Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 654: 94-101, 2023 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-36898229

RESUMO

The human cytomegalovirus (HCMV)-encoded US12 gene family is a group of ten predicted seven-transmembrane domain proteins that are structurally similar to G-protein-coupled receptors or transmembrane Bax inhibitor-1 motif-containing proteins; however, the roles of US12 family proteins in virus-host interactions remain to be discovered. Here, we suggest a new function of the US12 protein in regulating cellular autophagy. US12 is predominantly located to the lysosome and interacts with the lysosomal membrane protein 2 (LAMP2). A liquid chromatography-mass spectrometry (MS)/MS-based targeted proteomics analysis shows that US12 is tightly correlated with autophagy. US12 induces autophagy via upregulating ULK1 phosphorylation and subsequent LC3-II conversion, thereby accelerating autophagic flux. Moreover, HeLa cells overexpressing US12 displays intense LC3-specific staining and autolysosome formation even under nutrient-sufficient conditions. Furthermore, the physical interaction of p62/SQSTM1 with US12 is involved in the resistance to the degradation of p62/SQSTM1 by autophagy, despite the induction of both autolysosome formation and autophagic flux. Although the effect of US12 expression in HCMV infection on autophagy remains undetermined, these findings provide new insights into the viral drivers of host autophagy during HCMV evolution and pathogenesis.


Assuntos
Citomegalovirus , Proteínas Virais , Humanos , Citomegalovirus/genética , Proteínas Virais/metabolismo , Células HeLa , Proteína Sequestossoma-1/metabolismo , Proteínas de Membrana/metabolismo , Autofagia/genética
2.
Proc Natl Acad Sci U S A ; 115(52): E12370-E12377, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30530673

RESUMO

The human cytomegalovirus (HCMV) US12 gene family comprises a set of 10 contiguous genes (US12 to US21) with emerging roles in the regulation of virus cell tropism, virion composition, and immunoevasion. Of all of the US12 gene products, pUS21 shows the highest level of identity with two cellular transmembrane BAX inhibitor motif-containing (TMBIM) proteins: Bax inhibitor-1 and Golgi anti-apoptotic protein, both of which are involved in the regulation of cellular Ca2+ homeostasis and adaptive cell responses to stress conditions. Here, we report the US21 protein to be a viral-encoded ion channel that regulates intracellular Ca2+ homeostasis and protects cells against apoptosis. Indeed, we show pUS21 to be a 7TMD protein expressed with late kinetics that accumulates in ER-derived vesicles. Deletion or inactivation of the US21 gene resulted in reduced HCMV growth, even in fibroblasts, due to reduced gene expression. Ratiometric fluorescence imaging assays revealed that expression of pUS21 reduces the Ca2+ content of intracellular ER stores. An increase in cell resistance to intrinsic apoptosis was then observed as an important cytobiological consequence of the pUS21-mediated alteration of intracellular Ca2+ homeostasis. Moreover, a single point mutation in the putative pore of pUS21 impaired the reduction of ER Ca2+ concentration and attenuated the antiapoptotic activity of pUS21wt, supporting a functional link with its ability to manipulate Ca2+ homeostasis. Together, these results suggest pUS21 of HCMV constitutes a TMBIM-derived viroporin that may contribute to HCMV's overall strategy to counteract apoptosis in infected cells.


Assuntos
Canais de Cálcio/metabolismo , Citomegalovirus/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo , Sequência de Aminoácidos , Apoptose/fisiologia , Cálcio/metabolismo , Linhagem Celular , Citomegalovirus/fisiologia , Citoplasma/metabolismo , Homeostase/fisiologia , Humanos , Transporte de Íons/fisiologia , Proteínas de Membrana/metabolismo , Porinas/metabolismo , Substâncias Protetoras/metabolismo , Alinhamento de Sequência/métodos , Proteínas Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Vírion/metabolismo , Replicação Viral/genética
3.
J Virol ; 91(11)2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28331097

RESUMO

The human cytomegalovirus (HCMV) US12 gene family encodes a group of predicted seven-transmembrane proteins whose functions have yet to be established. While inactivation of individual US12 members in laboratory strains of HCMV does not affect viral replication in fibroblasts, disruption of the US16 gene in the low-passage-number TR strain prevents viral growth in endothelial and epithelial cells. In these cells, the US16-null viruses fail to express immediate early (IE), early (E), and late (L) viral proteins due to a defect which occurs prior to IE gene expression. Here, we show that this defective phenotype is a direct consequence of deficiencies in the entry of US16-null viruses in these cell types due to an impact on the gH/gL/UL128/UL130/UL131A (pentamer) complex. Indeed, viral particles released from fibroblasts infected with US16-null viruses were defective for the pentamer, thus preventing entry during infections of endothelial and epithelial cells. A link between pUS16 and the pentamer was further supported by the colocalization of pUS16 and pentamer proteins within the cytoplasmic viral assembly compartment (cVAC) of infected fibroblasts. Deletion of the C-terminal tail of pUS16 reproduced the defective growth phenotype and alteration of virion composition as US16-null viruses. However, the pentamer assembly and trafficking to the cVAC were not affected by the lack of the C terminus of pUS16. Coimmunoprecipitation results then indicated that US16 interacts with pUL130 but not with the mature pentamer or gH/gL/gO. Together, these results suggest that pUS16 contributes to the tropism of HCMV by influencing the content of the pentamer into virions.IMPORTANCE Human cytomegalovirus (HCMV) is major pathogen in newborns and immunocompromised individuals. A hallmark of HCMV pathogenesis is its ability to productively replicate in an exceptionally broad range of target cells. The virus infects a variety of cell types by exploiting different forms of the envelope glycoprotein gH/gL hetero-oligomers, which allow entry into many cell types through different pathways. For example, incorporation of the pentameric gH/gL/UL128/UL130/UL131A complex into virions is a prerequisite for infection of endothelial and epithelial cells. Here, we show that the absence of US16, a thus far uncharacterized HCMV multitransmembrane protein, abrogates virus entry into endothelial and epithelial cells and that this defect is due to the lack of adequate amounts of the pentameric complex in extracellular viral particles. Our study suggests pUS16 as a novel viral regulatory protein important for shaping virion composition in a manner that influences HCMV cell tropism.


Assuntos
Citomegalovirus/fisiologia , Células Endoteliais/virologia , Células Epiteliais/virologia , Glicoproteínas de Membrana/fisiologia , Proteínas do Envelope Viral/metabolismo , Proteínas Virais/fisiologia , Vírion/metabolismo , Internalização do Vírus , Linhagem Celular , Citomegalovirus/química , Citomegalovirus/genética , Citomegalovirus/crescimento & desenvolvimento , Citoplasma/metabolismo , Citoplasma/virologia , Fibroblastos/virologia , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Mutação , Proteínas do Envelope Viral/genética , Proteínas Virais/genética , Tropismo Viral , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA