Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell ; 83(19): 3485-3501.e11, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37802024

RESUMO

p62 is a well-characterized autophagy receptor that recognizes and sequesters specific cargoes into autophagosomes for degradation. p62 promotes the assembly and removal of ubiquitinated proteins by forming p62-liquid droplets. However, it remains unclear how autophagosomes efficiently sequester p62 droplets. Herein, we report that p62 undergoes reversible S-acylation in multiple human-, rat-, and mouse-derived cell lines, catalyzed by zinc-finger Asp-His-His-Cys S-acyltransferase 19 (ZDHHC19) and deacylated by acyl protein thioesterase 1 (APT1). S-acylation of p62 enhances the affinity of p62 for microtubule-associated protein 1 light chain 3 (LC3)-positive membranes and promotes autophagic membrane localization of p62 droplets, thereby leading to the production of small LC3-positive p62 droplets and efficient autophagic degradation of p62-cargo complexes. Specifically, increasing p62 acylation by upregulating ZDHHC19 or by genetic knockout of APT1 accelerates p62 degradation and p62-mediated autophagic clearance of ubiquitinated proteins. Thus, the protein S-acylation-deacylation cycle regulates p62 droplet recruitment to the autophagic membrane and selective autophagic flux, thereby contributing to the control of selective autophagic clearance of ubiquitinated proteins.


Assuntos
Autofagossomos , Proteínas Ubiquitinadas , Camundongos , Ratos , Humanos , Animais , Autofagossomos/metabolismo , Proteínas Ubiquitinadas/metabolismo , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Autofagia/genética , Acilação , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mamíferos/metabolismo
2.
Biol Reprod ; 106(3): 477-486, 2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-34897408

RESUMO

Sperm is the ultimate executor of male reproductive function. Normal morphology, quantity, and motility of sperm ensure the normal reproductive process. Palmitoylation is a posttranslational modification mediated by palmitoyltransferases whereby palmitoyl is added to proteins. Seven palmitoyltransferases have been identified in Saccharomyces cerevisiae and 23 in humans (including ZDHHC1-9 and ZDHHC11-24), with corresponding homologs in mice. We identified two testis-specific palmitoyltransferases ZDHHC11 and ZDHHC19 in mice. The Zdhhc11 and Zdhhc19-knockout mouse models were constructed, and it was found that the Zdhhc11 knockout males were fertile, while Zdhhc19 knockout males were sterile. ZDHHC19 is located in the cell membrane of step 4-9 spermatids in the mouse testis, and phenotypic analysis showed that the testicular weight ratio in the Zdhhc19-/- mice decreased along with the number and motility of the sperm decreased, while sperm abnormalities increased, mainly due to the "folded" abnormal sperm caused by sperm membrane fusion, suggesting the involvement of ZDHHC19 in maintaining membrane stability in the male reproductive system. In addition, Zdhhc19-/- mice showed abnormal sperm morphologies and apoptosis during spermatogenesis, suggesting that spermatogenesis in the Zdhhc19-/- mice was abnormal. These results indicate that ZDHHC19 promotes membrane stability in male germ cells.


Assuntos
Aciltransferases , Infertilidade Masculina , Espermátides , Aciltransferases/genética , Aciltransferases/metabolismo , Animais , Membrana Celular/metabolismo , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Motilidade dos Espermatozoides/genética , Espermátides/metabolismo , Espermatogênese/genética , Espermatozoides/metabolismo , Testículo/metabolismo
3.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34445597

RESUMO

Spermatogenesis is a complicated process involving mitotically proliferating spermatogonial cells, meiotically dividing spermatocytes, and spermatid going through maturation into spermatozoa. The post-translational modifications of proteins play important roles in this biological process. S-palmitoylation is one type of protein modifications catalyzed by zinc finger Asp-His-His-Cys (ZDHHC)-family palmitoyl S-acyltransferases. There are 23 mammalian ZDHHCs that have been identified in mouse. Among them, Zdhhc19 is highly expressed in adult testis. However, the in vivo function of Zdhhc19 in mouse spermatogenesis and fertility remains unknown. In this study, we knocked out the Zdhhc19 gene by generating a 2609 bp deletion from exon 3 to exon 6 in mice. No differences were found in testis morphology and testis/body weight ratios upon Zdhhc19 deletion. Spermatogenesis was not disrupted in Zdhhc19 knockout mice, in which properly developed TRA98+ germ cells, SYCP3+ spermatocytes, and TNP1+ spermatids/spermatozoa were detected in seminiferous tubules. Nevertheless, Zdhhc19 knockout mice were male infertile. Zdhhc19 deficient spermatozoa exhibited multiple defects including abnormal morphology of sperm tails and heads, decreased motility, and disturbed acrosome reaction. All of these led to the inability of Zdhhc19 mutant sperm to fertilize oocytes in IVF assays. Taken together, our results support the fact that Zdhhc19 is a testis enriched gene dispensable for spermatogenesis, but is essential for sperm functions in mice.


Assuntos
Aciltransferases/fisiologia , Fertilização , Motilidade dos Espermatozoides , Espermatócitos/citologia , Espermatogênese , Espermatozoides/fisiologia , Reação Acrossômica , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Espermatócitos/fisiologia
4.
Autophagy ; 20(6): 1467-1469, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38124295

RESUMO

Macroautophagy/autophagy is a highly conserved metabolic process that degrades intracellular components and recycles bioenergetic substrates. SQSTM1/p62 (sequestosome 1) is a classical autophagy receptor that participates in selective autophagy to eliminate abnormal intracellular components and recycle bioenergetic substrates. In autophagy, SQSTM1 recruits ubiquitinated substrates to form SQSTM1 droplets and delivers these cargoes to phagophores, the precursors to autophagosomes. Recently, we reported a previously unidentified SQSTM1 S-acylation, which is catalyzed by S-acyltransferase ZDHHC19 and reversed by LYPLA1/APT1. S-acylation of SQSTM1 enhances the affinity of SQSTM1 droplets with the phagophore membrane, thereby promoting efficient autophagic degradation of ubiquitinated substrates. Our study uncovers the role of the S-acylation-deacylation cycle in regulating SQSTM1-mediated selective autophagy.


Assuntos
Autofagia , Proteína Sequestossoma-1 , Proteína Sequestossoma-1/metabolismo , Autofagia/fisiologia , Acilação , Humanos , Animais , Autofagossomos/metabolismo
5.
Bioengineered ; 13(3): 7367-7379, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35297315

RESUMO

Osteosarcoma (OS) is the most frequent malignant primary bone tumor in children and young adults. Zinc finger Asp-His-His-Cys palmitoyl-acyltransferase 19 (ZDHHC19) is a key enzyme in protein palmitoylation and plays crucial roles in tumor progression. However, its expression profile and biological function in OS have been unclear. In the present study, the expression level of ZDHHC19 in OS cell lines was determined by qRT-PCR and Western blot. The effect of ZDHHC19 in cell growth, invasion and migration was analyzed by CCK8, EDU, transwell, wound healing assay in vitro, and xenograft tumor model in vivo. In addition, bioinformatics analysis was used to explore the potential mechanism of ZDHHC19 in OS. Furthermore, the luciferase reporter assay was conducted to determine the direct binding between miR-940 and ZDHHC19. We discovered that ZDHHC19 was overexpressed in OS cells compared with the normal cells. The functional investigation demonstrated that ZDHHC19 silencing could inhibit proliferation, invasion and migration of OS in vitro and suppress tumorigenicity and lung metastasis in a xenograft model in vivo. Mechanistically, we identified that ZDHHC19 was a direct target of miR-940 and forced ZDHHC19 expressions partially rescue the suppression of proliferation, migration and invasion induced by miR-940. Moreover, bioinformatics analysis combined with validation experiments revealed that activating wnt/ß-catenin pathway contributed to the pro-oncogenic effect induced by ZDHHC19. Furthermore, rescue experiments further verified that miR-940/ZDHHC19 axis regulated wnt/ß-catenin pathway. Overall, these findings indicated that miR-940/ZDHHC19 axis played a significant role in OS progression and might be considered as a novel target for OS treatment.Abbreviations: OS, osteosarcoma; miRNAs, microRNAs; 3'-UTR, 3'- untranslated region; TARGET, Therapeutically Applicable Research To Generate Effective Treatments; qRT-PCR, quantitative real-time PCR; IHC, Immunohistochemistry; GSVA, Gene Set Variation Analysis; GSEA, Gene Set Enrichment Analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes.


Assuntos
Aciltransferases/metabolismo , Neoplasias Ósseas , MicroRNAs , Osteossarcoma , Regiões 3' não Traduzidas , Aciltransferases/genética , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Dipeptídeos , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Osteossarcoma/metabolismo , Dedos de Zinco , beta Catenina/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA