Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.883
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 184(16): 4268-4283.e20, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34233163

RESUMO

Ultraviolet (UV) light and incompletely understood genetic and epigenetic variations determine skin color. Here we describe an UV- and microphthalmia-associated transcription factor (MITF)-independent mechanism of skin pigmentation. Targeting the mitochondrial redox-regulating enzyme nicotinamide nucleotide transhydrogenase (NNT) resulted in cellular redox changes that affect tyrosinase degradation. These changes regulate melanosome maturation and, consequently, eumelanin levels and pigmentation. Topical application of small-molecule inhibitors yielded skin darkening in human skin, and mice with decreased NNT function displayed increased pigmentation. Additionally, genetic modification of NNT in zebrafish alters melanocytic pigmentation. Analysis of four diverse human cohorts revealed significant associations of skin color, tanning, and sun protection use with various single-nucleotide polymorphisms within NNT. NNT levels were independent of UVB irradiation and redox modulation. Individuals with postinflammatory hyperpigmentation or lentigines displayed decreased skin NNT levels, suggesting an NNT-driven, redox-dependent pigmentation mechanism that can be targeted with NNT-modifying topical drugs for medical and cosmetic purposes.


Assuntos
Fator de Transcrição Associado à Microftalmia/metabolismo , NADP Trans-Hidrogenases/metabolismo , Pigmentação da Pele/efeitos da radiação , Raios Ultravioleta , Animais , Linhagem Celular , Estudos de Coortes , AMP Cíclico/metabolismo , Dano ao DNA , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Predisposição Genética para Doença , Humanos , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Melanossomas/efeitos dos fármacos , Melanossomas/metabolismo , Melanossomas/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , NADP Trans-Hidrogenases/antagonistas & inibidores , Oxirredução/efeitos dos fármacos , Oxirredução/efeitos da radiação , Polimorfismo de Nucleotídeo Único/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Proteólise/efeitos da radiação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pigmentação da Pele/efeitos dos fármacos , Pigmentação da Pele/genética , Ubiquitina/metabolismo , Peixe-Zebra
2.
Physiol Rev ; 103(3): 1789-1826, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36787480

RESUMO

Solar ultraviolet-B (UV-B) radiation has played a crucial role in the evolution of life on Earth, and potential changes in its levels could affect the health and functionality of humans and the ecosystems. UV exposure presents both risks and benefits to humans. However, optimal UV-B radiation exposure depends on several environmental and physiological factors and cannot be easily determined. The present document provides a review of the current state of knowledge relative to the effects of UV-B radiation on human health. A brief description of the physical mechanisms that control the levels of solar UV-B radiation at the Earth's surface is provided, with special emphasis on the role of ozone and the importance of the Montreal Protocol. A comprehensive review of studies reporting current trends in levels of surface solar UV-B radiation and projections of future levels reveals the dominant role of climatic changes in the long-term variability of UV-B radiation and its impact on the development of melanomas as well as eye disorders. The review provides strong evidence that despite the success of the Montreal Protocol and the expected ozone recovery, the future evolution of the levels of solar UV-B radiation at the Earth's surface is not certain.


Assuntos
Ecossistema , Ozônio , Humanos , Raios Ultravioleta/efeitos adversos , Doses de Radiação
3.
Mol Cell ; 72(3): 444-456.e7, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30401431

RESUMO

Skin sun exposure induces two protection programs: stress responses and pigmentation, the former within minutes and the latter only hours afterward. Although serving the same physiological purpose, it is not known whether and how these programs are coordinated. Here, we report that UVB exposure every other day induces significantly more skin pigmentation than the higher frequency of daily exposure, without an associated increase in stress responses. Using mathematical modeling and empirical studies, we show that the melanocyte master regulator, MITF, serves to synchronize stress responses and pigmentation and, furthermore, functions as a UV-protection timer via damped oscillatory dynamics, thereby conferring a trade-off between the two programs. MITF oscillations are controlled by multiple negative regulatory loops, one at the transcriptional level involving HIF1α and another post-transcriptional loop involving microRNA-148a. These findings support trait linkage between the two skin protection programs, which, we speculate, arose during furless skin evolution to minimize skin damage.


Assuntos
Fator de Transcrição Associado à Microftalmia/metabolismo , Pele/metabolismo , Pele/efeitos da radiação , Animais , Linhagem Celular , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Masculino , Melanócitos/fisiologia , Melanócitos/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/fisiologia , Fator de Transcrição Associado à Microftalmia/efeitos da radiação , Cultura Primária de Células , Pigmentação da Pele/efeitos da radiação , Raios Ultravioleta/efeitos adversos
4.
Genes Dev ; 32(19-20): 1332-1343, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30254107

RESUMO

Plants have evolved complex photoreceptor-controlled mechanisms to sense and respond to seasonal changes in day length. This ability allows plants to optimally time the transition from vegetative growth to flowering. UV-B is an important part intrinsic to sunlight; however, whether and how it affects photoperiodic flowering has remained elusive. Here, we report that, in the presence of UV-B, genetic mutation of REPRESSOR OF UV-B PHOTOMORPHOGENESIS 2 (RUP2) renders the facultative long day plant Arabidopsis thaliana a day-neutral plant and that this phenotype is dependent on the UV RESISTANCE LOCUS 8 (UVR8) UV-B photoreceptor. We provide evidence that the floral repression activity of RUP2 involves direct interaction with CONSTANS, repression of this key activator of flowering, and suppression of FLOWERING LOCUS T transcription. RUP2 therefore functions as an essential repressor of UVR8-mediated induction of flowering under noninductive short day conditions and thus provides a crucial mechanism of photoperiodic flowering control.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Flores/crescimento & desenvolvimento , Fotoperíodo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Raios Ultravioleta
5.
Plant J ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133822

RESUMO

UV-B radiation can induce the accumulation of many secondary metabolites, including flavonoids, in plants to protect them from oxidative damage. BRI1-EMS-SUPPRESSOR1 (BES1) has been shown to mediate the biosynthesis of flavonoids in response to UV-B. However, the detailed mechanism by which it acts still needs to be further elucidated. Here, we revealed that UV-B significantly inhibited the transcription of multiple transcription factor genes in tobacco, including NtMYB27, which was subsequently shown to be a repressor of flavonoids synthesis in tobacco. We further demonstrated that NtBES1 directly binds to the E-box motifs present in the promoter of NtMYB27 to mediate its transcriptional repression upon UV-B exposure. The UV-B-repressed NtMYB27 could bind to the ACCT-containing element (ACE) in the promoters of Nt4CL and NtCHS and served as a modulator that promoted the biosynthesis of lignin and chlorogenic acid (CGA) but inhibited the accumulation of flavonoids in tobacco. The expression of NtMYB27 was also significantly repressed by heat stress, suggesting its putative roles in regulating heat-induced flavonoids accumulation. Taken together, our results revealed the role of NtBES1 and NtMYB27 in regulating the synthesis of flavonoids during the plant response to UV-B radiation in tobacco.

6.
Plant J ; 120(1): 354-369, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39158506

RESUMO

C-glycosides are a predominant class of flavonoids that demonstrate diverse medical properties and plant physiological functions. The chemical stability, structural diversity, and differential aboveground distribution of these compounds in plants make them ideal protectants. However, little is known about the transcriptional regulatory mechanisms that play these diverse roles in plant physiology. In this study, chard was selected from 69 families for its significantly different flavonoid C-glycosides distributions between the aboveground and underground parts to investigate the role and regulatory mechanism of flavonoid C-glycosides in plants. Our results indicate that flavonoid C-glycosides are affected by various stressors, especially UV-B. Through cloning and validation of key biosynthetic genes of flavonoid C-glycosides in chard (BvCGT1), we observed significant effects induced by UV-B radiation. This finding was further confirmed by resistance testing in BvCGT1 silenced chard lines and in Arabidopsis plants with BvCGT1 overexpression. Yeast one-hybrid and dual-luciferase assays were employed to determine the underlying regulatory mechanisms of BvCGT1 in withstanding UV-B stress. These results indicate a potential regulatory role of BvDof8 and BvDof13 in modulating flavonoid C-glycosides content, through their influence on BvCGT1. In conclusion, we have effectively demonstrated the regulation of BvCGT1 by BvDof8 and BvDof13, highlighting their crucial role in plant adaptation to UV-B radiation. Additionally, we have outlined a comprehensive transcriptional regulatory network involving BvDof8 and BvDof13 in response to UV-B radiation.


Assuntos
Arabidopsis , Flavonoides , Regulação da Expressão Gênica de Plantas , Glicosídeos , Raios Ultravioleta , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Flavonoides/metabolismo , Glicosídeos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Estresse Fisiológico , Glicosiltransferases/biossíntese , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Beta vulgaris/enzimologia , Beta vulgaris/genética
7.
Eur J Immunol ; : e2451020, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39288297

RESUMO

Ultraviolet (UV) irradiation of the skin causes mutations that can promote the development of melanoma and nonmelanoma skin cancer. High-dose UVB exposure triggers a vigorous skin reaction characterized by inflammation resulting in acute sunburn. This response includes the formation of sunburn cells and keratinocytes (KC) undergoing programmed cell death (apoptosis) when repair mechanisms of DNA damage are inadequate. The primary objective of this research was to clarify the involvement of Langerhans cells (LC) in the development of acute sunburn following intense UVB skin irradiation. To address this, we subjected the dorsal skin of mice to a single high-dose UVB exposure and analyzed the immediate immune response occurring within the skin tissue. Acute sunburn triggered an activation of LC, coinciding with a rapid influx of neutrophils that produced TNF-α. Furthermore, our investigation unveiled a marked increase in DNA-damaged KC and the subsequent induction of apoptosis in these cells. Importantly, we demonstrate a crucial link between the inflammatory cascade, the initiation of apoptosis in DNA-damaged KC, and the presence of LC in the skin. LC were observed to modulate the chemokine response in the skin following exposure to UVB, thereby affecting the trafficking of neutrophils. Skin lacking LC revealed diminished inflammation, contained fewer TNF-α-producing neutrophils, and due to the prevention of apoptosis induction, a lingering population of DNA-damaged KC, presumably carrying the risk of enduring genomic alterations. In summary, our results underscore the pivotal role of LC in preserving the homeostasis of UVB-irradiated skin. These findings contribute to a deeper understanding of the intricate mechanisms underlying acute sunburn responses and their implications for UV-induced skin cancer.

8.
J Cell Mol Med ; 28(4): e18124, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38332512

RESUMO

UVB radiation can lead to skin photodamage, which might arise from keratinocyte (KC) activation. Nuclear factor kappa B (NF-κB) assumes an essential function in the context of UVB-triggered skin photodamage. Initiating the NF-κB cascade leads to the release of inflammatory factors from KCs. Livin can modulate both KC activation and function, yet it remains uncertain whether and how Livin regulates KC activation induced by UVB. To explore the involvement of Livin in UVB-triggered skin photodamage and its impact on skin damage through NF-κB activation. Immunofluorescence staining was used to analyse the expression of Livin in individuals with skin photodamage and in mice treated with UVB radiation. KC-specific Livin knockout (LivinΔKC ) mice and HaCaT cells with Livin knockdown were employed to examine the function of Livin in regulating KC activation induced by UVB radiation. Additionally, the impact of Livin on the NF-κB cascade during KC activation was confirmed via western blot analysis. In patients with skin photodamage, UVB-treated mice and HaCaT cells, Livin expression was reduced in KCs. LivinΔKC mice displayed heightened sensitivity to UVB radiation, resulting in more pronounced skin damage and inflammatory responses compared to the control Livinfl/fl mice. Following UVB exposure, both LivinΔKC mice and Livin-knockdown HaCaT cells released elevated levels of cytokines compared to their respective controls. Moreover, the UVB-induced activation of NF-κB in HaCaT cells was significantly enhanced following Livin knockdown. Our findings propose that Livin within KCs could contribute to reducing UVB-induced skin photodamage by regulating the NF-κB pathway.


Assuntos
NF-kappa B , Pele , Animais , Humanos , Camundongos , Queratinócitos/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Pele/metabolismo , Raios Ultravioleta/efeitos adversos
9.
J Cell Mol Med ; 28(14): e18536, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39044341

RESUMO

Low-dose 5-aminolevulinic acid photodynamic therapy (ALA-PDT) has been used to cope with skin photoaging, and is thought to involve DNA damage repair responses. However, it is still unknown how low-dose ALA-PDT regulates DNA damage repair to curb skin photoaging. We established a photoaging model using human dermal fibroblasts (HDFs) and rat skin. RNA-sequencing (RNA-seq) analysis was conducted to identify differentially expressed genes (DEGs) in HDFs before and after low-dose ALA-PDT treatment, followed by bioinformatics analysis. Senescence-associated ß-galactosidase (SA-ß-gal) staining was employed to assess skin aging-related manifestations and Western blotting to evaluate the expression of associated proteins. A comet assay was used to detect cellular DNA damage, while immunofluorescence to examine the expression of 8-hydroxy-2'-deoxyguanosine (8-oxo-dG) in cells and skin tissues. In both in vivo and in vitro models, low-dose ALA-PDT alleviated the manifestations of ultraviolet B (UVB)-induced skin photoaging. Low-dose ALA-PDT significantly reduced DNA damage in photoaged HDFs. Furthermore, low-dose ALA-PDT accelerated the clearance of the photoproduct 8-oxo-dG in photoaged HDFs and superficial dermis of photoaged rat skin. RNA-seq analysis suggested that low-dose ALA-PDT upregulated the expression of key genes in the base excision repair (BER) pathway. Further functional validation showed that inhibition on BER expression by using UPF1069 significantly suppressed SA-ß-gal activity, G2/M phase ratio, expression of aging-associated proteins P16, P21, P53, and MUTYH proteins, as well as clearance of the photoproduct 8-oxo-dG in photoaged HDFs. Low-dose ALA-PDT exerts anti-photoaging effects by activating the BER signalling pathway.


Assuntos
Ácido Aminolevulínico , Dano ao DNA , Reparo do DNA , Fibroblastos , Fotoquimioterapia , Transdução de Sinais , Envelhecimento da Pele , Raios Ultravioleta , Ácido Aminolevulínico/farmacologia , Reparo do DNA/efeitos dos fármacos , Animais , Raios Ultravioleta/efeitos adversos , Humanos , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Transdução de Sinais/efeitos dos fármacos , Fotoquimioterapia/métodos , Ratos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Dano ao DNA/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/efeitos da radiação , Pele/patologia , Masculino , Fármacos Fotossensibilizantes/farmacologia , 8-Hidroxi-2'-Desoxiguanosina/metabolismo
10.
Dev Biol ; 503: 83-94, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37619713

RESUMO

Within the chordates, only some colonial ascidians experience whole body regeneration (WBR), where amputated small colonial fragments containing blood-vessels have the capability to regenerate the entire functional adult zooid within 1-3 weeks. Studying WBR in small colonial fragments taken at different blastogenic stages (the weekly developmental process characteristic to botryllid ascidians) from the ascidian Botrylloides leachii, about half of the fragments were able to complete regeneration (cWBR) three weeks following separation, about half were still in uncomplete, running regeneration (rWBR), and only a small percentage died. cWBR significantly increased in fragments that originated from a late blastogenic stage compared to an early stage. Most B. leachii populations reside in shallow waters, under variable daily natural UV irradiation, and it is of interest to elucidate irradiation effects on development and regeneration. Here, we show that UV-B irradiation resulted in enhanced mortality, with abnormal morphological changes in surviving fragments, yet with non-significant cWBR vs. rWBRs. Further, UV-B irradiation influenced the proportion of blood cells (morula cells, hemoblasts) and of multinucleated cells, a new WBR-associated cell type. At 24-h post-amputation we observed enhanced expression of ß-catenin (a signaling pathway that plays indispensable roles in cell renewal and regeneration), H3 and PCNA in all cell types of non-irradiated as compared to irradiated fragments. These elevated levels were considerably reduced 9-days later. Since WBR is a highly complex phenomenon, the employment of specific experimental conditions, as UV-B irradiation, alongside blastogenesis (the weekly developmental process), elucidates undisclosed facets of this unique biological occurrence such as transient expression of signature genes.


Assuntos
Cordados , Gastrópodes , Urocordados , Animais , Amputação Cirúrgica , Corpo Celular
11.
J Biol Chem ; 299(7): 104895, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37290532

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is an enzyme that promotes the degradation of low-density lipoprotein receptors. It is involved in hyperlipidemia as well as other diseases, such as cancer and skin inflammation. However, the detailed mechanism for PCSK9 on ultraviolet B (UVB)-induced skin lesions was not clear. Thus, the role and possible action mechanism of PCSK9 in UVB-induced skin damage in mice were studied here using siRNA and a small molecule inhibitor (SBC110736) against PCSK9. Immunohistochemical staining revealed a significant increase in PCSK9 expression after UVB exposure, indicating the possible role of PCSK9 in UVB damage. Skin damage, increase in epidermal thickness, and keratinocyte hyperproliferation were significantly alleviated after treatment with SBC110736 or siRNA duplexes, compared with that in the UVB model group. Notably, UVB exposure triggered DNA damage in keratinocytes, whereas substantial interferon regulatory factor 3 (IRF3) activation was observed in macrophages. Pharmacologic inhibition of STING or cGAS knockout significantly reduced UVB-induced damage. In the co-culture system, supernatant from UVB-treated keratinocyte induced IRF3 activation in macrophages. This activation was inhibited with SBC110736 and by PCSK9 knockdown. Collectively, our findings reveal that PCSK9 plays a critical role in the crosstalk between damaged keratinocytes and STING activation in macrophages. The interruption of this crosstalk by PCSK9 inhibition may be a potential therapeutic strategy for UVB-induced skin damage.


Assuntos
Queratinócitos , Pró-Proteína Convertase 9 , Envelhecimento da Pele , Pele , Animais , Camundongos , Queratinócitos/enzimologia , Queratinócitos/efeitos da radiação , Macrófagos/metabolismo , Inibidores de PCSK9/farmacologia , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , RNA Interferente Pequeno/metabolismo , Pele/enzimologia , Pele/efeitos da radiação , Envelhecimento da Pele/efeitos dos fármacos , Raios Ultravioleta/efeitos adversos
12.
Plant J ; 113(3): 478-492, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36495441

RESUMO

COP1 is a critical repressor of plant photomorphogenesis in darkness. However, COP1 plays distinct roles in the photoreceptor UVR8 pathway in Arabidopsis thaliana. COP1 interacts with ultraviolet B (UV-B)-activated UVR8 monomers and promotes their retention and accumulation in the nucleus. Moreover, COP1 has a function in UV-B signaling, which involves the binding of its WD40 domain to UVR8 and HY5 via conserved Val-Pro (VP) motifs of these proteins. UV-B-activated UVR8 interacts with COP1 via both the core domain and the VP motif, leading to the displacement of HY5 from COP1 and HY5 stabilization. However, it remains unclear whether the function of COP1 in UV-B signaling is solely dependent on its VP motif binding capacity and whether UV-B regulates the subcellular localization of COP1. Based on published structures of the COP1 WD40 domain, we generated a COP1 variant with a single amino acid substitution, COP1C509S , which cannot bind to VP motifs but retains the ability to interact with the UVR8 core domain. UV-B only marginally increased nuclear YFP-COP1 levels and significantly promoted YFP-COP1 accumulation in the cytosol, but did not exert the same effects on YFP-COP1C509S . Thus, the full UVR8-COP1 interaction is important for COP1 accumulation in the cytosol. Notably, UV-B signaling including activation of HY5 transcription was obviously inhibited in the Arabidopsis lines expressing YFP-COP1C509S , which cannot bind VP motifs. We conclude that the full binding of UVR8 to COP1 leads to the predominant accumulation of COP1 in the cytosol and that COP1 has an additional function in UV-B signaling besides VP binding-mediated protein destabilization.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Transdução de Sinais , Ubiquitina-Proteína Ligases , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica de Plantas , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Raios Ultravioleta
13.
Plant J ; 115(5): 1394-1407, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37243898

RESUMO

Reductions in red to far-red ratio (R:FR) provide plants with an unambiguous signal of vegetational shade and are monitored by phytochrome photoreceptors. Plants integrate this information with other environmental cues to determine the proximity and density of encroaching vegetation. Shade-sensitive species respond to reductions in R:FR by initiating a suite of developmental adaptations termed shade avoidance. These include the elongation of stems to facilitate light foraging. Hypocotyl elongation is driven by increased auxin biosynthesis promoted by PHYTOCHROME INTERACTING FACTORs (PIF) 4, 5 and 7. UV-B perceived by the UV RESISTANCE LOCUS 8 (UVR8) photoreceptor rapidly inhibits shade avoidance, in part by suppressing PIF4/5 transcript accumulation and destabilising PIF4/5 protein. Here, we show that longer-term inhibition of shade avoidance is sustained by ELONGATED HYPOCOTYL 5 (HY5) and HY5 HOMOLOGUE (HYH), which regulate transcriptional reprogramming of genes involved in hormone signalling and cell wall modification. HY5 and HYH are elevated in UV-B and suppress the expression of XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE (XTH) genes involved in cell wall loosening. They additionally increase expression GA2-OXIDASE1 (GA2ox1) and GA2ox2, encoding gibberellin catabolism enzymes that act redundantly to stabilise the PIF-inhibiting DELLA proteins. UVR8 therefore regulates temporally distinct signalling pathways to first rapidly inhibit and subsequently maintain suppression of shade avoidance following UV-B exposure.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Transdução de Sinais/fisiologia , Plantas/metabolismo , Fitocromo/metabolismo , Hipocótilo/genética , Hipocótilo/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo
14.
Curr Issues Mol Biol ; 46(1): 513-526, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38248335

RESUMO

The process of skin aging is intricate, involving intrinsic aging, influenced by internal factors, and extrinsic aging, mainly caused by exposure to UV radiation, resulting in photoaging. Photoaging manifests as skin issues such as wrinkles and discoloration. The skin microbiome, a diverse community of microorganisms on the skin's surface, plays a crucial role in skin protection and can be affected by factors like humidity and pH. Probiotics, beneficial microorganisms, have been investigated for their potential to enhance skin health by regulating the skin microbiome. This can be accomplished through oral probiotics, impacting the gut-skin axis, or topical applications introducing live bacteria to the skin. Probiotics mitigate oxidative stress, suppress inflammation, and maintain the skin's extracellular matrix, ultimately averting skin aging. However, research on probiotics derived from human skin is limited, and there is no established product for preventing photoaging. The mechanism by which probiotics shield the skin microbiome and skin layers from UV radiation remains unclear. Recently, researchers have discovered Lactobacillus in the skin, with reports indicating a decrease in this microorganism with age. In a recent study, scientists isolated Lactobacillus iners KOLBM20 from the skin of individuals in their twenties and confirmed its effectiveness. A comparative analysis of genetic sequences revealed that strain KOLBM20 belongs to the Lactobacillus genus and closely relates to L. iners DSM13335(T) with a 99.20% similarity. Importantly, Lactobacillus iners KOLBM20 displayed anti-wrinkle properties by inhibiting MMP-1. This investigation demonstrated the inhibitory effect of KOLBM20 strain lysate on MMP-1 expression. Moreover, the data suggest that KOLBM20 strain lysate may prevent UVB-induced MMP-1 expression by inhibiting the activation of the ERK, JNK, and p38 signaling pathways induced by UVB. Consequently, KOLBM20 strain lysate holds promise as a potential therapeutic agent for preventing and treating skin photoaging.

15.
Curr Issues Mol Biol ; 46(3): 1924-1942, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38534742

RESUMO

Ultraviolet (UV) radiation plays a crucial role in the development of melanoma and non-melanoma skin cancers. The types of UV radiation are differentiated by wavelength: UVA (315 to 400 nm), UVB (280 to 320 nm), and UVC (100 to 280 nm). UV radiation can cause direct DNA damage in the forms of cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs). In addition, UV radiation can also cause DNA damage indirectly through photosensitization reactions caused by reactive oxygen species (ROS), which manifest as 8-hydroxy-2'-deoxyguanine (8-OHdG). Both direct and indirect DNA damage can lead to mutations in genes that promote the development of skin cancers. The development of melanoma is largely influenced by the signaling of the melanocortin one receptor (MC1R), which plays an essential role in the synthesis of melanin in the skin. UV-induced mutations in the BRAF and NRAS genes are also significant risk factors in melanoma development. UV radiation plays a significant role in basal cell carcinoma (BCC) development by causing mutations in the Hedgehog (Hh) pathway, which dysregulates cell proliferation and survival. UV radiation can also induce the development of squamous cell carcinoma via mutations in the TP53 gene and upregulation of MMPs in the stroma layer of the skin.

16.
EMBO J ; 39(2): e101928, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31777974

RESUMO

The UV-B photoreceptor UVR8 mediates multiple UV-B responses in plants, but the function of UVR8 in regulating root development has not previously been investigated. Here, we show that UV-B light inhibits Arabidopsis lateral root growth in a UVR8-dependent manner. Monomeric UVR8 inhibits auxin responses in a tissue-autonomous manner and thereby regulates lateral root growth. Genome-wide gene expression analysis demonstrated that auxin and UV-B irradiation antagonistically regulate auxin-regulated gene expression. We further show that UVR8 physically interacts with MYB73/MYB77 (MYB DOMAIN PROTEIN 73/77) in a UV-B-dependent manner. UVR8 inhibits lateral root development via regulation of MYB73/MYB77. When activated by UV-B light, UVR8 localizes to the nucleus and inhibits the DNA-binding activities of MYB73/MYB77 and directly represses the transcription of their target auxin-responsive genes. Our results demonstrate that UV-B light and UVR8 are critical for both shoot morphogenesis and root development. The UV-B-dependent interaction of UVR8 and MYB73/MYB77 serves as an important module that integrates light and auxin signaling and represents a new UVR8 signaling mechanism in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas Cromossômicas não Histona/metabolismo , Ácidos Indolacéticos/farmacologia , Organogênese Vegetal/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas Cromossômicas não Histona/genética , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos da radiação , Transdução de Sinais , Fatores de Transcrição/genética , Raios Ultravioleta
17.
New Phytol ; 242(2): 744-759, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38264772

RESUMO

Angiosperms, which inhabit diverse environments across all continents, exhibit significant variation in genome sizes, making them an excellent model system for examining hypotheses about the global distribution of genome size. These include the previously proposed large genome constraint, mutational hazard, polyploidy-mediated, and climate-mediated hypotheses. We compiled the largest genome size dataset to date, encompassing 16 017 (> 5% of known) angiosperm species, and analyzed genome size distribution using a comprehensive geographic distribution dataset for all angiosperms. We observed that angiosperms with large range sizes generally had small genomes, supporting the large genome constraint hypothesis. Climate was shown to exert a strong influence on genome size distribution along the global latitudinal gradient, while the frequency of polyploidy and the type of growth form had negligible effects. In contrast to the unimodal patterns along the global latitudinal gradient shown by plant size traits and polyploid proportions, the increase in angiosperm genome size from the equator to 40-50°N/S is probably mediated by different (mostly climatic) mechanisms than the decrease in genome sizes observed from 40 to 50°N northward. Our analysis suggests that the global distribution of genome sizes in angiosperms is mainly shaped by climatically mediated purifying selection, genetic drift, relaxed selection, and environmental filtering.


Assuntos
Magnoliopsida , Magnoliopsida/genética , Tamanho do Genoma , Genoma de Planta , Poliploidia , Plantas/genética , Filogenia
18.
Plant Cell Environ ; 47(5): 1769-1781, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38314642

RESUMO

Stomata play a pivotal role in regulating gas exchange between plants and the atmosphere controlling water and carbon cycles. Accordingly, we investigated the impact of ultraviolet-B radiation, a neglected environmental factor varying with ongoing global change, on stomatal morphology and function by a Comprehensive Meta-Analysis. The overall UV effect at the leaf level is to decrease stomatal conductance, stomatal aperture and stomatal size, although stomatal density was increased. The significant decline in stomatal conductance is marked (6% in trees and >10% in grasses and herbs) in short-term experiments, with more modest decreases noted in long-term UV studies. Short-term experiments in growth chambers are not representative of long-term field UV effects on stomatal conductance. Important consequences of altered stomatal function are hypothesized. In the short term, UV-mediated stomatal closure may reduce carbon uptake but also water loss through transpiration, thereby alleviating deleterious effects of drought. However, in the long term, complex changes in stomatal aperture, size, and density may reduce the carbon sequestration capacity of plants and increase vegetation and land surface temperatures, potentially exacerbating negative effects of drought and/or heatwaves. Therefore, the expected future strength of carbon sink capacity in high-UV regions is likely overestimated.


Assuntos
Estômatos de Plantas , Raios Ultravioleta , Estômatos de Plantas/fisiologia , Ecossistema , Folhas de Planta/fisiologia , Água/fisiologia , Plantas , Transpiração Vegetal/fisiologia
19.
J Exp Bot ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38525857

RESUMO

The photoreceptor UVR8 mediates many plant responses to UV-B and short wavelength UV-A light. UVR8 functions through interactions with other proteins which lead to extensive changes in gene expression. Interactions with particular proteins determine the nature of the response to UV-B. It is therefore important to understand the molecular basis of these interactions: how are different proteins able to bind to UVR8 and how is differential binding regulated? This concise review highlights recent developments in addressing these questions. Key advances are discussed with regard to: identification of proteins that interact with UVR8; the mechanism of UVR8 accumulation in the nucleus; the photoactivation of UVR8 monomer; the structural basis of interaction between UVR8 and CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) and REPRESSOR OF UV-B PHOTOMORPHOGENESIS (RUP) proteins; the role of UVR8 phosphorylation in modulating interactions and responses to UV-B. Nevertheless, much remains to be understood and the need to extend future research to the growing list of interactors is emphasised.

20.
Toxicol Appl Pharmacol ; 483: 116836, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38272316

RESUMO

Trilinolein (TL) is an active substance contained in traditional Chinese herbs; modern studies have shown that trilinolein has anti-inflammatory and antioxidant effects on the body. This study delves into the photoprotective effect of trilinolein on UVB-irradiated Human Skin Fibroblast (HSF) cells and the underlying mechanisms. Our findings reveal that trilinolein had a photoprotective effect on HSF cells: trilinolein enhanced cellular autophagy, restored UVB-inhibited cell proliferative viability, and curbing UVB-induced reactive oxygen species (ROS) and apoptosis. Intriguingly, after inhibition of TL-induced autophagy via wortmannin, diminished trilinolein's photoprotective effects. Meanwhile, trilinolein was shown to modulate the AMPK-mTOR signaling pathway, thus enhance cellular autophagy in HSF cells, and this tendency was suppressed after the administration of compound C (AMPK inhibitor). In a mouse model of skin photodamage, trilinolein significantly mitigated photodamage extent through morphological and histopathological analyses. This study illuminates trilinolein could inhibit the photodamaging effects of UVB irradiation by regulating cellular autophagy through the AMPK-mTOR signaling pathway, suggesting its promising application in combating UV-induced skin disorders.


Assuntos
Proteínas Quinases Ativadas por AMP , Transdução de Sinais , Triglicerídeos , Animais , Camundongos , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Apoptose , Espécies Reativas de Oxigênio/metabolismo , Autofagia , Raios Ultravioleta/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA