Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.307
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(1): 17-31, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608652

RESUMO

Increasing antimicrobial resistance rates have revitalized bacteriophage (phage) research, the natural predators of bacteria discovered over 100 years ago. In order to use phages therapeutically, they should (1) preferably be lytic, (2) kill the bacterial host efficiently, and (3) be fully characterized to exclude side effects. Developing therapeutic phages takes a coordinated effort of multiple stakeholders. Herein, we review the state of the art in phage therapy, covering biological mechanisms, clinical applications, remaining challenges, and future directions involving naturally occurring and genetically modified or synthetic phages.


Assuntos
Bacteriófagos , Terapia por Fagos , Bactérias
2.
Cell ; 186(11): 2410-2424.e18, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37160116

RESUMO

Bacteria use a wide range of immune pathways to counter phage infection. A subset of these genes shares homology with components of eukaryotic immune systems, suggesting that eukaryotes horizontally acquired certain innate immune genes from bacteria. Here, we show that proteins containing a NACHT module, the central feature of the animal nucleotide-binding domain and leucine-rich repeat containing gene family (NLRs), are found in bacteria and defend against phages. NACHT proteins are widespread in bacteria, provide immunity against both DNA and RNA phages, and display the characteristic C-terminal sensor, central NACHT, and N-terminal effector modules. Some bacterial NACHT proteins have domain architectures similar to the human NLRs that are critical components of inflammasomes. Human disease-associated NLR mutations that cause stimulus-independent activation of the inflammasome also activate bacterial NACHT proteins, supporting a shared signaling mechanism. This work establishes that NACHT module-containing proteins are ancient mediators of innate immunity across the tree of life.


Assuntos
Bactérias , Bacteriófagos , Proteínas NLR , Animais , Humanos , Bactérias/genética , Bactérias/metabolismo , Bactérias/virologia , Bacteriófagos/genética , Bacteriófagos/metabolismo , Imunidade Inata , Inflamassomos/metabolismo , Proteínas NLR/genética , Proteínas de Bactérias
3.
Cell ; 186(4): 864-876.e21, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36750095

RESUMO

A fundamental strategy of eukaryotic antiviral immunity involves the cGAS enzyme, which synthesizes 2',3'-cGAMP and activates the effector STING. Diverse bacteria contain cGAS-like enzymes that produce cyclic oligonucleotides and induce anti-phage activity, known as CBASS. However, this activity has only been demonstrated through heterologous expression. Whether bacteria harboring CBASS antagonize and co-evolve with phages is unknown. Here, we identified an endogenous cGAS-like enzyme in Pseudomonas aeruginosa that generates 3',3'-cGAMP during phage infection, signals to a phospholipase effector, and limits phage replication. In response, phages express an anti-CBASS protein ("Acb2") that forms a hexamer with three 3',3'-cGAMP molecules and reduces phospholipase activity. Acb2 also binds to molecules produced by other bacterial cGAS-like enzymes (3',3'-cUU/UA/UG/AA) and mammalian cGAS (2',3'-cGAMP), suggesting broad inhibition of cGAS-based immunity. Upon Acb2 deletion, CBASS blocks lytic phage replication and lysogenic induction, but rare phages evade CBASS through major capsid gene mutations. Altogether, we demonstrate endogenous CBASS anti-phage function and strategies of CBASS inhibition and evasion.


Assuntos
Bactérias , Bacteriófagos , Animais , Bactérias/imunologia , Bactérias/virologia , Bacteriófagos/fisiologia , Imunidade , Nucleotidiltransferases/metabolismo
4.
Cell ; 185(17): 3248-3262.e20, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35985290

RESUMO

Bacteria encode sophisticated anti-phage systems that are diverse and versatile and display high genetic mobility. How this variability and mobility occurs remains largely unknown. Here, we demonstrate that a widespread family of pathogenicity islands, the phage-inducible chromosomal islands (PICIs), carry an impressive arsenal of defense mechanisms, which can be disseminated intra- and inter-generically by helper phages. These defense systems provide broad immunity, blocking not only phage reproduction, but also plasmid and non-cognate PICI transfer. Our results demonstrate that phages can mobilize PICI-encoded immunity systems to use them against other mobile genetic elements, which compete with the phages for the same bacterial hosts. Therefore, despite the cost, mobilization of PICIs may be beneficial for phages, PICIs, and bacteria in nature. Our results suggest that PICIs are important players controlling horizontal gene transfer and that PICIs and phages establish mutualistic interactions that drive bacterial ecology and evolution.


Assuntos
Bacteriófagos , Ilhas Genômicas , Bactérias/genética , Bacteriófagos/genética , Transferência Genética Horizontal , Sistema Imunitário , Plasmídeos
5.
Cell ; 184(3): 675-688.e19, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33421369

RESUMO

CRISPR-Cas systems provide prokaryotes with acquired immunity against viruses and plasmids, but how these systems are regulated to prevent autoimmunity is poorly understood. Here, we show that in the S. pyogenes CRISPR-Cas system, a long-form transactivating CRISPR RNA (tracr-L) folds into a natural single guide that directs Cas9 to transcriptionally repress its own promoter (Pcas). Further, we demonstrate that Pcas serves as a critical regulatory node. De-repression causes a dramatic 3,000-fold increase in immunization rates against viruses; however, heightened immunity comes at the cost of increased autoimmune toxicity. Using bioinformatic analyses, we provide evidence that tracrRNA-mediated autoregulation is widespread in type II-A CRISPR-Cas systems. Collectively, we unveil a new paradigm for the intrinsic regulation of CRISPR-Cas systems by natural single guides, which may facilitate the frequent horizontal transfer of these systems into new hosts that have not yet evolved their own regulatory strategies.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Expressão Gênica , Homeostase/genética , RNA Guia de Cinetoplastídeos/genética , Autoimunidade/genética , Sequência de Bases , Sequência Conservada , Regulação para Baixo/genética , Modelos Genéticos , Mutação/genética , Óperon/genética , Regiões Promotoras Genéticas/genética , Streptococcus pyogenes/genética , Estresse Fisiológico/genética , Transcrição Gênica , Ativação Transcricional/genética
6.
Annu Rev Biochem ; 89: 309-332, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-32186918

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR) together with their accompanying cas (CRISPR-associated) genes are found frequently in bacteria and archaea, serving to defend against invading foreign DNA, such as viral genomes. CRISPR-Cas systems provide a uniquely powerful defense because they can adapt to newly encountered genomes. The adaptive ability of these systems has been exploited, leading to their development as highly effective tools for genome editing. The widespread use of CRISPR-Cas systems has driven a need for methods to control their activity. This review focuses on anti-CRISPRs (Acrs), proteins produced by viruses and other mobile genetic elements that can potently inhibit CRISPR-Cas systems. Discovered in 2013, there are now 54 distinct families of these proteins described, and the functional mechanisms of more than a dozen have been characterized in molecular detail. The investigation of Acrs is leading to a variety of practical applications and is providing exciting new insight into the biology of CRISPR-Cas systems.


Assuntos
Sistemas CRISPR-Cas/efeitos dos fármacos , Edição de Genes/métodos , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas Virais/genética , Vírus/genética , Archaea/genética , Archaea/imunologia , Archaea/virologia , Bactérias/genética , Bactérias/imunologia , Bactérias/virologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Coevolução Biológica , Proteínas Associadas a CRISPR/antagonistas & inibidores , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , DNA/antagonistas & inibidores , DNA/química , DNA/genética , DNA/metabolismo , Clivagem do DNA/efeitos dos fármacos , Endodesoxirribonucleases/antagonistas & inibidores , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Humanos , Modelos Moleculares , Família Multigênica , Ligação Proteica , Multimerização Proteica/efeitos dos fármacos , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Proteínas Virais/farmacologia , Vírus/metabolismo , Vírus/patogenicidade
7.
Cell ; 180(4): 703-716.e18, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32059782

RESUMO

The three-dimensional structures of chromosomes are increasingly being recognized as playing a major role in cellular regulatory states. The efficiency and promiscuity of phage Mu transposition was exploited to directly measure in vivo interactions between genomic loci in E. coli. Two global organizing principles have emerged: first, the chromosome is well-mixed and uncompartmentalized, with transpositions occurring freely between all measured loci; second, several gene families/regions show "clustering": strong three-dimensional co-localization regardless of linear genomic distance. The activities of the SMC/condensin protein MukB and nucleoid-compacting protein subunit HU-α are essential for the well-mixed state; HU-α is also needed for clustering of 6/7 ribosomal RNA-encoding loci. The data are explained by a model in which the chromosomal structure is driven by dynamic competition between DNA replication and chromosomal relaxation, providing a foundation for determining how region-specific properties contribute to both chromosomal structure and gene regulation.


Assuntos
Bacteriófago mu/genética , Cromossomos Bacterianos/genética , Elementos de DNA Transponíveis , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Bacterianos/química , DNA Bacteriano/química , DNA Bacteriano/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genoma Bacteriano , Conformação de Ácido Nucleico , Transposases/genética , Transposases/metabolismo
8.
Cell ; 177(2): 370-383.e15, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30905475

RESUMO

Contractile injection systems (CISs) are cell-puncturing nanodevices that share ancestry with contractile tail bacteriophages. Photorhabdus virulence cassette (PVC) represents one group of extracellular CISs that are present in both bacteria and archaea. Here, we report the cryo-EM structure of an intact PVC from P. asymbiotica. This over 10-MDa device resembles a simplified T4 phage tail, containing a hexagonal baseplate complex with six fibers and a capped 117-nanometer sheath-tube trunk. One distinct feature of the PVC is the presence of three variants for both tube and sheath proteins, indicating a functional specialization of them during evolution. The terminal hexameric cap docks onto the topmost layer of the inner tube and locks the outer sheath in pre-contraction state with six stretching arms. Our results on the PVC provide a framework for understanding the general mechanism of widespread CISs and pave the way for using them as delivery tools in biological or therapeutic applications.


Assuntos
Photorhabdus/química , Photorhabdus/ultraestrutura , Bacteriófago T4/química , Membrana Celular/química , Microscopia Crioeletrônica/métodos , Modelos Moleculares , Photorhabdus/metabolismo , Conformação Proteica , Sistemas de Secreção Tipo VI/metabolismo
9.
Cell ; 179(2): 459-469.e9, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31585083

RESUMO

The rapid emergence of antibiotic-resistant infections is prompting increased interest in phage-based antimicrobials. However, acquisition of resistance by bacteria is a major issue in the successful development of phage therapies. Through natural evolution and structural modeling, we identified host-range-determining regions (HRDRs) in the T3 phage tail fiber protein and developed a high-throughput strategy to genetically engineer these regions through site-directed mutagenesis. Inspired by antibody specificity engineering, this approach generates deep functional diversity while minimizing disruptions to the overall tail fiber structure, resulting in synthetic "phagebodies." We showed that mutating HRDRs yields phagebodies with altered host-ranges, and select phagebodies enable long-term suppression of bacterial growth in vitro, by preventing resistance appearance, and are functional in vivo using a murine model. We anticipate that this approach may facilitate the creation of next-generation antimicrobials that slow resistance development and could be extended to other viral scaffolds for a broad range of applications.


Assuntos
Bacteriófago T3/genética , Infecções por Escherichia coli/terapia , Escherichia coli/virologia , Terapia por Fagos/métodos , Dermatopatias Bacterianas/terapia , Proteínas da Cauda Viral/genética , Animais , Farmacorresistência Bacteriana , Especificidade de Hospedeiro , Camundongos , Mutagênese Sítio-Dirigida
10.
Cell ; 174(4): 917-925.e10, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30033364

RESUMO

Bacteria utilize CRISPR-Cas adaptive immune systems for protection from bacteriophages (phages), and some phages produce anti-CRISPR (Acr) proteins that inhibit immune function. Despite thorough mechanistic and structural information for some Acr proteins, how they are deployed and utilized by a phage during infection is unknown. Here, we show that Acr production does not guarantee phage replication when faced with CRISPR-Cas immunity, but instead, infections fail when phage population numbers fall below a critical threshold. Infections succeed only if a sufficient Acr dose is contributed to a single cell by multiple phage genomes. The production of Acr proteins by phage genomes that fail to replicate leave the cell immunosuppressed, which predisposes the cell for successful infection by other phages in the population. This altruistic mechanism for CRISPR-Cas inhibition demonstrates inter-virus cooperation that may also manifest in other host-parasite interactions.


Assuntos
Bacteriófagos/imunologia , Sistemas CRISPR-Cas/imunologia , Interações Hospedeiro-Patógeno/imunologia , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/virologia , Proteínas Virais/imunologia , Evolução Molecular , Pseudomonas aeruginosa/genética , Proteínas Virais/metabolismo
11.
Cell ; 168(1-2): 150-158.e10, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28041849

RESUMO

Bacterial CRISPR-Cas systems utilize sequence-specific RNA-guided nucleases to defend against bacteriophage infection. As a countermeasure, numerous phages are known that produce proteins to block the function of class 1 CRISPR-Cas systems. However, currently no proteins are known to inhibit the widely used class 2 CRISPR-Cas9 system. To find these inhibitors, we searched cas9-containing bacterial genomes for the co-existence of a CRISPR spacer and its target, a potential indicator for CRISPR inhibition. This analysis led to the discovery of four unique type II-A CRISPR-Cas9 inhibitor proteins encoded by Listeria monocytogenes prophages. More than half of L. monocytogenes strains with cas9 contain at least one prophage-encoded inhibitor, suggesting widespread CRISPR-Cas9 inactivation. Two of these inhibitors also blocked the widely used Streptococcus pyogenes Cas9 when assayed in Escherichia coli and human cells. These natural Cas9-specific "anti-CRISPRs" present tools that can be used to regulate the genome engineering activities of CRISPR-Cas9.


Assuntos
Bacteriófagos/metabolismo , Sistemas CRISPR-Cas , Endonucleases/antagonistas & inibidores , Engenharia Genética , Listeria monocytogenes/enzimologia , Proteínas de Bactérias/antagonistas & inibidores , Proteína 9 Associada à CRISPR , Escherichia coli , Células HEK293 , Humanos , Listeria monocytogenes/imunologia , Listeria monocytogenes/virologia , Prófagos
12.
Annu Rev Biochem ; 84: 1-34, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26034887

RESUMO

I spent my childhood and adolescence in North and South Carolina, attended Duke University, and then entered Duke Medical School. One year in the laboratory of George Schwert in the biochemistry department kindled my interest in biochemistry. After one year of residency on the medical service of Duke Hospital, chaired by Eugene Stead, I joined the group of Arthur Kornberg at Stanford Medical School as a postdoctoral fellow. Two years later I accepted a faculty position at Harvard Medical School, where I remain today. During these 50 years, together with an outstanding group of students, postdoctoral fellows, and collaborators, I have pursued studies on DNA replication. I have experienced the excitement of discovering a number of important enzymes in DNA replication that, in turn, triggered an interest in the dynamics of a replisome. My associations with industry have been stimulating and fostered new friendships. I could not have chosen a better career.


Assuntos
Bioquímica/história , Bacteriófago T7/enzimologia , Bacteriófago T7/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA/história , História do Século XX , História do Século XXI , Aposentadoria , Faculdades de Medicina/história , Estados Unidos
13.
Mol Cell ; 82(5): 907-919.e7, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35134339

RESUMO

Prokaryotic organisms have developed multiple defense systems against phages; however, little is known about whether and how these interact with each other. Here, we studied the connection between two of the most prominent prokaryotic immune systems: restriction-modification and CRISPR. While both systems employ enzymes that cleave a specific DNA sequence of the invader, CRISPR nucleases are programmed with phage-derived spacer sequences, which are integrated into the CRISPR locus upon infection. We found that restriction endonucleases provide a short-term defense, which is rapidly overcome through methylation of the phage genome. In a small fraction of the cells, however, restriction results in the acquisition of spacer sequences from the cleavage site, which mediates a robust type II-A CRISPR-Cas immune response against the methylated phage. This mechanism is reminiscent of eukaryotic immunity in which the innate response offers a first temporary line of defense and also activates a second and more robust adaptive response.


Assuntos
Bacteriófagos , DNA Viral , Bacteriófagos/metabolismo , Sistemas CRISPR-Cas , Enzimas de Restrição do DNA/genética , DNA Viral/genética , Endonucleases/genética , Imunidade
14.
Mol Cell ; 82(11): 2161-2166.e3, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35623354

RESUMO

CRISPR systems are prokaryotic adaptive immune systems that use RNA-guided Cas nucleases to recognize and destroy foreign genetic elements. To overcome CRISPR immunity, bacteriophages have evolved diverse families of anti-CRISPR proteins (Acrs). Recently, Lin et al. (2020) described the discovery and characterization of 7 Acr families (AcrVIA1-7) that inhibit type VI-A CRISPR systems. We detail several inconsistencies that question the results reported in the Lin et al. (2020) study. These include inaccurate bioinformatics analyses and bacterial strains that are impossible to construct. Published strains were provided by the authors, but MS2 bacteriophage plaque assays did not support the published results. We also independently tested the Acr sequences described in the original report, in E. coli and mammalian cells, but did not observe anti-Cas13a activity. Taken together, our data and analyses prompt us to question the claim that AcrVIA1-7 reported in Lin et al. are type VI anti-CRISPR proteins.


Assuntos
Bacteriófagos , Proteínas Associadas a CRISPR , Animais , Bacteriófagos/genética , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Escherichia coli/genética , Escherichia coli/metabolismo , Leptotrichia/genética , Mamíferos/metabolismo , Prófagos/genética , Prófagos/metabolismo , Ribonucleases/metabolismo
15.
Mol Cell ; 81(15): 3145-3159.e7, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34214465

RESUMO

Hershey and Chase used bacteriophage T2 genome delivery inside Escherichia coli to demonstrate that DNA, not protein, is the genetic material. Seventy years later, our understanding of viral genome delivery in prokaryotes remains limited, especially for short-tailed phages of the Podoviridae family. These viruses expel mysterious ejection proteins found inside the capsid to form a DNA-ejectosome for genome delivery into bacteria. Here, we reconstitute the phage T7 DNA-ejectosome components gp14, gp15, and gp16 and solve the periplasmic tunnel structure at 2.7 Å resolution. We find that gp14 forms an outer membrane pore, gp15 assembles into a 210 Å hexameric DNA tube spanning the host periplasm, and gp16 extends into the host cytoplasm forming a ∼4,200 residue hub. Gp16 promotes gp15 oligomerization, coordinating peptidoglycan hydrolysis, DNA binding, and lipid insertion. The reconstituted gp15:gp16 complex lacks channel-forming activity, suggesting that the pore for DNA passage forms only transiently during genome ejection.


Assuntos
Bacteriófago T7/genética , DNA Viral/química , Periplasma/química , Proteínas do Core Viral/química , Biologia Computacional , Microscopia Crioeletrônica , Citoplasma/química , DNA Viral/metabolismo , Bicamadas Lipídicas/metabolismo , Periplasma/genética , Periplasma/metabolismo , Podoviridae/química , Podoviridae/genética , Proteínas do Core Viral/metabolismo
16.
Trends Biochem Sci ; 49(2): 97-98, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37980188

RESUMO

Bacteriophages have been a treasure trove for the discovery of fundamental biological principles and the expansion of our enzymatic toolkit since the dawn of molecular biology. In a recent study by Wolfram-Schauerte et al. these ubiquitous bacteria-infecting viruses reveal yet another new biological concept: post-translational modification through covalent RNA-protein linkages.


Assuntos
Bacteriófagos , Bacteriófagos/genética , RNA , Processamento de Proteína Pós-Traducional
17.
Annu Rev Microbiol ; 77: 363-379, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37307857

RESUMO

The gut microbiome is a dense and metabolically active consortium of microorganisms and viruses located in the lower gastrointestinal tract of the human body. Bacteria and their viruses (phages) are the most abundant members of the gut microbiome. Investigating their biology and the interplay between the two is important if we are to understand their roles in human health and disease. In this review, we summarize recent advances in resolving the taxonomic structure and ecological functions of the complex community of phages in the human gut-the gut phageome. We discuss how age, diet, and geography can all have a significant impact on phageome composition. We note that alterations to the gut phageome have been observed in several diseases such as inflammatory bowel disease, irritable bowel syndrome, and colorectal cancer, and we evaluate whether these phageome changes can directly or indirectly contribute to disease etiology and pathogenesis. We also highlight how lack of standardization in studying the gut phageome has contributed to variation in reported results.


Assuntos
Bacteriófagos , Microbioma Gastrointestinal , Humanos , Viroma , Bacteriófagos/genética
18.
Mol Cell ; 77(4): 723-733.e6, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31932164

RESUMO

Bacteria possess an array of defenses against foreign invaders, including a broadly distributed bacteriophage defense system termed CBASS (cyclic oligonucleotide-based anti-phage signaling system). In CBASS systems, a cGAS/DncV-like nucleotidyltransferase synthesizes cyclic di- or tri-nucleotide second messengers in response to infection, and these molecules activate diverse effectors to mediate bacteriophage immunity via abortive infection. Here, we show that the CBASS effector NucC is related to restriction enzymes but uniquely assembles into a homotrimer. Binding of NucC trimers to a cyclic tri-adenylate second messenger promotes assembly of a NucC homohexamer competent for non-specific double-strand DNA cleavage. In infected cells, NucC activation leads to complete destruction of the bacterial chromosome, causing cell death prior to completion of phage replication. In addition to CBASS systems, we identify NucC homologs in over 30 type III CRISPR/Cas systems, where they likely function as accessory nucleases activated by cyclic oligoadenylate second messengers synthesized by these systems' effector complexes.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Desoxirribonuclease I/química , Desoxirribonuclease I/metabolismo , Escherichia coli/virologia , Regulação Alostérica , Bacteriófago lambda/genética , Bacteriófago lambda/fisiologia , Sistemas CRISPR-Cas , Clivagem do DNA , Enzimas de Restrição do DNA/química , Escherichia coli/enzimologia , Escherichia coli/imunologia , Genoma Viral , Multimerização Proteica , Sistemas do Segundo Mensageiro
19.
Mol Cell ; 77(4): 709-722.e7, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31932165

RESUMO

Bacteria are continually challenged by foreign invaders, including bacteriophages, and have evolved a variety of defenses against these invaders. Here, we describe the structural and biochemical mechanisms of a bacteriophage immunity pathway found in a broad array of bacteria, including E. coli and Pseudomonas aeruginosa. This pathway uses eukaryotic-like HORMA domain proteins that recognize specific peptides, then bind and activate a cGAS/DncV-like nucleotidyltransferase (CD-NTase) to generate a cyclic triadenylate (cAAA) second messenger; cAAA in turn activates an endonuclease effector, NucC. Signaling is attenuated by a homolog of the AAA+ ATPase Pch2/TRIP13, which binds and disassembles the active HORMA-CD-NTase complex. When expressed in non-pathogenic E. coli, this pathway confers immunity against bacteriophage λ through an abortive infection mechanism. Our findings reveal the molecular mechanisms of a bacterial defense pathway integrating a cGAS-like nucleotidyltransferase with HORMA domain proteins for threat sensing through protein detection and negative regulation by a Trip13 ATPase.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli/virologia , Nucleotidiltransferases/metabolismo , ATPases Associadas a Diversas Atividades Celulares/química , Proteínas de Bactérias/química , Bacteriófago lambda/fisiologia , Desoxirribonuclease I/metabolismo , Escherichia coli/imunologia , Escherichia coli/metabolismo , Nucleotidiltransferases/química , Peptídeos/metabolismo , Sistemas do Segundo Mensageiro
20.
EMBO J ; 42(3): e111562, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36504455

RESUMO

Pandemic and endemic strains of Vibrio cholerae arise from toxigenic conversion by the CTXφ bacteriophage, a process by which CTXφ infects nontoxigenic strains of V. cholerae. CTXφ encodes the cholera toxin, an enterotoxin responsible for the watery diarrhea associated with cholera infections. Despite the critical role of CTXφ during infections, signals that affect CTXφ-driven toxigenic conversion or expression of the CTXφ-encoded cholera toxin remain poorly characterized, particularly in the context of the gut mucosa. Here, we identify mucin polymers as potent regulators of CTXφ-driven pathogenicity in V. cholerae. Our results indicate that mucin-associated O-glycans block toxigenic conversion by CTXφ and suppress the expression of CTXφ-related virulence factors, including the toxin co-regulated pilus and cholera toxin, by interfering with the TcpP/ToxR/ToxT virulence pathway. By synthesizing individual mucin glycan structures de novo, we identify the Core 2 motif as the critical structure governing this virulence attenuation. Overall, our results highlight a novel mechanism by which mucins and their associated O-glycan structures affect CTXφ-mediated evolution and pathogenicity of V. cholerae, underscoring the potential regulatory power housed within mucus.


Assuntos
Bacteriófagos , Toxina da Cólera , Mucinas , Vibrio cholerae , Virulência , Bacteriófagos/genética , Bacteriófagos/patogenicidade , Toxina da Cólera/genética , Toxina da Cólera/metabolismo , Mucinas/genética , Mucinas/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Virulência/genética , Virulência/fisiologia , Polissacarídeos/genética , Polissacarídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA