Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928259

RESUMO

Oncolytic adenoviruses are in development as immunotherapeutic agents for solid tumors. Their efficacy is in part dependent on their ability to replicate in tumors. It is, however, difficult to obtain evidence for intratumoral oncolytic adenovirus replication if direct access to the tumor is not possible. Detection of systemic adenovirus DNA, which is sometimes used as a proxy, has limited value because it does not distinguish between the product of intratumoral replication and injected virus that did not replicate. Therefore, we investigated if detection of virus-associated RNA (VA RNA) by RT-qPCR on liquid biopsies could be used as an alternative. We found that VA RNA is expressed in adenovirus-infected cells in a replication-dependent manner and is secreted by these cells in association with extracellular vesicles. This allowed VA RNA detection in the peripheral blood of a preclinical in vivo model carrying adenovirus-injected human tumors and on liquid biopsies from a human clinical trial. Our results confirm that VA RNA detection in liquid biopsies can be used for minimally invasive assessment of oncolytic adenovirus replication in solid tumors in vivo.


Assuntos
Adenoviridae , Terapia Viral Oncolítica , Vírus Oncolíticos , RNA Viral , Replicação Viral , Humanos , Vírus Oncolíticos/genética , Vírus Oncolíticos/fisiologia , RNA Viral/genética , Adenoviridae/genética , Adenoviridae/fisiologia , Animais , Terapia Viral Oncolítica/métodos , Camundongos , Linhagem Celular Tumoral , Neoplasias/terapia , Neoplasias/genética , Feminino
2.
Cancer Sci ; 114(4): 1757-1770, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36533957

RESUMO

We previously proposed the classification of lung adenocarcinoma into two groups: the bronchial epithelial phenotype (BE phenotype) with high-level expressions of bronchial epithelial markers and actionable genetic abnormalities of tyrosine kinase receptors and the non-BE phenotype with low-level expressions of bronchial Bronchial epithelial (BE) epithelial markers and no actionable genetic abnormalities of tyrosine kinase receptors. Here, we performed a comprehensive analysis of tumor morphologies in 3D cultures and xenografts across a panel of lung cancer cell lines. First, we demonstrated that 40 lung cancer cell lines (23 BE and 17 non-BE) can be classified into three groups based on morphologies in 3D cultures on Matrigel: round (n = 31), stellate (n = 5), and grape-like (n = 4). The latter two morphologies were significantly frequent in the non-BE phenotype (1/23 BE, 8/17 non-BE, p = 0.0014), and the stellate morphology was only found in the non-BE phenotype. SMARCA4 mutations were significantly frequent in stellate-shaped cells (4/4 stellate, 4/34 non-stellate, p = 0.0001). Next, from the 40 cell lines, we successfully established 28 xenograft tumors (18 BE and 10 non-BE) in NOD/SCID mice and classified histological patterns of the xenograft tumors into three groups: solid (n = 20), small nests in desmoplasia (n = 4), and acinar/papillary (n = 4). The latter two patterns were characteristically found in the BE phenotype. The non-BE phenotype exhibited a solid pattern with significantly less content of alpha-SMA-positive fibroblasts (p = 0.0004) and collagen (p = 0.0006) than the BE phenotype. Thus, the morphology of the tumors in 3D cultures and xenografts, including stroma genesis, reflects the intrinsic properties of the cancer cell lines. Furthermore, this study serves as an excellent resource for lung adenocarcinoma cell lines, with clinically relevant information on molecular and morphological characteristics and drug sensitivity.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Xenoenxertos , Camundongos Endogâmicos NOD , Camundongos SCID , Linhagem Celular Tumoral , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Adenocarcinoma de Pulmão/genética , Pulmão/patologia , Receptores Proteína Tirosina Quinases , DNA Helicases , Proteínas Nucleares , Fatores de Transcrição
3.
Gynecol Oncol ; 171: 49-58, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36804621

RESUMO

OBJECTIVES: Epidermal growth factor EGF-like domain multiple-6 (EGFL6) is highly expressed in high grade serous ovarian cancer and promotes both endothelial cell proliferation/angiogenesis and cancer cell proliferation/metastasis. As such it has been implicated as a therapeutic target. As a secreted factor, EGFL6 is a candidate for antibody therapy. The objectives of this study were to create and validate humanized affinity-matured EGFL6 neutralizing antibodies for clinical development. METHODS: A selected murine EGFL6 antibody was humanized using CDR grafting to create 26 variant humanized antibodies. These were screened and the lead candidate was affinity matured. Seven humanized affinity-matured EGFL6 antibodies were screened for their ability to block EGFL6 activity on cancer cells in vitro, two of which were selected and tested their therapeutic activity in vivo. RESULTS: Humanized affinity matured antibodies demonstrated high affinity for EGFL6 (150 pM to 2.67 nM). We found that several humanized affinity-matured EGFL6 antibodies specifically bound to recombinant, and native human EGFL6. Two lead antibodies were able to inhibit EGFL6-mediated (i) cancer cell migration, (ii) proliferation, and (iii) increase in ERK phosphorylation in cancer cells in vitro. Both lead antibodies restricted growth of an EGFL6 expressing ovarian cancer patient derived xenograft. Analysis of treated human tumor xenografts indicated that anti-EGFL6 therapy suppressed angiogenesis, inhibited tumor cell proliferation, and promoted tumor cell apoptosis. CONCLUSIONS: Our studies confirm the ability of these humanized affinity-matured antibodies to neutralize EGFL6 and acting as a therapeutic to restrict cancer growth. This work supports the development of these antibody for first-in-human clinical trials.


Assuntos
Anticorpos Monoclonais Humanizados , Neoplasias Ovarianas , Humanos , Animais , Camundongos , Feminino , Linhagem Celular Tumoral , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Proliferação de Células , Proteínas de Ligação ao Cálcio , Moléculas de Adesão Celular
4.
Acta Pharmacol Sin ; 44(11): 2265-2281, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37344563

RESUMO

The majority of blood malignancies is incurable and has unforeseeable remitting-relapsing paths in response to different treatments. Cynaropicrin, a natural sesquiterpene lactone from the edible parts of the artichoke plant, has gained increased attention as a chemotherapeutic agent. In this study, we investigated the effects of cynaropicrin against multiple myeloma (MM) cells in vitro and assessed its in vivo effectiveness in a xenograft tumor zebrafish model. We showed that cynaropicrin exerted potent cytotoxicity against a panel of nine MM cell lines and two leukemia cell lines with AMO1 being the most sensitive cell line (IC50 = 1.8 ± 0.3 µM). Cynaropicrin (0.8, 1.9, 3.6 µM) dose-dependently reduced c-Myc expression and transcriptional activity in AMO1 cells that was associated with significant downregulation of STAT3, AKT, and ERK1/2. Cell cycle analysis showed that cynaropicrin treatment arrested AMO1 cells in the G2M phase along with an increase in the sub-G0G1 phase after 24 h. With prolonged treatment times, cells accumulated more in the sub-G0G1 phase, implying cell death. Using confocal microscopy, we revealed that cynaropicrin disrupted the microtubule network in U2OS cells stably expressing α-tubulin-GFP. Furthermore, we revealed that cynaropicrin promoted DNA damage in AMO1 cells leading to PAR polymer production by PARP1 hyperactivation, resulting in AIF translocation from the mitochondria to the nucleus and subsequently to a novel form of cell death, parthanatos. Finally, we demonstrated that cynaropicrin (5, 10 µM) significantly reduced tumor growth in a T-cell acute lymphoblastic leukemia (T-ALL) xenograft zebrafish model. Taken together, these results demonstrate that cynaropicrin causes potent inhibition of hematopoietic tumor cells in vitro and in vivo.


Assuntos
Mieloma Múltiplo , Parthanatos , Sesquiterpenos , Animais , Humanos , Tubulina (Proteína) , Peixe-Zebra/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Lactonas/farmacologia , Lactonas/uso terapêutico , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Linhagem Celular Tumoral
5.
Int J Mol Sci ; 24(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37895104

RESUMO

To promote the preclinical development of new treatments for non-small cell lung cancer (NSCLC), we established NSCLC xenograft tumor assays on the chorioallantoic membrane (CAM) of chicken embryos. Five NSCLC cell lines were compared for tumor take rate, tumor growth, and embryo survival. Two of these, A549 and H460 CAM tumors, were histologically characterized and tested for susceptibility to systemic chemotherapy and gene delivery using viral vectors. All cell lines were efficiently engrafted with minimal effect on embryo survival. The A549 cells formed slowly growing tumors, with a relatively uniform distribution of cancer cells and stroma cells, while the H460 cells formed large tumors containing mostly proliferating cancer cells in a bed of vascularized connective tissue. Tumor growth was inhibited via systemic treatment with Pemetrexed and Cisplatin, a chemotherapy combination that is often used to treat patients with advanced NSCLC. Lentiviral and adenoviral vectors expressing firefly luciferase transduced NSCLC tumors in vivo. The adenovirus vector yielded more than 100-fold higher luminescence intensities after a single administration than could be achieved with multiple lentiviral vector deliveries. The adenovirus vector also transduced CAM tissue and organs of developing embryos. Adenovirus delivery to tumors was 100-10,000-fold more efficient than to embryo organs. In conclusion, established human NSCLC-CAM tumor models provide convenient in vivo assays to rapidly evaluate new cancer therapies, particularly cancer gene therapies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Humanos , Embrião de Galinha , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Galinhas , Neoplasias Pulmonares/genética , Membrana Corioalantoide/metabolismo , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Int J Mol Sci ; 24(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38069077

RESUMO

Propolis is a gelatinous substance processed by western worker bees from the resin of plant buds and mixed with the secretions of the maxillary glands and beeswax. Propolis has extensive biological activities and antitumor effects. There have been few reports about the antitumor effect of propolis against human cutaneous squamous cell carcinoma (CSCC) A431 cells and its potential mechanism. CCK-8 assays, label-free proteomics, RT-PCR, and a xenograft tumor model were employed to explore this possibility. The results showed that the inhibition rate of A431 cell proliferation by the ethanol extract of propolis (EEP) was dose-dependent, with an IC50 of 39.17 µg/mL. There were 193 differentially expressed proteins in the EEP group compared with the control group (p < 0.05), of which 103 proteins (53.37%) were upregulated, and 90 proteins (46.63%) were downregulated. The main three activated and suppressed Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were extracellular matrix (ECM)-receptor interaction, amoebiasis, cell adhesion molecules (CAMs), nonalcoholic fatty liver disease (NAFLD), retrograde endocannabinoid signaling, and Alzheimer's disease. The tumor volume of the 100 mg/kg EEP group was significantly different from that of the control group (p < 0.05). These results provide a theoretical basis for the potential treatment of human CSCC A431 cell tumors using propolis.


Assuntos
Carcinoma de Células Escamosas , Própole , Neoplasias Cutâneas , Humanos , Linhagem Celular Tumoral , Própole/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Extratos Vegetais/farmacologia , Etanol/farmacologia , Proliferação de Células
7.
Gynecol Oncol ; 166(1): 126-137, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35688655

RESUMO

OBJECTIVE: Iron depletion may be a novel therapeutic strategy for cancer. This study aimed to assess the inhibition effects of deferasirox (DFX), an oral iron chelator, on cervical cancer. METHODS: In this study, we performed immunohistochemical analysis, enzyme-linked immunoassay, cell viability and invasive ability assay, cell cycle and apoptosis analysis, protein expression investigation, molecular mechanism investigation, and in vivo murine xenograft model to evaluate the impact of DFX on cervical cancer. RESULTS: The cervical cancer cell lines viability decreased and cell apoptosis was induced after DFX incubation. Additionally, DFX promoted cell cycle arrest by regulating the expression of cell cycle regulators cyclin D1, cyclin E and proliferating cell nuclear antigen (PCNA) in cervical cancer cell lines. DFX also decreased cell invasion by upregulating the expression of NDRG1 and downregulating c-Myc. The activation of Akt and the MEK/ERK signaling pathway was inhibited by DFX. DFX also significantly suppressed xenograft tumor growth, decreased the levels of ferritin in serum and tumor tissue, reduced iron deposits and reactive oxygen species (ROS) levels in xenografts of DFX-treated group compared with the control group, with no serious side effects. CONCLUSION: Present study demonstrated the inhibitory effect of DFX against cervical cancer, and provided a potential therapeutic agent for cervical cancer.


Assuntos
Quelantes de Ferro , Neoplasias do Colo do Útero , Animais , Benzoatos/farmacologia , Benzoatos/uso terapêutico , Deferasirox/farmacologia , Feminino , Humanos , Ferro , Quelantes de Ferro/farmacologia , Quelantes de Ferro/uso terapêutico , Camundongos , Triazóis/farmacologia , Triazóis/uso terapêutico , Neoplasias do Colo do Útero/tratamento farmacológico
8.
Mol Biol Rep ; 49(4): 2629-2639, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34997428

RESUMO

PURPOSE: G-protein coupled receptor (GPR 34) has been found to play important roles in some cancers and regulates the proliferation, apoptosis, and migration of these cancer cells. However, the mechanisms underlying how GPR34 functions to regulate growth and proliferation of colorectal cancer cells remains to be clarified. METHODS: We employed stable GPR34 knockdown LS174T cell models, GPR34 Mab blocking, a CCK-8 kit, and a colony formation assay to characterize the effect of GPR34 on the proliferation of LS174T in vitro and xenograft tumor growth in vivo. The mRNA level of GPR34 was detected by RT-PCR in tumor tissues and adjacent normal tissues from 34 CRC patients. RESULTS: Based on RT-PCR results, GPR34 exhibited high level in tumor samples compared with adjacent normal samples. Increased expression of GPR34 is more associated with poor prognosis of CRC as shown in The Cancer Genome Atlas (TCGA) dataset by Kaplan-Meier survival analysis. Furthermore, we showed that GPR34 knockdown inhibited the proliferation of LS174T colon cancer cells and related xenograft tumor growth. Searching for the distinct molecular mechanism, we identified several contributors to proliferation of LS174T colon cancer cells: PI3K subunits/PTEN, PDK1/AKT, and Src/Raf/Ras/ERK. GPR34 knockdown inhibited the proliferation of LS174T cells by upregulating expression of PTEN, and downregulating expression of PI3K subunits p110-beta. CONCLUSION: Our findings provide direct evidence that GPR34 regulates the proliferation of LS174T cells and the growth of LS174T tumor xenografts by regulating different pathways. High expression of GPR34 mRNA could then be used to predict poor prognosis of CRC.


Assuntos
Neoplasias Colorretais , Fosfatidilinositol 3-Quinases , Receptores de Lisofosfolipídeos , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Humanos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Lisofosfolipídeos/genética , Receptores de Lisofosfolipídeos/metabolismo , Transdução de Sinais/genética
9.
Biol Pharm Bull ; 45(7): 863-871, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35491088

RESUMO

Saikosaponin A (SSA)-a natural compound extracted from Radix bupleuri-possesses antitumor properties in several types of carcinomas. However, the role of SSA on bladder cancer and the mechanisms remain unclear. In this study, we have described the effect of SSA on human bladder cancer cell lines T24 and 5637 in the context of the regulation of mitochondrial pathways of apoptosis. In vitro, the Cell Counting Kit-8 (CCK-8) assay and cell wound healing assays were used to determine the proliferative effect of SSA treatment. Flow cytometry and Western blotting were performed to evaluate the apoptosis and related mechanisms. To further confirm that apoptosis is mediated through Caspase activation, Hoechst 33258 fluorescence staining assay was done after cells were treated with SSA and caspase inhibitor-Z-VAD-FMK. In vivo, an orthotopic xenograft mice model was adopted to evaluate the effect of SSA. The tumors were analyzed by hematoxylin-eosin (H&E) staining, immunohistochemical analysis, and Western blotting. In vitro, the results with CCK-8 assay showed obvious SSA-induced suppression in cell growth in a dose- and time-dependent manner. Flow cytometry analysis, Hoechst 33258 fluorescence staining assay and the assessment of the changes in the B-cell lymphoma 2 (Bcl-2) family protein expression level revealed that SSA could significantly induce cell apoptosis, which was associated with apoptosis via the mitochondrial pathways. In vivo, the results revealed a reduction in cell proliferation. In conclusion, our data suggest that SSA inhibits the growth of bladder cancer cells by activating the mitochondrial apoptosis pathway and inducing cell apoptosis.


Assuntos
Carcinoma , Neoplasias da Bexiga Urinária , Animais , Apoptose , Bisbenzimidazol/farmacologia , Caspases , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Camundongos , Ácido Oleanólico/análogos & derivados , Saponinas , Bexiga Urinária , Neoplasias da Bexiga Urinária/tratamento farmacológico
10.
Int J Mol Sci ; 23(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36142303

RESUMO

Thyroid carcinoma, a disease in which malignant cells form in the thyroid tissue, is the most common endocrine carcinoma, with papillary thyroid carcinoma (PTC) accounting for nearly 80% of total thyroid carcinoma cases. However, the management of metastatic or recurrent therapy-refractory PTC is challenging and requires complex carcinoma therapy. In this study, we proposed a new clinical approach for the treatment of therapy-refractory PTC. We identified sarco/endoplasmic reticulum calcium ATPase (SERCA) as an essential factor for the survival of PTC cells refractory to the treatment with paclitaxel or sorafenib. We validated its use as a potential target for developing drugs against resistant PTC, by using patient-derived paclitaxel- or sorafenib-resistant PTC cells. We further discovered novel SERCA inhibitors, candidates 7 and 13, using the evolutionary chemical binding similarity method. These novel SERCA inhibitors determined a substantial reduction of tumors in a patient-derived xenograft tumor model developed using paclitaxel- or sorafenib-resistant PTC cells. These results could provide a basis for clinically meaningful progress in the treatment of refractory PTC by identifying a novel therapeutic strategy: using a combination therapy between sorafenib or paclitaxel and specific SERCA inhibitors for effectively and selectively targeting extremely malignant cells such as antineoplastic-resistant and carcinoma stem-like cells.


Assuntos
Antineoplásicos , Neoplasias da Glândula Tireoide , Antineoplásicos/farmacologia , Humanos , Recidiva Local de Neoplasia/tratamento farmacológico , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Câncer Papilífero da Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/patologia
11.
Molecules ; 27(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35335379

RESUMO

Our team discovered a moderate SphK1 inhibitor, SAMS10 (IC50 = 9.8 µM), which was screened by computer-assisted screening. In this study, we developed a series of novel diaryl derivatives with improved antiproliferative activities by modifying the structure of the lead compound SAMS10. A total of 50 new compounds were synthesized. Among these compounds, the most potent compound, named CHJ04022Rb, has significant anticancer activity in melanoma A375 cell line (IC50 = 2.95 µM). Further underlying mechanism studies indicated that CHJ04022R exhibited inhibition effect against PI3K/NF-κB signaling pathways, inhibited the migration of A375 cells, promoted apoptosis and exerted antiproliferative effect by inducing G2/M phase arrest in A375 cells. Furthermore, acute toxicity experiment indicated CHJ04022R exhibited good safety in vivo. Additionally, it showed a dose-dependent inhibitory effect on the growth of xenograft tumor in nude mice. Therefore, CHJ04022R may be a potential candidate for the treatment of melanoma.


Assuntos
Antineoplásicos , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Camundongos , Camundongos Nus , Relação Estrutura-Atividade
12.
Invest New Drugs ; 39(2): 578-586, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33026557

RESUMO

Glochidiol has been shown to have potentially antiproliferative activity in vitro, however its anticancer mechanisms specifically against lung cancer remain unknown. This study aimed to investigate the anti-lung cancer effects of glochidiol in HCC-44 cells in vitro and in vivo. In the present study, glochidiol was found to have potent antiproliferative activity against lung cancer cell lines NCI-H2087, HOP-62, NCI-H520, HCC-44, HARA, EPLC-272H, NCI-H3122, COR-L105 and Calu-6 with IC50 values of 4.12 µM, 2.01 µM, 7.53 µM, 1.62 µM, 4.79 µM, 7.69 µM, 2.36 µM, 6.07 µM and 2.10 µM, respectively. In vivo, glochidiol was found to effectively inhibit lung cancer HCC-44 xenograft tumor growth in nude mice. Docking analysis found that glochidiol forms hydrogen bonds with residues of tubulin. Glochidiol was also found to inhibit tubulin polymerization in vitro with an IC50 value of 2.76 µM. Immunofluorescence staining and EBI competition assay suggest that glochidiol may interact with tubulin by targeting the colchicine binding site. Thus, glochidiol might be a novel colchicine binding site inhibitor with the potential to treat lung cancer.


Assuntos
Triterpenos/farmacologia , Tubulina (Proteína)/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Colchicina/metabolismo , Relação Dose-Resposta a Droga , Humanos , Concentração Inibidora 50 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Simulação de Acoplamento Molecular , Distribuição Aleatória , Tubulina (Proteína)/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
13.
BMC Cancer ; 21(1): 407, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33853558

RESUMO

BACKGROUND: Pancreatic peritoneal carcinomatosis (PPC), with the worst median overall-survival (mOS), epitomizes the incurability of metastatic cancer. Cancer stem cells (CSCs) underpin this incurability. However, inhibitors of CSC-stemness fail to increase mOS in cancer patients despite preclinical tumor-reduction. This shortfall reinforces that preclinical efficacy should be defined by increased mOS in the presence of cancer comorbidities, CSC-heterogeneity and plasticity. The primary objectives of this study are: to test the dual endothelin-1/signal peptide receptor, DEspR, as a nodal therapeutic target in PPC, given DEspR induction in anoikis-resistant pancreatic CSCs, and to validate humanized anti-DEspR antibody, hu-6g8, as a potential therapeutic for PPC. METHODS: We used heterogeneous pools of CSCs selected for anoikis resistance from reprogrammed Panc1 and MiaPaCa2 tumor cells (TCs), and adherent TCs reprogrammed from CSCs (cscTCs). We used multiple anti-DEspR blocking antibodies (mAbs) with different epitopes, and a humanized anti-DEspR recombinant mAb cross-reactive in rodents and humans, to test DEspR inhibition effects. We measured DEspR-inhibition efficacy on multiple prometastatic CSC-functions in vitro, and on tumorigenesis and overall survival in a CSC-derived xenograft (CDX) nude rat model of PPC with comorbidities. RESULTS: Here we show that DEspR, a stress-survival receptor, is present on subsets of PDAC Panc1-TCs, TC-derived CSCs, and CSC-differentiated TCs (cscTCs), and that DESpR-inhibition decreases apoptosis-resistance and pro-metastatic mesenchymal functions of CSCs and cscTCs in vitro. We resolve the DNA-sequence/protein-function discordance by confirming ADAR1-RNA editing-dependent DEspR-protein expression in Panc1 and MiaPaCa2 TCs. To advance DEspR-inhibition as a nodal therapeutic approach for PPC, we developed and show improved functionality of a recombinant, humanized anti-DEspR IgG4S228P antibody, hu-6g8, over murine precursor anti-DEspR mabs. Hu-6g8 internalizes and translocates to the nucleus colocalized with cyto-nuclear shuttling galectins-1/3, and induces apoptotic cell changes. DEspR-inhibition blocks transperitoneal dissemination and progression to peritoneal carcinomatosis of heterogeneous DEspR±/CD133 ± Panc1-derived CSCs in xenografted nude rats, improving mOS without chemotherapy-like adverse effects. Lastly, we show DEspR expression in Stage II-IV primary and invasive TCs in the stroma in PDAC-patient tumor arrays. CONCLUSION: Collectively, the data support humanized anti-DEspR hu-6g8 as a potential targeted antibody-therapeutic with promising efficacy, safety and prevalence profiles for PPC patients.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos Imunológicos/farmacologia , Imunoglobulina G/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Neoplasias Peritoneais/tratamento farmacológico , Neoplasias Peritoneais/secundário , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Anticorpos Monoclonais Humanizados/química , Antineoplásicos Imunológicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Imunoglobulina G/química , Imuno-Histoquímica , Imunofenotipagem , Neoplasias Pancreáticas/patologia , Ratos , Receptor de Endotelina A , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Metab Brain Dis ; 36(1): 123-132, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32880813

RESUMO

This study aimed to characterize the expression status and potentially mechanistic involvement of SNHG7 in pituitary adenoma. Relative expression of SNHG7 and miR-449a was analyzed by real-time PCR. Cell viability was measured with Cell Counting Kit-8 (CCK-8). Cell apoptosis was determined by PI/Annexin V double staining followed by flow cytometry analysis. Cell invasion and migration were analyzed by wound healing and transwell assays, respectively. The regulatory action of miR-449a on SNHG7 was interrogated by luciferase reporter assay. We also investigated the pro-tumor activity of SNHG7 with the MMQ xenograft tumor mouse model. We identified the aberrant up-regulation of SNHG7 in pituitary adenoma both in vivo and in vitro, which associated with poor survival outcome. siRNA-mediated SNHG7-knockdown decreased cell viability, increased apoptosis and compromised migration and invasion. We further predicted and validated that SNHG7 negatively regulated miR-449a via sponging. Concurrent inhibition of miR-449a restored cell viability, apoptosis, migration and invasion influenced by SNHG7-deficiency. Most importantly, we demonstrated that SNHG7-silencing delayed xenograft tumor progression, which was accompanied with increased miR-449a and decreased Ki67 intensity. Our study highlighted the essential oncogenic properties of the SNHG7/miR-449a axis in pituitary adenoma.


Assuntos
Adenoma/metabolismo , MicroRNAs/metabolismo , Hipófise/metabolismo , Neoplasias Hipofisárias/metabolismo , RNA Longo não Codificante/metabolismo , Adenoma/genética , Adenoma/patologia , Animais , Apoptose/fisiologia , Linhagem Celular , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Progressão da Doença , Humanos , MicroRNAs/genética , Hipófise/patologia , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/patologia , RNA Longo não Codificante/genética , Ratos
15.
Int J Mol Sci ; 22(11)2021 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-34071132

RESUMO

Demethoxycurcumin (DMC), a derivate of curcumin, has been shown to induce apoptotic cell death in human glioblastoma multiforme GBM 8401 cells via cell cycle arrest and induction of cell apoptosis. However, there is no report showing DMC suppresses glioblastoma multiforme cells in vivo. In the present study, we investigated the effects of DMC on GBM8401 cells in vivo. At first, we established a luciferase-expressing stable clone named GBM 8401/luc2. Second, mice were inoculated subcutaneously with GBM 8401/luc2 cells to generate a xenograft tumor mice model. After inoculation, tumor volume reached 100-120 mm3, and all mice were randomly divided into three groups: Group I was treated with 110 µL phosphate-buffered solution (PBS) containing 0.1% dimethyl sulfoxide, Group II with 30 mg/kg of DMC, and Group III with 60 mg/kg of DMC. Mice from each group were given the oral treatment of DMC by gavage for 21 days. The body weight and tumor volume were recorded every 3 days. DMC significantly decreased the tumor volumes, and 60 mg/kg treatment showed a higher decrease in tumor volumes than that of 30 mg/kg, However, DMC did not affect the body weights. The photons emitted from mice tumors were detected with Xenogen IVIS imaging system, DMC at both doses decreased the total photon flux and 60 mg/kg treatment of DMC has low total photon flux than that of 30 mg/kg. The tumor volumes and weights in 60 mg/kg treatment of DMC were lower than that of 30 mg/kg. Immunohistochemical analysis was used to measure protein expression of tumors and results showed that DMC treatment led to lightly staining with anti-Bcl-2 and -XIAP and 60 mg/kg treatment of DMC has lighter staining with anti-Bcl-2 and -XIAP than that of 30 mg/kg. The higher dose (60 mg/kg) of DMC has higher signals of cleaved-caspase-3 than that of the lower dose (30 mg/kg). Furthermore, the hematoxylin and eosin (H&E) staining of liver tissues showed no significant difference between DMC-treated and control-groups. Overall, these observations showed that DMC suppressed tumor properties in vivo and DMC may be used against human glioblastoma multiforme in the future.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Diarileptanoides/uso terapêutico , Glioblastoma/tratamento farmacológico , Animais , Antineoplásicos Fitogênicos/toxicidade , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Diarileptanoides/toxicidade , Genes Reporter , Glioblastoma/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Camundongos Nus , Proteínas de Neoplasias/análise , Proteínas Proto-Oncogênicas c-bcl-2/análise , Distribuição Aleatória , Carga Tumoral , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/análise , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína X Associada a bcl-2/análise
16.
Molecules ; 26(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34885686

RESUMO

Tetrandrine (TET), a bisbenzylisoquinoline (BBI) alkaloid, is isolated from the plant Stephania tetrandra S. Moore and has a wide range of biological activity, including anticancer properties in vitro and in vivo. At first, we established a luciferase-expressing stable clone that was named GBM 8401/luc2 cells. Herein, the primary results indicated that TET reduced the total cell viability and induced cell apoptosis in GBM 8401/luc2 human glioblastoma cells. However, there is no available information showing that TET suppresses glioblastoma cells in vivo. Thus, we investigated the effects and mechanisms of TET on a GBM 8401/luc2 cell-generated tumor in vivo. After the tumor volume reached 100-120 mm3 in subcutaneously xenografted nude mice, all of the mice were randomly divided into three groups: Group I was treated with phosphate-buffered solution (PBS) containing 0.1% dimethyl sulfoxide, Group II with 25 mg/kg of TET, and Group III with 50 mg/kg of TET. All mice were given the oral treatment of PBS or TET by gavage for 21 days, and the body weight and tumor volumes were recorded every 5 days. After treatment, individual tumors, kidneys, livers, and spleens were isolated from each group. The results showed that TET did not affect the body weights, but it significantly decreased the tumor volumes. The TET treatment at 50 mg/kg had a two-fold decrease in tumor volumes than that at 25 mg/kg when compared to the control. TET decreased the total photon flux, and treatment with TET at 50 mg/kg had a lower total photon flux than that at 25 mg/kg, as measured by a Xenogen IVIS imaging system. Moreover, the higher TET treatment had lower tumor volumes and weights than those of the lower dose. The apoptosis-associated protein expression in the tumor section was examined by immunohistochemical analysis, and the results showed that TET treatment reduced the levels of c-FLIP, MCL-1, and XIAP but increased the signals of cleaved-caspase-3, -8, and -9. Furthermore, the hematoxylin and eosin (H & E) staining of kidney, liver, and spleen tissues showed no significant difference between the TET-treated and control groups. Overall, these observations demonstrated that TET suppressed subcutaneous tumor growth in a nude-mice model via the induction of cell apoptosis.


Assuntos
Benzilisoquinolinas/farmacologia , Encéfalo/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Stephania tetrandra/química , Animais , Apoptose/efeitos dos fármacos , Benzilisoquinolinas/química , Encéfalo/patologia , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Caspase 3/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/patologia , Humanos , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Transdução de Sinais , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Am J Physiol Gastrointest Liver Physiol ; 318(2): G352-G360, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31869240

RESUMO

Gastric cancer (GC) is the most prevalent human cancer around the globe. In GC, Wnt signaling is deregulated, and receptor-like tyrosine kinase (RYK) coreceptors have been identified to interact with noncanonical Wnt ligand Wnt5a. We, therefore, aimed to evaluate the role of RYK in GC development and metastasis. GC tumor samples were collected from 250 GC patients. Expressions of RYK, as well as markers for the epithelial-mesenchymal transition (EMT), such as N-cadherin and E-cadherin, were subjected to correlation analysis with clinicopathological features. Endogenous RYK expression levels were compared in GC cell lines with ascending metastatic potentials followed by stable RYK knockdown. Effect of RYK knockdown on GC cell migration, invasion, and EMT phenotype were assessed in vitro, and on GC tumor growth in vivo in a xenograft rodent model. Particularly, liver metastasis potential of tail vein-injected GC cells was also analyzed following RYK knockdown. RYK was highly correlated with liver metastasis of GC tumors and the expression profiles of EMT markers toward the mesenchymal tendency. RYK expression was also positively correlated with the metastasis potential of GC cells. RYK knockdown not only inhibited migration, invasion, and EMT of GC cells in vitro, but also suppressed tumorigenesis and liver metastasis of GC cells in vivo using the mouse xenograft model. RYK is highly correlated with GC tumorigenesis and potential of liver metastasis, suggesting it may be a novel oncogenic factor of the noncanonical Wnt signaling pathway contributing to GC.NEW & NOTEWORTHY RYK is highly correlated with gastric cancer tumorigenesis and the potential of liver metastasis, suggesting it may be a novel oncogenic factor of the noncanonical Wnt signaling pathway contributing to gastric cancer.


Assuntos
Neoplasias Hepáticas/secundário , Receptores Proteína Tirosina Quinases/metabolismo , Neoplasias Gástricas/metabolismo , Proteína Wnt-5a/metabolismo , Animais , Biomarcadores Tumorais/análise , Caderinas/análise , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal , Feminino , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Invasividade Neoplásica/genética , Receptores Proteína Tirosina Quinases/análise , Proteína Wnt-5a/análise , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Mol Pharm ; 17(7): 2599-2611, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32379457

RESUMO

Parenteral chemotherapy is usually administered intravenously, although patient preference and health economics suggest the subcutaneous (sc) route could be an attractive alternative. However, due to the low aqueous solubility of hydrophobic drugs and injection volume limitations, the total amount of drug that can be administered in a single sc injection is frequently insufficient. We have developed hyaluronidase coated nanoparticles (NPs) that efficiently encapsulate such drugs, thus addressing both issues and allowing sufficient amounts of hydrophobic drug to be administered and absorbed effectively. CUDC-101, a poorly water-soluble multitargeted anticancer drug that simultaneously inhibits the receptor tyrosine kinases (RTKs) EGFR and HER2, as well as histone deacetylase (HDAC), was encapsulated in polymeric Molecular Envelope Technology (MET) NPs. The role of polymer chemistry, formulation parameters, and coating with hyaluronidase (HYD) on MET-CUDC-101 NP formulations was examined and optimized to yield high drug loading and colloidal stability, and, after freeze-drying, stable storage at room temperature for up to 90 days. The pharmacokinetic studies in healthy rats showed that plasma AUC0-24h after sc administration correlates tightly with formulation physical chemistry, specifically in vitro colloidal stability. Compared to uncoated NPs, the HYD-coating doubled the drug plasma exposure. In a murine A431 xenograft model, the coated HYD-MET-CUDC-101 NPs at a dose equivalent to 90 mg kg-1 CUDC-101 increased the survival time from 15 days (control animals treated with hyaluronidase alone) to 43 days. Polymer MET nanoparticles coated with hyaluronidase enabled the subcutaneous delivery of a hydrophobic drug with favorable therapeutic outcomes.


Assuntos
Antineoplásicos/administração & dosagem , Carcinoma de Células Escamosas/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Inibidores de Histona Desacetilases/farmacologia , Hialuronoglucosaminidase/química , Ácidos Hidroxâmicos/administração & dosagem , Nanopartículas/química , Polímeros/química , Quinazolinas/administração & dosagem , Animais , Antineoplásicos/sangue , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Quitosana/análogos & derivados , Quitosana/química , Portadores de Fármacos/química , Feminino , Inibidores de Histona Desacetilases/administração & dosagem , Inibidores de Histona Desacetilases/sangue , Histona Desacetilases , Histonas/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Ácidos Hidroxâmicos/sangue , Ácidos Hidroxâmicos/farmacocinética , Camundongos , Camundongos Nus , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Tamanho da Partícula , Quinazolinas/sangue , Quinazolinas/farmacocinética , Ratos , Solubilidade , Ensaios Antitumorais Modelo de Xenoenxerto
19.
World J Surg Oncol ; 18(1): 169, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32677950

RESUMO

BACKGROUND: Malignant brain tumors have been a serious threat to human health worldwide. This study aims to investigate the role of miR-136-3p in glioma development. METHODS: Hematoxylin-eosin staining (H&E) staining was used to determine the pathologic alterations of glioma tissues. Quantitative real-time PCR (qRT-PCR) analysis and GEO2R analysis was performed to examine the expression of miRNAs and genes. Western blot was applied to detect the protein expression. Cell counting kit-8 (CCK-8) and colony formation were used to analyze the glioma cell growth. Trans-well assay was used to determine the cell migration. Annexin V-FITC/PI staining was conducted to determine the cell apoptosis of transfected glioma cells. The dual-luciferase reporter assay was carried out to confirm the binding sites of miR-136-3p on 3' untranslated regions (3' UTR) of Kruppel-like factor 7 (KLF7). Tumor-bearing experiment in nude mice was performed to comprehensively investigate the role of miR-136-3p/KLF7 axis in gliomas. RESULTS: Firstly, the results showed that miR-136-3p was decreased in glioma tissues compared with adjacent tissues. Overexpression of miR-136-3p significantly inhibited cell growth of LN-229 and U251 by decreasing expression of Cyclin A1 and PCNA (proliferating cell nuclear antigen), and it suppressed glioma cell migration by downregulating N-cadherin and elevating E-cadherin levels, and it also promotes glioma cell apoptosis by promoting Bcl2-associated X (Bax) expression but suppressing Bcl-2 expression. Furthermore, we observed that KLF7 was a direct target of miR-136-3p, and KLF7 was negatively regulated by miR-136-3p in glioma cells. Finally, overexpression of KLF7 partly blocked miR-136-3p-induced inhibition of tumor growth in vitro and in vivo. CONCLUSIONS: Targeting miR-136-3p/KLF7 axis might be a novel manner to counter against gliomas.


Assuntos
Glioma , MicroRNAs , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células , Glioma/genética , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Camundongos Nus , MicroRNAs/genética , Prognóstico
20.
Invest New Drugs ; 37(1): 188-198, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30345465

RESUMO

Two novel series of 1,2,3-triazole-phenothiazine hybrids and dithiocarbamate-phenothiazine hybrids were designed and synthesized by molecular hybridization strategy. Their antiproliferative activity against three gastric cancer cell lines (MKN28, MGC-803 and MKN45) were evaluated. Among them, hybrid 13h displayed the most potent inhibitory activity against gastric cancer MGC-803 cells with an IC50 value of 1.2 µM. Hybrid 13h could inhibit migration by regulating the expression level of N-cadherin, E-cadherin, Vimentin, and actived-MMP2. Furthermore, it could regulate wnt/ß-catenin signaling pathway on MGC-803 cells in a concentration-dependent manner by decreasing the expression level of Wnt5α, ß-catenin and TCF4. From the tubulin polymerization assay results in vitro, hybrid 13h was a novel tubulin polymerization inhibitor. By oral administration assay, compound 13h could effectively inhibit MGC-803 xenograft tumor growth in vivo without obvious side effects. In summary, compound 13h might be an orally active antitumor agent with clinical applications to the treatment of gastric cancer. Graphical abstract Antitumor mechanisms of novel phenothiazine derivative.


Assuntos
Antineoplásicos/farmacologia , Movimento Celular/efeitos dos fármacos , Neoplasias Gástricas/tratamento farmacológico , Triazóis/farmacologia , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/química , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Triazóis/química , Moduladores de Tubulina/química , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA