Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Clin Infect Dis ; 76(7): 1304-1310, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36358012

RESUMO

BACKGROUND: Bacille Calmette-Guérin (BCG) vaccination can potentially reduce the rate of respiratory infections in vulnerable populations. This study evaluates the safety and efficacy of VPM1002 (a genetically modified BCG) as prophylaxis against severe respiratory tract infections including coronavirus disease 2019 (COVID-19) in an elderly population. METHODS: In this phase 3, randomized, double-blind, placebo-controlled, multicenter clinical trial, healthy elderly volunteers (N = 2064) were enrolled, randomized (1:1) to receive either VPM1002 or placebo, and followed up remotely for 240 days. The primary outcome was the mean number of days with severe respiratory infections at hospital and/or at home. Secondary endpoints included the incidence of self-reported fever, number of hospital and intensive care unit (ICU) admissions, and number of adverse events. RESULTS: A total of 31 participants in the VPM1002 group reported at least 1 day with severe respiratory disease and a mean number of days with severe respiratory disease of 9.39 ± 9.28 while in the placebo group; 38 participants reported a mean of 14.29 ± 16.25 days with severe respiratory disease. The incidence of self-reported fever was lower in the VPM1002 group (odds ratio, 0.46 [95% confidence interval, .28-.74]; P = .001), and consistent trends to fewer hospitalization and ICU admissions due to COVID-19 were observed after VPM1002 vaccination. Local reactions typical for BCG were observed in the VPM1002-vaccinated group, which were mostly of mild intensity. CONCLUSIONS: Vaccination with VPM1002 is well tolerated and seems to have a prophylactic effect against severe respiratory disease in the elderly. CLINICAL TRIALS REGISTRATION: NCT04435379.


Assuntos
Vacina BCG , COVID-19 , Idoso , Humanos , Vacina BCG/imunologia , Vacina BCG/normas , COVID-19/prevenção & controle , Método Duplo-Cego , Hospitalização/estatística & dados numéricos , SARS-CoV-2 , Doenças Respiratórias/prevenção & controle , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Masculino , Feminino , Fatores de Tempo , Gravidade do Paciente
2.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36982586

RESUMO

A more effective vaccine against tuberculosis than Bacille Calmette-Guérin (BCG) is urgently needed. BCG derived recombinant VPM1002 has been found to be more efficacious and safer than the parental strain in mice models. Newer candidates, such as VPM1002 Δpdx1 (PDX) and VPM1002 ΔnuoG (NUOG), were generated to further improve the safety profile or efficacy of the vaccine. Herein, we assessed the safety and immunogenicity of VPM1002 and its derivatives, PDX and NUOG, in juvenile goats. Vaccination did not affect the goats' health in regards to clinical/hematological features. However, all three tested vaccine candidates and BCG induced granulomas at the site of injection, with some of the nodules developing ulcerations approximately one month post-vaccination. Viable vaccine strains were cultured from the injection site wounds in a few NUOG- and PDX- vaccinated animals. At necropsy (127 days post-vaccination), BCG, VPM1002, and NUOG, but not PDX, still persisted at the injection granulomas. All strains, apart from NUOG, induced granuloma formation only in the lymph nodes draining the injection site. In one animal, the administered BCG strain was recovered from the mediastinal lymph nodes. Interferon gamma (IFN-γ) release assay showed that VPM1002 and NUOG induced a strong antigen-specific response comparable to that elicited by BCG, while the response to PDX was delayed. Flow cytometry analysis of IFN-γ production by CD4+, CD8+, and γδ T cells showed that CD4+ T cells of VPM1002- and NUOG-vaccinated goats produced more IFN-γ compared to BCG-vaccinated and mock-treated animals. In summary, the subcutaneous application of VPM1002 and NUOG induced anti-tuberculous immunity, while exhibiting a comparable safety profile to BCG in goats.


Assuntos
Vacina BCG , Tuberculose , Animais , Camundongos , Cabras , Tuberculose/prevenção & controle , Linfócitos T , Vacinação/efeitos adversos
3.
Int J Mol Sci ; 22(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34445124

RESUMO

The nucleus accumbens core (NAcc) is an important component of brain reward circuitry, but studies have revealed its involvement in pain circuitry also. However, its effect on trigeminal neuralgia (TN) and the mechanism underlying it are yet to be fully understood. Therefore, this study aimed to examine the outcomes of optogenetic stimulation of NAcc GABAergic neurons in an animal model of TN. Animals were allocated into TN, sham, and control groups. TN was generated by infraorbital nerve constriction and the optogenetic virus was injected into the NAcc. In vivo extracellular recordings were acquired from the ventral posteromedial nucleus of the thalamus. Alterations of behavioral responses during stimulation "ON" and "OFF" conditions were evaluated. In vivo microdialysis was performed in the NAcc of TN and sham animals. During optogenetic stimulation, electrophysiological recordings revealed a reduction of both tonic and burst firing activity in TN animals, and significantly improved behavioral responses were observed as well. Microdialysis coupled with liquid chromatography/tandem mass spectrometry analysis revealed significant alterations in extracellular concentration levels of GABA, glutamate, acetylcholine, dopamine, and citrulline in NAcc upon optic stimulation. In fine, our results suggested that NAcc stimulation could modulate the transmission of trigeminal pain signals in the TN animal model.


Assuntos
Neurônios GABAérgicos/fisiologia , Doenças do Sistema Nervoso/fisiopatologia , Núcleo Accumbens/fisiopatologia , Neuralgia do Trigêmeo/fisiopatologia , Animais , Modelos Animais de Doenças , Dopamina/metabolismo , Feminino , Neurônios GABAérgicos/metabolismo , Ácido Glutâmico/metabolismo , Maxila/inervação , Doenças do Sistema Nervoso/metabolismo , Núcleo Accumbens/metabolismo , Optogenética/métodos , Ratos , Ratos Sprague-Dawley , Recompensa , Tálamo/metabolismo , Neuralgia do Trigêmeo/metabolismo
4.
Neurosurg Focus ; 49(1): E11, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32610286

RESUMO

OBJECTIVE: Artificial manipulation of animal movement could offer interesting advantages and potential applications using the animal's inherited superior sensation and mobility. Although several behavior control models have been introduced, they generally epitomize virtual reward-based training models. In this model, rats are trained multiple times so they can recall the relationship between cues and rewards. It is well known that activation of one side of the nigrostriatal pathway (NSP) in the rat induces immediate turning toward the contralateral side. However, this NSP stimulation-induced directional movement has not been used for the purpose of animal-robot navigation. In this study, the authors aimed to electrically stimulate the NSP of conscious rats to build a command-prompt rat robot. METHODS: Repetitive NSP stimulation at 1-second intervals was applied via implanted electrodes to induce immediate contraversive turning movements in 7 rats in open field tests in the absence of any sensory cues or rewards. The rats were manipulated to navigate from the start arm to a target zone in either the left or right arm of a T-maze. A leftward trial was followed by a rightward trial, and each rat completed a total of 10 trials. In the control group, 7 rats were tested in the same way without NSP stimulation. The time taken to navigate the maze was compared between experimental and control groups. RESULTS: All rats in the experimental group successfully reached the target area for all 70 trials in a short period of time with a short interstimulus interval (< 0.7 seconds), but only 41% of rats in the control group reached the target area and required a longer period of time to do so. The experimental group made correct directional turning movements at the intersection zone of the T-maze, taking significantly less time than the control group. No significant difference in navigation duration for the forward movements on the start and goal arms was observed between the two groups. However, the experimental group showed quick and accurate movement at the intersection zone, which made the difference in the success rate and elapsed time of tasks. CONCLUSIONS: The results of this study clearly indicate that a rat-robot model based on NSP stimulation can be a practical alternative to previously reported models controlled by virtual sensory cues and rewards.


Assuntos
Comportamento Animal/fisiologia , Estimulação Elétrica , Eletrodos Implantados , Robótica , Animais , Encéfalo/fisiologia , Estimulação Elétrica/métodos , Masculino , Ratos Sprague-Dawley
5.
Neurosurg Focus ; 49(1): E6, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32610297

RESUMO

The development of closed-loop deep brain stimulation (DBS) systems represents a significant opportunity for innovation in the clinical application of neurostimulation therapies. Despite the highly dynamic nature of neurological diseases, open-loop DBS applications are incapable of modifying parameters in real time to react to fluctuations in disease states. Thus, current practice for the designation of stimulation parameters, such as duration, amplitude, and pulse frequency, is an algorithmic process. Ideal stimulation parameters are highly individualized and must reflect both the specific disease presentation and the unique pathophysiology presented by the individual. Stimulation parameters currently require a lengthy trial-and-error process to achieve the maximal therapeutic effect and can only be modified during clinical visits. The major impediment to the development of automated, adaptive closed-loop systems involves the selection of highly specific disease-related biomarkers to provide feedback for the stimulation platform. This review explores the disease relevance of neurochemical and electrophysiological biomarkers for the development of closed-loop neurostimulation technologies. Electrophysiological biomarkers, such as local field potentials, have been used to monitor disease states. Real-time measurement of neurochemical substances may be similarly useful for disease characterization. Thus, the introduction of measurable neurochemical analytes has significantly expanded biomarker options for feedback-sensitive neuromodulation systems. The potential use of biomarker monitoring to advance neurostimulation approaches for treatment of Parkinson's disease, essential tremor, epilepsy, Tourette syndrome, obsessive-compulsive disorder, chronic pain, and depression is examined. Further, challenges and advances in the development of closed-loop neurostimulation technology are reviewed, as well as opportunities for next-generation closed-loop platforms.


Assuntos
Encéfalo/fisiopatologia , Estimulação Encefálica Profunda , Doenças do Sistema Nervoso/terapia , Transtorno Obsessivo-Compulsivo/terapia , Estimulação Encefálica Profunda/métodos , Tremor Essencial/terapia , Humanos , Doença de Parkinson/terapia , Síndrome de Tourette/fisiopatologia
6.
J Neurosci ; 38(21): 4870-4885, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29703788

RESUMO

Little is known about whether information transfer at primary sensory thalamic nuclei is modified by behavioral context. Here we studied the influence of previous decisions/rewards on current choices and preceding spike responses of ventroposterior medial thalamus (VPm; the primary sensory thalamus in the rat whisker-related tactile system). We trained head-fixed rats to detect a ramp-like deflection of one whisker interspersed within ongoing white noise stimulation. Using generative modeling of behavior, we identify two task-related variables that are predictive of actual decisions. The first reflects task engagement on a local scale ("trial history": defined as the decisions and outcomes of a small number of past trials), whereas the other captures behavioral dynamics on a global scale ("satiation": slow dynamics of the response pattern along an entire session). Although satiation brought about a slow drift from Go to NoGo decisions during the session, trial history was related to local (trial-by-trial) patterning of Go and NoGo decisions. A second model that related the same predictors first to VPm spike responses, and from there to decisions, indicated that spiking, in contrast to behavior, is sensitive to trial history but relatively insensitive to satiation. Trial history influences VPm spike rates and regularity such that a history of Go decisions would predict fewer noise-driven spikes (but more regular ones), and more ramp-driven spikes. Neuronal activity in VPm, thus, is sensitive to local behavioral history, and may play an important role in higher-order cognitive signaling.SIGNIFICANCE STATEMENT It is an important question for perceptual and brain functions to find out whether cognitive signals modulate the sensory signal stream and if so, where in the brain this happens. This study provides evidence that decision and reward history can already be reflected in the ascending sensory pathway, on the level of first-order sensory thalamus. Cognitive signals are relayed very selectively such that only local trial history (spanning a few trials) but not global history (spanning an entire session) are reflected.


Assuntos
Cognição/fisiologia , Detecção de Sinal Psicológico/fisiologia , Tálamo/fisiologia , Tato/fisiologia , Algoritmos , Animais , Fenômenos Biomecânicos/fisiologia , Mapeamento Encefálico , Tomada de Decisões/fisiologia , Feminino , Modelos Lineares , Ratos , Ratos Sprague-Dawley , Córtex Somatossensorial/fisiologia , Vibrissas/inervação , Vibrissas/fisiologia
7.
Neurosurg Focus ; 45(2): E15, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30064325

RESUMO

OBJECTIVE Deep brain stimulation (DBS) is a well-established, evidence-based therapy with FDA approval for Parkinson's disease and essential tremor. Despite the early successful use of DBS to target the sensory thalamus for intractable facial pain, subsequent studies pursuing various chronic pain syndromes reported variable efficacy, keeping DBS for pain as an investigational and "off-label" use. The authors report promising results for a contemporary series of patients with intractable facial pain who were treated with DBS. METHODS Pain outcomes for 7 consecutive patients with unilateral, intractable facial pain undergoing DBS of the ventral posteromedial nucleus of the thalamus (VPM) and the periaqueductal gray (PAG) were retrospectively reviewed. Pain was assessed preoperatively and at multiple postoperative time points using the visual analog scale (VAS), the Short-Form McGill Pain Questionnaire-2 (SF-MPQ-2), and the Pain Disability Index (PDI). RESULTS VAS scores significantly decreased from a mean ± SD of 9.0 ± 1.3 preoperatively to 2.6 ± 1.5 at 1 year postoperatively (p = 0.001). PDI scores decreased from a mean total of 48.5 to 28.5 (p = 0.01). SF-MPQ-2 scores decreased from a mean of 4.6 to 2.4 (p = 0.03). Notably, several patients did not experience maximum improvement until 6-9 months postoperatively, correlating with repeated programming adjustments. CONCLUSIONS DBS of the VPM and PAG is a potential therapeutic option for patients suffering from severe, intractable facial pain refractory to other interventions. Improved efficacy may be observed over time with close follow-up and active DBS programming adjustments.


Assuntos
Estimulação Encefálica Profunda , Dor Facial/terapia , Neuralgia/terapia , Dor Intratável/terapia , Doença de Parkinson/terapia , Adulto , Idoso , Estimulação Encefálica Profunda/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Medição da Dor , Estudos Retrospectivos
8.
J Physiol ; 595(3): 865-881, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27501052

RESUMO

KEY POINTS: Using in vivo electrophysiology, we find that a subset of whisker-responsive neurons in the ventral posterior medial region (VPM) respond to visual stimuli. These light-responsive neurons in the VPM are particularly sensitive to optic flow. Presentation of optic flow stimuli modulates the amplitude of concurrent whisker responses. Visual information reaches the VPM via a circuit encompassing the visual cortex. These data represent a new example of cross-modal integration in the primary sensory thalamus. ABSTRACT: Sensory signals reach the cortex via sense-specific thalamic nuclei. Here we report that neurons in the primary sensory thalamus of the mouse vibrissal system (the ventral posterior medial region; VPM) can be excited by visual as well as whisker stimuli. Using extracellular electrophysiological recordings from anaesthetized mice we first show that simple light steps can excite a subset of VPM neurons. We then test the ability of the VPM to respond to spatial patterns and show that many units are excited by visual motion in a direction-selective manner. Coherent movement of multiple objects (an artificial recreation of 'optic flow' that would usually occur during head rotations or body movements) best engages this visual motion response. We next show that, when co-applied with visual stimuli, the magnitude of responses to whisker deflections is highest in the presence of optic flow going in the opposite direction. Importantly, whisker response amplitude is also modulated by presentation of a movie recreating the mouse's visual experience during natural exploratory behaviour. We finally present functional and anatomical data indicating a functional connection (probably multisynaptic) from the primary visual cortex to VPM. These data provide a rare example of multisensory integration occurring at the level of the sensory thalamus, and provide evidence for dynamic regulation of whisker responses according to visual experience.


Assuntos
Núcleos Talâmicos/fisiologia , Vibrissas/fisiologia , Animais , Masculino , Camundongos Endogâmicos C57BL , Estimulação Física , Tempo de Reação
9.
BMC Anesthesiol ; 17(1): 111, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28835217

RESUMO

BACKGROUND: Ketamine is a frequently used intravenous anesthetic, which can reversibly induce loss of consciousness (LOC). Previous studies have demonstrated that thalamocortical system is critical for information transmission and integration in the brain. The ventral posteromedial nucleus (VPM) is a critical component of thalamocortical system. Glutamate is an important excitatory neurotransmitter in the brain and may be involved in ketamine-induced LOC. METHODS: The study used whole-cell patch-clamp to observe the effect of ketamine (30 µM-1000 µM) on glutamatergic neurotransmission in VPM slices. RESULTS: Ketamine significantly decreased the amplitude of glutamatergic spontaneous excitatory postsynaptic currents (sEPSCs), but only higher concentration of ketamine (300 µM and 1000 µM) suppressed the frequency of sEPSCs. Ketamine (100 µM-1000 µM) also decreased the amplitude of glutamatergic miniature excitatory postsynaptic currents (mEPSCs), without altering the frequency. CONCLUSIONS: In VPM neurons, ketamine attenuates the glutamatergic neurotransmission mainly through postsynaptic mechanism and action potential may be involved in the process.


Assuntos
Ácido Glutâmico/fisiologia , Ketamina/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Núcleos Ventrais do Tálamo/efeitos dos fármacos , Núcleos Ventrais do Tálamo/fisiologia , Animais , Relação Dose-Resposta a Droga , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Infusões Intravenosas , Ketamina/administração & dosagem , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ratos
10.
Neuroimage ; 140: 126-33, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26825443

RESUMO

Noninvasive neurostimulation methods such as transcranial direct current stimulation (tDCS) can elicit long-lasting, polarity-dependent changes in neocortical excitability. In a previous concurrent tDCS-fMRI study of overt picture naming, we reported significant behavioural and regionally specific neural facilitation effects in left inferior frontal cortex (IFC) with anodal tDCS applied to left frontal cortex (Holland et al., 2011). Although distributed connectivity effects of anodal tDCS have been modelled at rest, the mechanism by which 'on-line' tDCS may modulate neuronal connectivity during a task-state remains unclear. Here, we used Dynamic Causal Modelling (DCM) to determine: (i) how neural connectivity within the frontal speech network is modulated during anodal tDCS; and, (ii) how individual variability in behavioural response to anodal tDCS relates to changes in effective connectivity strength. Results showed that compared to sham, anodal tDCS elicited stronger feedback from inferior frontal sulcus (IFS) to ventral premotor (VPM) accompanied by weaker self-connections within VPM, consistent with processes of neuronal adaptation. During anodal tDCS individual variability in the feedforward connection strength from IFS to VPM positively correlated with the degree of facilitation in naming behaviour. These results provide an essential step towards understanding the mechanism of 'online' tDCS paired with a cognitive task. They also identify left IFS as a 'top-down' hub and driver for speech change.


Assuntos
Lobo Frontal/fisiologia , Córtex Motor/fisiologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Fala/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Idoso , Mapeamento Encefálico/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiologia
11.
Proc Natl Acad Sci U S A ; 110(47): 19113-8, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24101458

RESUMO

The cellular organization of the cortex is of fundamental importance for elucidating the structural principles that underlie its functions. It has been suggested that reconstructing the structure and synaptic wiring of the elementary functional building block of mammalian cortices, the cortical column, might suffice to reverse engineer and simulate the functions of entire cortices. In the vibrissal area of rodent somatosensory cortex, whisker-related "barrel" columns have been referred to as potential cytoarchitectonic equivalents of functional cortical columns. Here, we investigated the structural stereotypy of cortical barrel columns by measuring the 3D neuronal composition of the entire vibrissal area in rat somatosensory cortex and thalamus. We found that the number of neurons per cortical barrel column and thalamic "barreloid" varied substantially within individual animals, increasing by ∼2.5-fold from dorsal to ventral whiskers. As a result, the ratio between whisker-specific thalamic and cortical neurons was remarkably constant. Thus, we hypothesize that the cellular architecture of sensory cortices reflects the degree of similarity in sensory input and not columnar and/or cortical uniformity principles.


Assuntos
Modelos Neurológicos , Córtex Somatossensorial/citologia , Vibrissas/inervação , Vias Aferentes/citologia , Animais , Contagem de Células , Processamento de Imagem Assistida por Computador , Microscopia Confocal , Ratos , Ratos Wistar
12.
J Infect Dis ; 212(12): 1923-9, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26068782

RESUMO

We compared the innate immune response to a newly emerged swine-origin influenza A(H3N2) variant containing the M gene from 2009 pandemic influenza A(H1N1), termed "A(H3N2)vpM," to the immune responses to the 2010 swine-origin influenza A(H3N2) variant and seasonal influenza A(H3N2). Our results demonstrated that A(H3N2)vpM-induced myeloid dendritic cells secreted significantly lower levels of type I interferon (IFN) but produced significantly higher levels of proinflammatory cytokines and induced potent inflammasome activation. The reduction in antiviral immunity with increased inflammatory responses upon A(H3N2)vpM infection suggest that these viruses have the potential for increased disease severity in susceptible hosts.


Assuntos
Inflamassomos/metabolismo , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Leucócitos Mononucleares/imunologia , Animais , Linhagem Celular , Citocinas/metabolismo , Células Dendríticas/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Infecções por Orthomyxoviridae/virologia , Suínos , Doenças dos Suínos/virologia
13.
Hum Brain Mapp ; 36(2): 717-30, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25346407

RESUMO

Bodily self-consciousness refers to bodily processes operating at personal, peripersonal, and extrapersonal spatial dimensions. Although the neural underpinnings of representations of personal and peripersonal space associated with bodily self-consciousness were thoroughly investigated, relatively few is known about the neural underpinnings of representations of extrapersonal space relevant for bodily self-consciousness. In the search to unravel brain structures generating a representation of the extrapersonal space relevant for bodily self-consciousness, we developed a functional magnetic resonance imaging (fMRI) study to investigate the implication of the superior colliculus (SC) in bodily illusions, and more specifically in the rubber hand illusion (RHi), which constitutes an established paradigm to study the neural underpinnings of bodily self-consciousness. We observed activation of the colliculus ipsilateral to the manipulated hand associated with eliciting of RHi. A generalized form of context-dependent psychophysiological interaction analysis unravelled increased illusion-dependent functional connectivity between the SC and some of the main brain areas previously involved in bodily self-consciousness: right temporoparietal junction (rTPJ), bilateral ventral premotor cortex (vPM), and bilateral postcentral gyrus. We hypothesize that the collicular map of the extrapersonal space interacts with maps of the peripersonal and personal space generated at rTPJ, vPM and the postcentral gyrus, producing a unified representation of space that is relevant for bodily self-consciousness. We suggest that processes of multisensory integration of bodily-related sensory inputs located in this unified representation of space constitute one main factor underpinning emergence of bodily self-consciousness.


Assuntos
Mãos , Ilusões/fisiologia , Autoimagem , Percepção Espacial/fisiologia , Colículos Superiores/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Psicofisiologia , Borracha , Inquéritos e Questionários
14.
J Infect Dis ; 210(12): 1928-37, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24943726

RESUMO

Bacillus Calmette-Guérin (BCG) has been used for vaccination against tuberculosis for nearly a century. Here, we analyze immunity induced by a live tuberculosis vaccine candidate, recombinant BCG ΔureC::hly vaccine (rBCG), with proven preclinical and clinical safety and immunogenicity. We pursue in-depth analysis of the endogenous mycobacteria-specific CD4(+) T-cell population, comparing the more efficacious rBCG with canonical BCG to determine which T-cell memory responses are prerequisites for superior protection against tuberculosis. rBCG induced higher numbers and proportions of antigen-specific memory CD4(+) T cells than BCG, with a CXCR5(+)CCR7(+) phenotype and low expression of the effector transcription factors T-bet and Bcl-6. We found that the superior protection of rBCG, compared with BCG, correlated with higher proportions and numbers of these central memory T cells and of T follicular helper cells associated with specific antibody responses. Adoptive transfer of mycobacteria-specific central memory T cells validated their critical role in protection against pulmonary tuberculosis.


Assuntos
Vacina BCG/imunologia , Linfócitos T CD4-Positivos/imunologia , Memória Imunológica , Mycobacterium bovis/imunologia , Tuberculose/prevenção & controle , Animais , Vacina BCG/administração & dosagem , Vacina BCG/genética , Feminino , Deleção de Genes , Masculino , Camundongos Endogâmicos C57BL , Mutagênese Insercional , Mycobacterium bovis/genética , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
15.
Neuroimage ; 87: 465-75, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24060319

RESUMO

We describe the visualization of the barrel cortex of the primary somatosensory area (S1) of ex vivo adult mouse brain with short-tracks track density imaging (stTDI). stTDI produced much higher definition of barrel structures than conventional fractional anisotropy (FA), directionally-encoded color FA maps, spin-echo T1- and T2-weighted imaging and gradient echo T1/T2*-weighted imaging. 3D high angular resolution diffusion imaging (HARDI) data were acquired at 48 micron isotropic resolution for a (3mm)(3) block of cortex containing the barrel field and reconstructed using stTDI at 10 micron isotropic resolution. HARDI data were also acquired at 100 micron isotropic resolution to image the whole brain and reconstructed using stTDI at 20 micron isotropic resolution. The 10 micron resolution stTDI maps showed exceptionally clear delineation of barrel structures. Individual barrels could also be distinguished in the 20 micron stTDI maps but the septa separating the individual barrels appeared thicker compared to the 10 micron maps, indicating that the ability of stTDI to produce high quality structural delineation is dependent upon acquisition resolution. Close homology was observed between the barrel structure delineated using stTDI and reconstructed histological data from the same samples. stTDI also detects barrel deletions in the posterior medial barrel sub-field in mice with infraorbital nerve cuts. The results demonstrate that stTDI is a novel imaging technique that enables three-dimensional characterization of complex structures such as the barrels in S1 and provides an important complementary non-invasive imaging tool for studying synaptic connectivity, development and plasticity of the sensory system.


Assuntos
Mapeamento Encefálico/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Córtex Somatossensorial/anatomia & histologia , Animais , Imageamento Tridimensional/métodos , Camundongos , Camundongos Endogâmicos C57BL , Vibrissas/inervação
16.
Neurosci Bull ; 40(4): 439-450, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38015349

RESUMO

While somatosensory over-reactivity is a common feature of autism spectrum disorders such as fragile X syndrome (FXS), the thalamic mechanisms underlying this remain unclear. Here, we found that the developmental elimination of synapses formed between the principal nucleus of V (PrV) and the ventral posterior medial nucleus (VPm) of the somatosensory system was delayed in fragile X mental retardation 1 gene knockout (Fmr1 KO) mice, while the developmental strengthening of these synapses was disrupted. Immunohistochemistry showed excessive VGluT2 puncta in mutants at P12-13, but not at P7-8 or P15-16, confirming a delay in somatic pruning of PrV-VPm synapses. Impaired synaptic function was associated with a reduction in the frequency of quantal AMPA events, as well as developmental deficits in presynaptic vesicle size and density. Our results uncovered the developmental impairment of thalamic relay synapses in Fmr1 KO mice and suggest that a thalamic contribution to the somatosensory over-reactivity in FXS should be considered.


Assuntos
Transtorno do Espectro Autista , Síndrome do Cromossomo X Frágil , Camundongos , Animais , Síndrome do Cromossomo X Frágil/genética , Camundongos Knockout , Modelos Animais de Doenças , Tálamo/metabolismo , Sinapses/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo
17.
Neuroinformatics ; 22(1): 23-43, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37864741

RESUMO

Current mesoscale connectivity atlases provide limited information about the organization of thalamocortical projections in the mouse brain. Labeling the projections of spatially restricted neuron populations in thalamus can provide a functionally relevant level of connectomic analysis, but these need to be integrated within the same common reference space. Here, we present a pipeline for the segmentation, registration, integration and analysis of multiple tract-tracing experiments. The key difference with other workflows is that the data is transformed to fit the reference template. As a test-case, we investigated the axonal projections and intranuclear arrangement of seven neuronal populations of the ventral posteromedial nucleus of the thalamus (VPM), which we labeled with an anterograde tracer. Their soma positions corresponded, from dorsal to ventral, to cortical representations of the whiskers, nose and mouth. They strongly targeted layer 4, with the majority exclusively targeting one cortical area and the ones in ventrolateral VPM branching to multiple somatosensory areas. We found that our experiments were more topographically precise than similar experiments from the Allen Institute and projections to the primary somatosensory area were in agreement with single-neuron morphological reconstructions from publicly available databases. This pilot study sets the basis for a shared virtual connectivity atlas that could be enriched with additional data for studying the topographical organization of different thalamic nuclei. The pipeline is accessible with only minimal programming skills via a Jupyter Notebook, and offers multiple visualization tools such as cortical flatmaps, subcortical plots and 3D renderings and can be used with custom anatomical delineations.


Assuntos
Neurônios , Tálamo , Camundongos , Animais , Vias Neurais/fisiologia , Projetos Piloto , Tálamo/anatomia & histologia , Neurônios/fisiologia , Axônios
18.
Biology (Basel) ; 13(2)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38392298

RESUMO

The brainstem noradrenergic nucleus, the locus coeruleus (LC), exerts heavy influences on sensory processing, perception, and cognition through its diffuse projections throughout the brain. Previous studies have demonstrated that LC activation modulates the response and feature selectivity of thalamic relay neurons. However, the extent to which LC modulates the temporal coding of sensory information in the thalamus remains mostly unknown. Here, we found that LC stimulation significantly altered the temporal structure of the responses of the thalamic relay neurons to repeated whisker stimulation. A substantial portion of events (i.e., time points where the stimulus reliably evoked spikes as evidenced by dramatic elevations in the firing rate of the spike density function) were removed during LC stimulation, but many new events emerged. Interestingly, spikes within the emerged events have a higher feature selectivity, and therefore transmit more information about a tactile stimulus, than spikes within the removed events. This suggests that LC stimulation optimized the temporal coding of tactile information to improve information transmission. We further reconstructed the original whisker stimulus from a population of thalamic relay neurons' responses and corresponding feature selectivity. As expected, we found that reconstruction from thalamic responses was more accurate using spike trains of thalamic neurons recorded during LC stimulation than without LC stimulation, functionally confirming LC optimization of the thalamic temporal code. Together, our results demonstrated that activation of the LC-NE system optimizes temporal coding of sensory stimulus in the thalamus, presumably allowing for more accurate decoding of the stimulus in the downstream brain structures.

19.
J Comp Neurol ; 532(8): e25664, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39235156

RESUMO

Previously, we reported an immediate emergence of new lower jaw input to the anterior forepaw barrel subfield (FBS) in primary somatosensory cortex (SI) following forelimb deafferentation. However, a delay of 7 weeks or more post-amputation results in the presence of this new input to both anterior and posterior FBS. The immediate change suggests pre-existing latent lower jaw input in the FBS, whereas the delayed alteration implies the involvement of alternative sources. One possible source for immediate lower jaw responses is the neighboring lower jaw barrel subfield (LJBSF). We used anatomical tracers to investigate the possible projection of LJBSF to the FBS in normal and forelimb-amputated rats. Our findings are as follows: (1) anterograde tracer injection into LJBSF in normal and amputated rats labeled fibers and terminals exclusively in the anterior FBS; (2) retrograde tracer injection in the anterior FBS in normal and forelimb-amputated rats, heavily labeled cell bodies predominantly in the posterior LJBSF, with fewer in the anterior LJBSF; (3) retrograde tracer injection in the posterior FBS in normal and forelimb-amputated rats, sparsely labeled cell bodies in the posterior LJBSF; (4) retrograde tracer injection in anterior and posterior FBS in normal and forelimb-amputated rats, labeled cells exclusively in ventral posterior lateral (VPL) nucleus and posterior thalamus (PO); (5) retrograde tracer injection in LJBSF-labeled cell bodies exclusively in ventral posterior medial thalamic nucleus and PO. These findings suggest that LJBSF facilitates rapid lower jaw reorganization in the anterior FBS, whereas VPL and/or other subcortical sites provide a likely substrate for delayed reorganization observed in the posterior FBS.


Assuntos
Vias Aferentes , Membro Anterior , Córtex Somatossensorial , Animais , Córtex Somatossensorial/fisiologia , Membro Anterior/inervação , Ratos , Masculino , Vias Aferentes/fisiologia , Ratos Sprague-Dawley , Arcada Osseodentária/inervação , Arcada Osseodentária/fisiologia
20.
Neuromolecular Med ; 25(4): 516-532, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37700212

RESUMO

In individuals with chronic neuropathic pain, the posterior insular cortex (PIC) has been found to exhibit increased glutamatergic activity, and the dysgranular portion of PIC (DPIC) has been investigated as a novel cortical target for pain modulation. However, the role of DPIC glutamatergic neurons (DPICg) in trigeminal neuropathic pain (TNP) remains unclear. Here, we examined the outcomes of DPICg inhibition in a rat model of chronic constriction injury of the infraorbital nerve (CCI-ION). Animals were randomly divided into TNP, sham, and control groups. TNP animals underwent CCI-ION surgery. Either optogenetic or null viruses were delivered to the contralateral DPICg of TNP and sham animals. In vivo single-unit extracellular recordings from the ipsilateral spinal trigeminal nucleus caudalis (TNC) and contralateral ventral posteromedial (VPM) thalamus were obtained under both "ON" and "OFF" stimulation states. Behavioral responses during the stimulation-OFF and stimulation-ON phases were examined. Expression of c-Fos, pERK, and CREB immunopositive neurons were also observed. Optogenetic inhibition of contralateral DPICg decreased the neural firing rate in both TNC and VPM thalamus, the expression of sensory-responsive cell bodies, and transcriptional factors in the DPIC of TNP group. Improvements in hyperalgesia, allodynia, and anxiety-like responses in TNP animals were also observed during stimulation-ON condition. In fine, descending pain processing is influenced by neuroanatomical projections from the DPIC to the pain matrix areas, and DPICg could play a necessary role in this neural circuitry. Therefore, the antinociceptive effect of DPICg inhibition in this study may provide evidence for the therapeutic potential of DPICg in TNP.


Assuntos
Córtex Insular , Neuralgia , Ratos , Animais , Ratos Sprague-Dawley , Optogenética , Hiperalgesia/tratamento farmacológico , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA