Our study describes a new mouse model for mechanistic and therapeutic studies relating to HSP and provides novel insights into iron metabolism in spinal cord PV+ interneurons and its role in the regulation of motor functions.SIGNIFICANCE STATEMENT Iron is crucial for neuronal functioning. Mounting evidence suggests that iron homeostasis dysregulation can induce motor function deficits. Transferrin receptor 1 (TFR1) is thought to be the key component in neuronal iron uptake. We found that deletion of Tfr1 in parvalbumin-positive (PV+) interneurons in mice induced severe progressive motor deficits, skeletal muscle atrophy, axon degeneration in the spinal cord dorsal column, and alterations in the expression of hereditary spastic paraplegia (HSP)-related proteins. These phenotypes were highly consistent with the core clinical features of HSP cases and partly rescued by iron repletion. This study describes a new mouse model for the study of HSP and provides novel insights into iron metabolism in spinal cord PV+ interneurons.


Assuntos
Paraplegia Espástica Hereditária , Masculino , Feminino , Animais , Camundongos , Paraplegia Espástica Hereditária/genética , Parvalbuminas/metabolismo , Proteínas/genética , Fenótipo , Interneurônios/metabolismo , Atrofia
16.
J Biol Chem ; 299(2): 102868, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36603765

RESUMO

Iron is essential for normal brain development and function. Hence, understanding the mechanisms of iron efflux at the blood-brain barrier and their regulation are critical for the establishment of brain iron homeostasis. Here, we have investigated the role of exosomes in mediating the transfer of H-ferritin (FTH1)- or transferrin (Tf)-bound iron across the blood-brain barrier endothelial cells (BBBECs). Our study used ECs derived from human-induced pluripotent stem cells that are grown in bicameral chambers. When cells were exposed to 55Fe-Tf or 55Fe-FTH1, the 55Fe activity in the exosome fraction in the basal chamber was significantly higher compared to the supernatant fraction. Furthermore, we determined that the release of endogenous Tf, FTH1, and exosome number is regulated by the iron concentration of the endothelial cells. Moreover, the release of exogenously added Tf or FTH1 to the basal side via exosomes was significantly higher when ECs were iron loaded compared to when they were iron deficient. The release of exosomes containing iron bound to Tf or FTH1 was independent of hepcidin regulation, indicating this mechanism by-passes a major iron regulatory pathway. A potent inhibitor of exosome formation, GW4869, reduced exosomes released from the ECs and also decreased the Tf- and FTH1-bound iron within the exosomes. Collectively, these results indicate that iron transport across the blood-brain barrier is mediated via the exosome pathway and is modified by the iron status of the ECs, providing evidence for a novel alternate mechanism of iron transport into the brain.


Assuntos
Barreira Hematoencefálica , Exossomos , Ferro , Humanos , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Exossomos/metabolismo , Ferro/metabolismo , Transferrina/metabolismo , Transporte Biológico
17.
J Biol Chem ; 299(9): 105088, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37495107

RESUMO

S-acylation is a reversible posttranslational protein modification consisting of attachment of a fatty acid to a cysteine via a thioester bond. Research over the last few years has shown that a variety of different fatty acids, such as palmitic acid (C16:0), stearate (C18:0), or oleate (C18:1), are used in cells to S-acylate proteins. We recently showed that GNAI proteins can be acylated on a single residue, Cys3, with either C16:0 or C18:1, and that the relative proportion of acylation with these fatty acids depends on the level of the respective fatty acid in the cell's environment. This has functional consequences for GNAI proteins, with the identity of the acylating fatty acid affecting the subcellular localization of GNAIs. Unclear is whether this competitive acylation is specific to GNAI proteins or a more general phenomenon in the proteome. We perform here a proteome screen to identify proteins acylated with different fatty acids. We identify 218 proteins acylated with C16:0 and 308 proteins acylated with C18-lipids, thereby uncovering novel targets of acylation. We find that most proteins that can be acylated by C16:0 can also be acylated with C18-fatty acids. For proteins with more than one acylation site, we find that this competitive acylation occurs on each individual cysteine residue. This raises the possibility that the function of many different proteins can be regulated by the lipid environment via differential S-acylation.


Assuntos
Cisteína , Ácido Palmítico , Proteoma , Ácidos Esteáricos , Acilação , Cisteína/metabolismo , Ácido Palmítico/metabolismo , Proteoma/metabolismo , Células HEK293 , Células HeLa , Humanos , Ácidos Esteáricos/metabolismo
18.
Glia ; 72(2): 338-361, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37860913

RESUMO

Extracellular vesicles (EVs) are involved in diverse cellular functions, playing a significant role in cell-to-cell communication in both physiological conditions and pathological scenarios. Therefore, EVs represent a promising therapeutic strategy. Oligodendrocytes (OLs) are myelinating glial cells developed from oligodendrocyte progenitor cells (OPCs) and damaged in chronic demyelinating diseases such as multiple sclerosis (MS). Glycoprotein transferrin (Tf) plays a critical role in iron homeostasis and has pro-differentiating effects on OLs in vivo and in vitro. In the current work, we evaluated the use of EVs as transporters of Tf to the central nervous system (CNS) through the intranasal (IN) route. For the in vitro mechanistic studies, we used rat plasma EVs. Our results show that EVTf enter OPCs through clathrin-caveolae and cholesterol-rich lipid raft endocytic pathways, releasing the cargo and exerting a pro-maturation effect on OPCs. These effects were also observed in vivo using the animal model of demyelination induced by cuprizone (CPZ). In this model, IN administered Tf-loaded EVs isolated from mouse plasma reached the brain parenchyma, internalizing into OPCs, promoting their differentiation, and accelerating remyelination. Furthermore, in vivo experiments demonstrated that EVs protected the Tf cargo and significantly reduced the amount of Tf required to induce remyelination as compared to soluble Tf. Collectively, these findings unveil EVs as functional nanocarriers of Tf to induce remyelination.


Assuntos
Doenças Desmielinizantes , Vesículas Extracelulares , Camundongos , Ratos , Animais , Transferrina/metabolismo , Doenças Desmielinizantes/patologia , Oligodendroglia/metabolismo , Encéfalo/metabolismo , Diferenciação Celular/fisiologia , Cuprizona/toxicidade , Vesículas Extracelulares/metabolismo , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo
19.
Small ; 20(23): e2309369, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38175859

RESUMO

Secondary nanoplastics (NPs) caused by degradation and aging due to environmental factors are the main source of human exposure, and alterations in the physicochemical and biological properties of NPs induced by environmental factors cannot be overlooked. In this study, pristine polystyrene (PS) NPs to obtain ultraviolet (UV)-aged PS NPs (aPS NPs) as secondary NPs is artificially aged. In a mouse oral exposure model, the nephrotoxicity of PS NPs and aPS NPs is compared, and the results showed that aPS NPs exposure induced more serious destruction of kidney tissue structure and function, along with characteristic changes in ferroptosis. Subsequent in vitro experiments revealed that aPS NPs-induced cell death in human renal tubular epithelial cells involved ferroptosis, which is supported by the use of ferrostatin-1, a ferroptosis inhibitor. Notably, it is discovered that aPS NPs can enhance the binding of serum transferrin (TF) to its receptor on the cell membrane by forming an aPS-TF complex, leading to an increase in intracellular Fe2+ and then exacerbation of oxidative stress and lipid peroxidation, which render cells more sensitive to ferroptosis. These findings indicated that UV irradiation can alter the physicochemical and biological properties of NPs, enhancing their kidney biological toxicity risk by inducing ferroptosis.


Assuntos
Ferroptose , Rim , Poliestirenos , Transferrina , Raios Ultravioleta , Poliestirenos/química , Ferroptose/efeitos dos fármacos , Animais , Rim/patologia , Rim/efeitos dos fármacos , Humanos , Transferrina/metabolismo , Camundongos , Adsorção , Estresse Oxidativo/efeitos dos fármacos , Nanopartículas/química , Nanopartículas/toxicidade , Microplásticos/toxicidade
20.
Blood Cells Mol Dis ; 104: 102777, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37391347

RESUMO

Iron is an essential nutrient for microbes, plants and animals. Multicellular organisms have evolved multiple strategies to control invading microbes by restricting microbial access to iron. Hypoferremia of inflammation is a rapidly-acting organismal response that prevents the formation of iron species that would be readily accessible to microbes. This review takes an evolutionary perspective to explore the mechanisms and host defense function of hypoferremia of inflammation and its clinical implications.


Assuntos
Hepcidinas , Inflamação , Animais , Ferro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA