Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.371
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(20): 4310-4324.e23, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37703874

RESUMO

Cellular homeostasis requires the robust control of biomolecule concentrations, but how do millions of mRNAs coordinate their stoichiometries in the face of dynamic translational changes? Here, we identified a two-tiered mechanism controlling mRNA:mRNA and mRNA:protein stoichiometries where mRNAs super-assemble into condensates with buffering capacity and sorting selectivity through phase-transition mechanisms. Using C. elegans oogenesis arrest as a model, we investigated the transcriptome cytosolic reorganization through the sequencing of RNA super-assemblies coupled with single mRNA imaging. Tightly repressed mRNAs self-assembled into same-sequence nanoclusters that further co-assembled into multiphase condensates. mRNA self-sorting was concentration dependent, providing a self-buffering mechanism that is selective to sequence identity and controls mRNA:mRNA stoichiometries. The cooperative sharing of limiting translation repressors between clustered mRNAs prevented the disruption of mRNA:repressor stoichiometries in the cytosol. Robust control of mRNA:mRNA and mRNA:protein stoichiometries emerges from mRNA self-demixing and cooperative super-assembly into multiphase multiscale condensates with dynamic storage capacity.


Assuntos
Condensados Biomoleculares , Caenorhabditis elegans , RNA Mensageiro , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Oogênese , Biossíntese de Proteínas , Transporte de RNA , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Proteínas/química , Proteínas/metabolismo , Condensados Biomoleculares/química , Condensados Biomoleculares/metabolismo
2.
Annu Rev Biochem ; 91: 321-351, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35287477

RESUMO

The cellular interior is composed of a variety of microenvironments defined by distinct local compositions and composition-dependent intermolecular interactions. We review the various types of nonspecific interactions between proteins and between proteins and other macromolecules and supramolecular structures that influence the state of association and functional properties of a given protein existing within a particular microenvironment at a particular point in time. The present state of knowledge is summarized, and suggestions for fruitful directions of research are offered.


Assuntos
Bioquímica , Proteínas , Substâncias Macromoleculares , Proteínas/química , Proteínas/genética
3.
Cell ; 185(23): 4394-4408.e10, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36368307

RESUMO

Living organisms are constantly exposed to DNA damage, and optimal repair is therefore crucial. A characteristic hallmark of the response is the formation of sub-compartments around the site of damage, known as foci. Following multiple DNA breaks, the transcription factor p53 exhibits oscillations in its nuclear concentration, but how this dynamics can affect the repair remains unknown. Here, we formulate a theory for foci formation through droplet condensation and discover how oscillations in p53, with its specific periodicity and amplitude, optimize the repair process by preventing Ostwald ripening and distributing protein material in space and time. Based on the theory predictions, we reveal experimentally that the oscillatory dynamics of p53 does enhance the repair efficiency. These results connect the dynamical signaling of p53 with the microscopic repair process and create a new paradigm for the interplay of complex dynamics and phase transitions in biology.


Assuntos
Proteínas Proto-Oncogênicas c-mdm2 , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Reparo do DNA , Dano ao DNA , Transdução de Sinais/fisiologia
4.
Cell ; 185(4): 690-711.e45, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35108499

RESUMO

Single-cell (sc)RNA-seq, together with RNA velocity and metabolic labeling, reveals cellular states and transitions at unprecedented resolution. Fully exploiting these data, however, requires kinetic models capable of unveiling governing regulatory functions. Here, we introduce an analytical framework dynamo (https://github.com/aristoteleo/dynamo-release), which infers absolute RNA velocity, reconstructs continuous vector fields that predict cell fates, employs differential geometry to extract underlying regulations, and ultimately predicts optimal reprogramming paths and perturbation outcomes. We highlight dynamo's power to overcome fundamental limitations of conventional splicing-based RNA velocity analyses to enable accurate velocity estimations on a metabolically labeled human hematopoiesis scRNA-seq dataset. Furthermore, differential geometry analyses reveal mechanisms driving early megakaryocyte appearance and elucidate asymmetrical regulation within the PU.1-GATA1 circuit. Leveraging the least-action-path method, dynamo accurately predicts drivers of numerous hematopoietic transitions. Finally, in silico perturbations predict cell-fate diversions induced by gene perturbations. Dynamo, thus, represents an important step in advancing quantitative and predictive theories of cell-state transitions.


Assuntos
Análise de Célula Única , Transcriptoma/genética , Algoritmos , Feminino , Regulação da Expressão Gênica , Células HL-60 , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Cinética , Modelos Biológicos , RNA Mensageiro/metabolismo , Coloração e Rotulagem
5.
Cell ; 181(2): 236-249, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32302568

RESUMO

Crucial transitions in cancer-including tumor initiation, local expansion, metastasis, and therapeutic resistance-involve complex interactions between cells within the dynamic tumor ecosystem. Transformative single-cell genomics technologies and spatial multiplex in situ methods now provide an opportunity to interrogate this complexity at unprecedented resolution. The Human Tumor Atlas Network (HTAN), part of the National Cancer Institute (NCI) Cancer Moonshot Initiative, will establish a clinical, experimental, computational, and organizational framework to generate informative and accessible three-dimensional atlases of cancer transitions for a diverse set of tumor types. This effort complements both ongoing efforts to map healthy organs and previous large-scale cancer genomics approaches focused on bulk sequencing at a single point in time. Generating single-cell, multiparametric, longitudinal atlases and integrating them with clinical outcomes should help identify novel predictive biomarkers and features as well as therapeutically relevant cell types, cell states, and cellular interactions across transitions. The resulting tumor atlases should have a profound impact on our understanding of cancer biology and have the potential to improve cancer detection, prevention, and therapeutic discovery for better precision-medicine treatments of cancer patients and those at risk for cancer.


Assuntos
Transformação Celular Neoplásica/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral/fisiologia , Atlas como Assunto , Transformação Celular Neoplásica/patologia , Genômica/métodos , Humanos , Medicina de Precisão/métodos , Análise de Célula Única/métodos
6.
Annu Rev Biochem ; 87: 351-390, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29195049

RESUMO

In this review, we describe speculative ideas and early stage research concerning the flow of genetic information from the nuclear residence of genes to the disparate, cytoplasmic sites of protein synthesis. We propose that this process of information transfer is meticulously guided by transient structures formed from protein segments of low sequence complexity/intrinsic disorder. These low complexity domains are ubiquitously associated with regulatory proteins that control gene expression and RNA biogenesis, but they are also found in the central channel of nuclear pores, the nexus points of intermediate filament assembly, and the locations of action of other well-studied cellular proteins and pathways. Upon being organized into localized cellular positions via mechanisms utilizing properly folded protein domains, thereby facilitating elevated local concentration, certain low complexity domains adopt cross-ß interactions that are both structurally specific and labile to disassembly. These weakly tethered assemblies, we propose, are built to relay the passage of genetic information from one site to another within a cell, ensuring that the process is of extreme fidelity.


Assuntos
Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Modelos Biológicos , Animais , Grânulos Citoplasmáticos/genética , Grânulos Citoplasmáticos/metabolismo , Expressão Gênica , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Transtornos Heredodegenerativos do Sistema Nervoso/metabolismo , Humanos , Hidrogéis , Proteínas Intrinsicamente Desordenadas/química , Modelos Moleculares , Mutação , Domínios e Motivos de Interação entre Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína FUS de Ligação a RNA/química , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo
7.
Cell ; 171(2): 414-426.e12, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28985564

RESUMO

Prokaryotic cells possess CRISPR-mediated adaptive immune systems that protect them from foreign genetic elements, such as invading viruses. A central element of this immune system is an RNA-guided surveillance complex capable of targeting non-self DNA or RNA for degradation in a sequence- and site-specific manner analogous to RNA interference. Although the complexes display considerable diversity in their composition and architecture, many basic mechanisms underlying target recognition and cleavage are highly conserved. Using cryoelectron microscopy (cryo-EM), we show that the binding of target double-stranded DNA (dsDNA) to a type I-F CRISPR system yersinia (Csy) surveillance complex leads to large quaternary and tertiary structural changes in the complex that are likely necessary in the pathway leading to target dsDNA degradation by a trans-acting helicase-nuclease. Comparison of the structure of the surveillance complex before and after dsDNA binding, or in complex with three virally encoded anti-CRISPR suppressors that inhibit dsDNA binding, reveals mechanistic details underlying target recognition and inhibition.


Assuntos
Proteínas de Bactérias/química , Proteínas Associadas a CRISPR/química , Sistemas CRISPR-Cas , Microscopia Crioeletrônica , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/imunologia , Bacteriófagos/genética , Bacteriófagos/imunologia , Proteínas Associadas a CRISPR/imunologia , Proteínas Associadas a CRISPR/ultraestrutura , DNA Viral/química , Modelos Químicos , Modelos Moleculares , Complexos Multiproteicos/química , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/ultraestrutura
8.
Cell ; 171(1): 148-162.e19, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28938114

RESUMO

Approximately 30%-40% of global CO2 fixation occurs inside a non-membrane-bound organelle called the pyrenoid, which is found within the chloroplasts of most eukaryotic algae. The pyrenoid matrix is densely packed with the CO2-fixing enzyme Rubisco and is thought to be a crystalline or amorphous solid. Here, we show that the pyrenoid matrix of the unicellular alga Chlamydomonas reinhardtii is not crystalline but behaves as a liquid that dissolves and condenses during cell division. Furthermore, we show that new pyrenoids are formed both by fission and de novo assembly. Our modeling predicts the existence of a "magic number" effect associated with special, highly stable heterocomplexes that influences phase separation in liquid-like organelles. This view of the pyrenoid matrix as a phase-separated compartment provides a paradigm for understanding its structure, biogenesis, and regulation. More broadly, our findings expand our understanding of the principles that govern the architecture and inheritance of liquid-like organelles.


Assuntos
Chlamydomonas reinhardtii/citologia , Cloroplastos/ultraestrutura , Proteínas de Algas/metabolismo , Dióxido de Carbono/metabolismo , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/química , Cloroplastos/metabolismo , Microscopia Crioeletrônica , Biogênese de Organelas , Ribulose-Bifosfato Carboxilase/metabolismo
9.
Mol Cell ; 83(6): 974-993.e15, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36931259

RESUMO

14-3-3 proteins are highly conserved regulatory proteins that interact with hundreds of structurally diverse clients and act as central hubs of signaling networks. However, how 14-3-3 paralogs differ in specificity and how they regulate client protein function are not known for most clients. Here, we map the interactomes of all human 14-3-3 paralogs and systematically characterize the effect of disrupting these interactions on client localization. The loss of 14-3-3 binding leads to the coalescence of a large fraction of clients into discrete foci in a client-specific manner, suggesting a central chaperone-like function for 14-3-3 proteins. Congruently, the engraftment of 14-3-3 binding motifs to nonclients can suppress their aggregation or phase separation. Finally, we show that 14-3-3s negatively regulate the localization of the RNA-binding protein SAMD4A to cytoplasmic granules and inhibit its activity as a translational repressor. Our work suggests that 14-3-3s have a more prominent role as chaperone-like molecules than previously thought.


Assuntos
Proteínas 14-3-3 , Proteínas de Choque Térmico HSP90 , Humanos , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/metabolismo , Ligação Proteica
10.
Proc Natl Acad Sci U S A ; 121(25): e2311865121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38861610

RESUMO

We experience a life that is full of ups and downs. The ability to bounce back after adverse life events such as the loss of a loved one or serious illness declines with age, and such isolated events can even trigger accelerated aging. How humans respond to common day-to-day perturbations is less clear. Here, we infer the aging status from smartphone behavior by using a decision tree regression model trained to accurately estimate the chronological age based on the dynamics of touchscreen interactions. Individuals (N = 280, 21 to 87 y of age) expressed smartphone behavior that appeared younger on certain days and older on other days through the observation period that lasted up to ~4 y. We captured the essence of these fluctuations by leveraging the mathematical concept of critical transitions and tipping points in complex systems. In most individuals, we find one or more alternative stable aging states separated by tipping points. The older the individual, the lower the resilience to forces that push the behavior across the tipping point into an older state. Traditional accounts of aging based on sparse longitudinal data spanning decades suggest a gradual behavioral decline with age. Taken together with our current results, we propose that the gradual age-related changes are interleaved with more complex dynamics at shorter timescales where the same individual may navigate distinct behavioral aging states from one day to the next. Real-world behavioral data modeled as a complex system can transform how we view and study aging.


Assuntos
Envelhecimento , Smartphone , Humanos , Idoso , Pessoa de Meia-Idade , Masculino , Adulto , Feminino , Envelhecimento/fisiologia , Idoso de 80 Anos ou mais , Adulto Jovem , Resiliência Psicológica
11.
Proc Natl Acad Sci U S A ; 121(12): e2312207121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38466852

RESUMO

Over the last 12,000 y, human populations have expanded and transformed critical earth systems. Yet, a key unresolved question in the environmental and social sciences remains: Why did human populations grow and, sometimes, decline in the first place? Our research builds on 20 y of archaeological research studying the deep time dynamics of human populations to propose an explanation for the long-term growth and stability of human populations. Innovations in the productive capacity of populations fuels exponential-like growth over thousands of years; however, innovations saturate over time and, often, may leave populations vulnerable to large recessions in their well-being and population density. Empirically, we find a trade-off between changes in land use that increase the production and consumption of carbohydrates, driving repeated waves of population growth over thousands of years, and the susceptibility of populations to large recessions due to a lag in the impact of humans on resources. These results shed light on the long-term drivers of human population growth and decline.


Assuntos
Crescimento Demográfico , Ciências Sociais , Humanos , Densidade Demográfica , Arqueologia , Dinâmica Populacional
12.
Proc Natl Acad Sci U S A ; 121(3): e2311486121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38207078

RESUMO

The ability to control the properties of twisted bilayer transition metal dichalcogenides in situ makes them an ideal platform for investigating the interplay of strong correlations and geometric frustration. Of particular interest are the low energy scales, which make it possible to experimentally access both temperature and magnetic fields that are of the order of the bandwidth or the correlation scale. In this manuscript, we analyze the moiré Hubbard model, believed to describe the low energy physics of an important subclass of the twisted bilayer compounds. We establish its magnetic and the metal-insulator phase diagram for the full range of magnetic fields up to the fully spin-polarized state. We find a rich phase diagram including fully and partially polarized insulating and metallic phases of which we determine the interplay of magnetic order, Zeeman-field, and metallicity, and make connection to recent experiments.

13.
Proc Natl Acad Sci U S A ; 121(27): e2318605121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38913885

RESUMO

Significant progress reconciling economic activities with a stable climate requires radical and rapid technological change in multiple sectors. Here, we study the case of the automotive industry's transition to electric vehicles, which involved choosing between two different technologies: fuel cell electric vehicles (FCEVs) or battery electric vehicles (BEVs). We know very little about the role that such technological uncertainty plays in shaping the strategies of firms, the efficacy of technological and climate policies, and the speed of technological transitions. Here, we explain that the choice between these two technologies posed a global and multisectoral coordination game, due to technological complementarities and the global organization of the industry's markets and supply chains. We use data on patents, supply-chain relationships, and national policies to document historical trends and industry dynamics for these two technologies. While the industry initially focused on FCEVs, around 2008, the technological paradigm shifted to BEVs. National-level policies had a limited ability to coordinate global players around a type of clean car technology. Instead, exogenous innovation spillovers from outside the automotive sector played a critical role in solving this coordination game in favor of BEVs. Our results suggest that global and cross-sectoral technology policies may be needed to accelerate low-carbon technological change in other sectors, such as shipping or aviation. This enriches the existing theoretical paradigm, which ignores the scale of interdependencies between technologies and firms.

14.
Proc Natl Acad Sci U S A ; 121(34): e2408313121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39150781

RESUMO

RNA's diversity of structures and functions impacts all life forms since primordia. We use calorimetric force spectroscopy to investigate RNA folding landscapes in previously unexplored low-temperature conditions. We find that Watson-Crick RNA hairpins, the most basic secondary structure elements, undergo a glass-like transition below [Formula: see text]C where the heat capacity abruptly changes and the RNA folds into a diversity of misfolded structures. We hypothesize that an altered RNA biochemistry, determined by sequence-independent ribose-water interactions, outweighs sequence-dependent base pairing. The ubiquitous ribose-water interactions lead to universal RNA phase transitions below TG, such as maximum stability at [Formula: see text]C where water density is maximum, and cold denaturation at [Formula: see text]C. RNA cold biochemistry may have a profound impact on RNA function and evolution.


Assuntos
Temperatura Baixa , Conformação de Ácido Nucleico , Transição de Fase , RNA , RNA/química , Dobramento de RNA , Pareamento de Bases , Estabilidade de RNA , Termodinâmica , Água/química
15.
Proc Natl Acad Sci U S A ; 121(33): e2402129121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39106309

RESUMO

We study the coupled charge density wave (CDW) and insulator-to-metal transitions in the 2D quantum material 1T-TaS2. By applying in situ cryogenic 4D scanning transmission electron microscopy with in situ electrical resistance measurements, we directly visualize the CDW transition and establish that the transition is mediated by basal dislocations (stacking solitons). We find that dislocations can both nucleate and pin the transition and locally alter the transition temperature Tc by nearly ~75 K. This finding was enabled by the application of unsupervised machine learning to cluster five-dimensional, terabyte scale datasets, which demonstrate a one-to-one correlation between resistance-a global property-and local CDW domain-dislocation dynamics, thereby linking the material microstructure to device properties. This work represents a major step toward defect-engineering of quantum materials, which will become increasingly important as we aim to utilize such materials in real devices.

16.
Genes Dev ; 33(21-22): 1457-1459, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676733

RESUMO

The Hippo pathway is an evolutionarily conserved kinase cascade that is fundamental for tissue development, homeostasis, and regeneration. In the developing mammalian heart, Hippo signaling regulates cardiomyocyte numbers and organ size. While cardiomyocytes in the adult heart are largely postmitotic, Hippo deficiency can increase proliferation of these cells and affect cardiac regenerative capacity. Recent studies have also shown that resident cardiac fibroblasts play a critical role in disease responsiveness and healing, and in this issue of Genes and Development, Xiao and colleagues (pp. 1491-1505) demonstrate that Hippo signaling also integrates the activity of fibroblasts in the heart. They show that Hippo signaling normally maintains the cardiac fibroblast in a resting state and, conversely, its inactivation during disease-related stress results in a spontaneous transition toward a myofibroblast state that underlies fibrosis and ventricular remodeling. This phenotypic switch is associated with increased cytokine signaling that promotes nonautonomous resident fibroblast and myeloid cell activation.


Assuntos
Negociação , Proteínas Serina-Treonina Quinases , Animais , Proliferação de Células , Fibroblastos , Fibrose , Miócitos Cardíacos
17.
Genes Dev ; 33(21-22): 1491-1505, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31558567

RESUMO

Cardiac fibroblasts (CFs) respond to injury by transitioning through multiple cell states, including resting CFs, activated CFs, and myofibroblasts. We report here that Hippo signaling cell-autonomously regulates CF fate transitions and proliferation, and non-cell-autonomously regulates both myeloid and CF activation in the heart. Conditional deletion of Hippo pathway kinases, Lats1 and Lats2, in uninjured CFs initiated a self-perpetuating fibrotic response in the adult heart that was exacerbated by myocardial infarction (MI). Single cell transcriptomics showed that uninjured Lats1/2 mutant CFs spontaneously transitioned to a myofibroblast cell state. Through gene regulatory network reconstruction, we found that Hippo-deficient myofibroblasts deployed a network of transcriptional regulators of endoplasmic reticulum (ER) stress, and the unfolded protein response (UPR) consistent with elevated secretory activity. We observed an expansion of myeloid cell heterogeneity in uninjured Lats1/2 CKO hearts with similarity to cells recovered from control hearts post-MI. Integrated genome-wide analysis of Yap chromatin occupancy revealed that Yap directly activates myofibroblast cell identity genes, the proto-oncogene Myc, and an array of genes encoding pro-inflammatory factors through enhancer-promoter looping. Our data indicate that Lats1/2 maintain the resting CF cell state through restricting the Yap-induced injury response.


Assuntos
Fibroblastos/citologia , Fibrose/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Fibroblastos/patologia , Fibrose/fisiopatologia , Deleção de Genes , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/fisiopatologia , Proteínas de Sinalização YAP
18.
Trends Biochem Sci ; 47(10): 814-818, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35644775

RESUMO

The process of starting a laboratory varies between institutions. However, there are universal tasks all investigators will need to address when launching their laboratories. In this piece, we provide a brief summary of considerations for incoming group leaders to centralize this information for the scientific community.


Assuntos
Laboratórios , Pesquisadores , Humanos
19.
Annu Rev Microbiol ; 75: 337-357, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34351793

RESUMO

Since the emergence of the first fungi some 700 million years ago, unicellular yeast-like forms have emerged multiple times in independent lineages via convergent evolution. While tens to hundreds of millions of years separate the independent evolution of these unicellular organisms, they share remarkable phenotypic and metabolic similarities, and all have streamlined genomes. Yeasts occur in every aquatic environment yet examined. Many species are aquatic; perhaps most are amphibious. How these species have evolved to thrive in aquatic habitats is fundamental to understanding functions and evolutionary mechanisms in this unique group of fungi. Here we review the state of knowledge of the physiological and ecological diversity of amphibious yeasts and their key evolutionary adaptations enabling survival in aquatic habitats. We emphasize some genera previously thought to be exclusively terrestrial. Finally, we discuss the ability of many yeasts to survive in extreme habitats and how this might lend insight into ecological plasticity, including amphibious lifestyles.


Assuntos
Evolução Biológica , Ecossistema , Adaptação Fisiológica , Fungos/genética
20.
Proc Natl Acad Sci U S A ; 120(47): e2206197120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37956273

RESUMO

The current mobility system relies heavily on privately owned cars, which results in high levels of emissions, material use, and use of scarce public space. Carsharing is a mobility innovation offering consumers on-demand, short-term access to cars. By changing consumption patterns and reducing car ownership, carsharing has great potential to contribute to a sustainability transition of the mobility system. Even so, carsharing only satisfies a small portion of today's mobility needs and has difficulties becoming mainstream. This study investigates the upscaling trajectory of carsharing in the Netherlands. We structure the analysis along the lines of the multilevel perspective and include economic, technological, sociocultural, and policy factors that shape carsharing growth. The results demonstrate how car ownership is entrenched in the social and economic fabric, and the specific barriers this poses to carsharing. Moreover, we find some forms of carsharing risk extending private car ownership rather than challenging it. The environmental outcomes of carsharing are not predetermined but depend on the trajectories key actors take during upscaling. Our analysis highlights the importance of studying innovations in the context of the consumption-production systems in which they emerge.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA