Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84.146
Filtrar
Mais filtros

Coleção BVS Equador
Intervalo de ano de publicação
1.
Annu Rev Immunol ; 36: 639-665, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29400999

RESUMO

Granulomas are organized aggregates of macrophages, often with characteristic morphological changes, and other immune cells. These evolutionarily ancient structures form in response to persistent particulate stimuli-infectious or noninfectious-that individual macrophages cannot eradicate. Granulomas evolved as protective responses to destroy or sequester particles but are frequently pathological in the context of foreign bodies, infections, and inflammatory diseases. We summarize recent findings that suggest that the granulomatous response unfolds in a stepwise program characterized by a series of macrophage activations and transformations that in turn recruit additional cells and produce structural changes. We explore why different granulomas vary and the reasons that granulomas are protective and pathogenic. Understanding the mechanisms and role of granuloma formation may uncover new therapies for the multitude of granulomatous diseases that constitute serious medical problems while enhancing the protective function of granulomas in infections.


Assuntos
Granuloma/diagnóstico , Granuloma/etiologia , Animais , Diagnóstico Diferencial , Fibrose , Interações Hospedeiro-Patógeno/imunologia , Humanos , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Necrose , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
2.
Cell ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39178853

RESUMO

Animals adapt to environmental conditions by modifying the function of their internal organs, including the brain. To be adaptive, alterations in behavior must be coordinated with the functional state of organs throughout the body. Here, we find that thyroid hormone-a regulator of metabolism in many peripheral organs-directly activates cell-type-specific transcriptional programs in the frontal cortex of adult male mice. These programs are enriched for axon-guidance genes in glutamatergic projection neurons, synaptic regulatory genes in both astrocytes and neurons, and pro-myelination factors in oligodendrocytes, suggesting widespread plasticity of cortical circuits. Indeed, whole-cell electrophysiology revealed that thyroid hormone alters excitatory and inhibitory synaptic transmission, an effect that requires thyroid hormone-induced gene regulatory programs in presynaptic neurons. Furthermore, thyroid hormone action in the frontal cortex regulates innate exploratory behaviors and causally promotes exploratory decision-making. Thus, thyroid hormone acts directly on the cerebral cortex in males to coordinate exploratory behaviors with whole-body metabolic state.

3.
Cell ; 187(11): 2855-2874.e19, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38657603

RESUMO

Progress in understanding early human development has been impeded by the scarcity of reference datasets from natural embryos, particularly those with spatial information during crucial stages like gastrulation. We conducted high-resolution spatial transcriptomics profiling on 38,562 spots from 62 transverse sections of an intact Carnegie stage (CS) 8 human embryo. From this spatial transcriptomic dataset, we constructed a 3D model of the CS8 embryo, in which a range of cell subtypes are identified, based on gene expression patterns and positional register, along the anterior-posterior, medial-lateral, and dorsal-ventral axis in the embryo. We further characterized the lineage trajectories of embryonic and extra-embryonic tissues and associated regulons and the regionalization of signaling centers and signaling activities that underpin lineage progression and tissue patterning during gastrulation. Collectively, the findings of this study provide insights into gastrulation and post-gastrulation development of the human embryo.


Assuntos
Embrião de Mamíferos , Gastrulação , Regulação da Expressão Gênica no Desenvolvimento , Imageamento Tridimensional , Humanos , Embrião de Mamíferos/metabolismo , Transcriptoma/genética , Gástrula/metabolismo , Gástrula/embriologia , Transdução de Sinais , Linhagem da Célula , Perfilação da Expressão Gênica , Padronização Corporal/genética
4.
Cell ; 186(6): 1144-1161.e18, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36868219

RESUMO

Germinal centers (GCs) that form within lymphoid follicles during antibody responses are sites of massive cell death. Tingible body macrophages (TBMs) are tasked with apoptotic cell clearance to prevent secondary necrosis and autoimmune activation by intracellular self antigens. We show by multiple redundant and complementary methods that TBMs derive from a lymph node-resident, CD169-lineage, CSF1R-blockade-resistant precursor that is prepositioned in the follicle. Non-migratory TBMs use cytoplasmic processes to chase and capture migrating dead cell fragments using a "lazy" search strategy. Follicular macrophages activated by the presence of nearby apoptotic cells can mature into TBMs in the absence of GCs. Single-cell transcriptomics identified a TBM cell cluster in immunized lymph nodes which upregulated genes involved in apoptotic cell clearance. Thus, apoptotic B cells in early GCs trigger activation and maturation of follicular macrophages into classical TBMs to clear apoptotic debris and prevent antibody-mediated autoimmune diseases.


Assuntos
Centro Germinativo , Linfonodos , Macrófagos , Apoptose , Linfócitos B , Linfonodos/citologia , Macrófagos/citologia , Macrófagos/metabolismo
5.
Cell ; 186(16): 3350-3367.e19, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37421950

RESUMO

Synucleinopathies are characterized by the accumulation of α-synuclein (α-Syn) aggregates in the brain. Positron emission tomography (PET) imaging of synucleinopathies requires radiopharmaceuticals that selectively bind α-Syn deposits. We report the identification of a brain permeable and rapid washout PET tracer [18F]-F0502B, which shows high binding affinity for α-Syn, but not for Aß or Tau fibrils, and preferential binding to α-Syn aggregates in the brain sections. Employing several cycles of counter screenings with in vitro fibrils, intraneuronal aggregates, and neurodegenerative disease brain sections from several mice models and human subjects, [18F]-F0502B images α-Syn deposits in the brains of mouse and non-human primate PD models. We further determined the atomic structure of the α-Syn fibril-F0502B complex by cryo-EM and revealed parallel diagonal stacking of F0502B on the fibril surface through an intense noncovalent bonding network via inter-ligand interactions. Therefore, [18F]-F0502B is a promising lead compound for imaging aggregated α-Syn in synucleinopathies.


Assuntos
Doenças Neurodegenerativas , Sinucleinopatias , Animais , Humanos , alfa-Sinucleína/metabolismo , Sinucleinopatias/diagnóstico por imagem , Sinucleinopatias/metabolismo , Doenças Neurodegenerativas/metabolismo , Tomografia por Emissão de Pósitrons , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo
6.
Cell ; 186(7): 1352-1368.e18, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37001500

RESUMO

Resilience enables mental elasticity in individuals when rebounding from adversity. In this study, we identified a microcircuit and relevant molecular adaptations that play a role in natural resilience. We found that activation of parvalbumin (PV) interneurons in the primary auditory cortex (A1) by thalamic inputs from the ipsilateral medial geniculate body (MG) is essential for resilience in mice exposed to chronic social defeat stress. Early attacks during chronic social defeat stress induced short-term hyperpolarizations of MG neurons projecting to the A1 (MGA1 neurons) in resilient mice. In addition, this temporal neural plasticity of MGA1 neurons initiated synaptogenesis onto thalamic PV neurons via presynaptic BDNF-TrkB signaling in subsequent stress responses. Moreover, optogenetic mimicking of the short-term hyperpolarization of MGA1 neurons, rather than merely activating MGA1 neurons, elicited innate resilience mechanisms in response to stress and achieved sustained antidepressant-like effects in multiple animal models, representing a new strategy for targeted neuromodulation.


Assuntos
Córtex Auditivo , Camundongos , Animais , Córtex Auditivo/metabolismo , Tálamo/fisiologia , Neurônios/metabolismo , Corpos Geniculados , Interneurônios/fisiologia , Parvalbuminas/metabolismo
7.
Cell ; 185(14): 2576-2590.e12, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35623357

RESUMO

Mouse germline cysts, on average, develop into six oocytes supported by 24 nurse cells that transfer cytoplasm and organelles to generate a Balbiani body. We showed that between E14.5 and P5, cysts periodically activate some nurse cells to begin cytoplasmic transfer, which causes them to shrink and turnover within 2 days. Nurse cells die by a programmed cell death (PCD) pathway involving acidification, similar to Drosophila nurse cells, and only infrequently by apoptosis. Prior to initiating transfer, nurse cells co-cluster by scRNA-seq with their pro-oocyte sisters, but during their final 2 days, they cluster separately. The genes promoting oocyte development and nurse cell PCD are upregulated, whereas the genes that repress transfer, such as Tex14, and oocyte factors, such as Nobox and Lhx8, are under-expressed. The transferred nurse cell centrosomes build a cytocentrum that establishes a large microtubule aster in the primordial oocyte that organizes the Balbiani body, defining the earliest oocyte polarity.


Assuntos
Linhagem da Célula , Cistos , Oócitos , Animais , Apoptose , Crescimento Celular , Cistos/genética , Cistos/metabolismo , Citoplasma/metabolismo , Drosophila melanogaster , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Oócitos/citologia , Oócitos/metabolismo , Ovário/citologia , Ovário/embriologia , Ovário/metabolismo
8.
Cell ; 185(12): 2035-2056.e33, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35688132

RESUMO

Alpha-synuclein (αS) is a conformationally plastic protein that reversibly binds to cellular membranes. It aggregates and is genetically linked to Parkinson's disease (PD). Here, we show that αS directly modulates processing bodies (P-bodies), membraneless organelles that function in mRNA turnover and storage. The N terminus of αS, but not other synucleins, dictates mutually exclusive binding either to cellular membranes or to P-bodies in the cytosol. αS associates with multiple decapping proteins in close proximity on the Edc4 scaffold. As αS pathologically accumulates, aberrant interaction with Edc4 occurs at the expense of physiologic decapping-module interactions. mRNA decay kinetics within PD-relevant pathways are correspondingly disrupted in PD patient neurons and brain. Genetic modulation of P-body components alters αS toxicity, and human genetic analysis lends support to the disease-relevance of these interactions. Beyond revealing an unexpected aspect of αS function and pathology, our data highlight the versatility of conformationally plastic proteins with high intrinsic disorder.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , Doença de Parkinson/metabolismo , Corpos de Processamento , Estabilidade de RNA , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
9.
Cell ; 184(14): 3612-3625.e17, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34115980

RESUMO

Biomolecular condensation is a widespread mechanism of cellular compartmentalization. Because the "survival of motor neuron protein" (SMN) is implicated in the formation of three different membraneless organelles (MLOs), we hypothesized that SMN promotes condensation. Unexpectedly, we found that SMN's globular tudor domain was sufficient for dimerization-induced condensation in vivo, whereas its two intrinsically disordered regions (IDRs) were not. Binding to dimethylarginine (DMA) modified protein ligands was required for condensate formation by the tudor domains in SMN and at least seven other fly and human proteins. Remarkably, asymmetric versus symmetric DMA determined whether two distinct nuclear MLOs-gems and Cajal bodies-were separate or "docked" to one another. This substructure depended on the presence of either asymmetric or symmetric DMA as visualized with sub-diffraction microscopy. Thus, DMA-tudor interaction modules-combinations of tudor domains bound to their DMA ligand(s)-represent versatile yet specific regulators of MLO assembly, composition, and morphology.


Assuntos
Arginina/análogos & derivados , Condensados Biomoleculares/metabolismo , Proteínas do Complexo SMN/química , Proteínas do Complexo SMN/metabolismo , Animais , Arginina/metabolismo , Núcleo Celular/metabolismo , Corpos Enovelados/metabolismo , Drosophila melanogaster/metabolismo , Células HEK293 , Células HeLa , Humanos , Ligantes , Metilação , Camundongos , Modelos Biológicos , Células NIH 3T3 , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Ribonucleoproteínas Nucleares Pequenas/metabolismo
10.
Cell ; 178(1): 60-75.e19, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31230716

RESUMO

Animals rely on the relative timing of events in their environment to form and update predictive associations, but the molecular and circuit mechanisms for this temporal sensitivity remain incompletely understood. Here, we show that olfactory associations in Drosophila can be written and reversed on a trial-by-trial basis depending on the temporal relationship between an odor cue and dopaminergic reinforcement. Through the synchronous recording of neural activity and behavior, we show that reversals in learned odor attraction correlate with bidirectional neural plasticity in the mushroom body, the associative olfactory center of the fly. Two dopamine receptors, DopR1 and DopR2, contribute to this temporal sensitivity by coupling to distinct second messengers and directing either synaptic depression or potentiation. Our results reveal how dopamine-receptor signaling pathways can detect the order of events to instruct opposing forms of synaptic and behavioral plasticity, allowing animals to flexibly update their associations in a dynamic environment.


Assuntos
Aprendizagem por Associação/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Corpos Pedunculados/fisiologia , Receptores de Dopamina D1/metabolismo , Receptores Dopaminérgicos/metabolismo , Animais , Comportamento Animal/fisiologia , Condicionamento Clássico/fisiologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Plasticidade Neuronal , Odorantes , Recompensa , Olfato/fisiologia , Potenciais Sinápticos/fisiologia , Fatores de Tempo
11.
Cell ; 177(3): 587-596.e9, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-31002795

RESUMO

Severe obesity is a rapidly growing global health threat. Although often attributed to unhealthy lifestyle choices or environmental factors, obesity is known to be heritable and highly polygenic; the majority of inherited susceptibility is related to the cumulative effect of many common DNA variants. Here we derive and validate a new polygenic predictor comprised of 2.1 million common variants to quantify this susceptibility and test this predictor in more than 300,000 individuals ranging from middle age to birth. Among middle-aged adults, we observe a 13-kg gradient in weight and a 25-fold gradient in risk of severe obesity across polygenic score deciles. In a longitudinal birth cohort, we note minimal differences in birthweight across score deciles, but a significant gradient emerged in early childhood and reached 12 kg by 18 years of age. This new approach to quantify inherited susceptibility to obesity affords new opportunities for clinical prevention and mechanistic assessment.


Assuntos
Peso Corporal , Herança Multifatorial/genética , Obesidade/patologia , Adolescente , Índice de Massa Corporal , Criança , Bases de Dados Factuais , Feminino , Estudo de Associação Genômica Ampla , Humanos , Recém-Nascido , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Obesidade/genética , Fatores de Risco , Índice de Gravidade de Doença
12.
Cell ; 175(5): 1405-1417.e14, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30318144

RESUMO

Programmable control of spatial genome organization is a powerful approach for studying how nuclear structure affects gene regulation and cellular function. Here, we develop a versatile CRISPR-genome organization (CRISPR-GO) system that can efficiently control the spatial positioning of genomic loci relative to specific nuclear compartments, including the nuclear periphery, Cajal bodies, and promyelocytic leukemia (PML) bodies. CRISPR-GO is chemically inducible and reversible, enabling interrogation of real-time dynamics of chromatin interactions with nuclear compartments in living cells. Inducible repositioning of genomic loci to the nuclear periphery allows for dissection of mitosis-dependent and -independent relocalization events and also for interrogation of the relationship between gene position and gene expression. CRISPR-GO mediates rapid de novo formation of Cajal bodies at desired chromatin loci and causes significant repression of endogenous gene expression over long distances (30-600 kb). The CRISPR-GO system offers a programmable platform to investigate large-scale spatial genome organization and function.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Genoma , Ácido Abscísico/farmacologia , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Corpos Enovelados/genética , Regulação da Expressão Gênica , Loci Gênicos , Humanos , Hibridização in Situ Fluorescente , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos
13.
Cell ; 175(2): 530-543.e24, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30220458

RESUMO

The occurrence of a spontaneous nephropathy with intranuclear inclusions in laboratory mice has puzzled pathologists for over 4 decades, because its etiology remains elusive. The condition is more severe in immunodeficient animals, suggesting an infectious cause. Using metagenomics, we identify the causative agent as an atypical virus, termed "mouse kidney parvovirus" (MKPV), belonging to a divergent genus of Parvoviridae. MKPV was identified in animal facilities in Australia and North America, is transmitted via a fecal-oral or urinary-oral route, and is controlled by the adaptive immune system. Detailed analysis of the clinical course and histopathological features demonstrated a stepwise progression of pathology ranging from sporadic tubular inclusions to tubular degeneration and interstitial fibrosis and culminating in renal failure. In summary, we identify a widely distributed pathogen in laboratory mice and establish MKPV-induced nephropathy as a new tool for elucidating mechanisms of tubulointerstitial fibrosis that shares molecular features with chronic kidney disease in humans.


Assuntos
Nefrite Intersticial/virologia , Parvovirus/isolamento & purificação , Parvovirus/patogenicidade , Animais , Austrália , Progressão da Doença , Feminino , Fibrose/patologia , Fibrose/virologia , Humanos , Rim/metabolismo , Rim/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nefrite Intersticial/fisiopatologia , América do Norte , Infecções por Parvoviridae/metabolismo
14.
Cell ; 174(3): 730-743.e22, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30033368

RESUMO

Drosophila melanogaster has a rich repertoire of innate and learned behaviors. Its 100,000-neuron brain is a large but tractable target for comprehensive neural circuit mapping. Only electron microscopy (EM) enables complete, unbiased mapping of synaptic connectivity; however, the fly brain is too large for conventional EM. We developed a custom high-throughput EM platform and imaged the entire brain of an adult female fly at synaptic resolution. To validate the dataset, we traced brain-spanning circuitry involving the mushroom body (MB), which has been extensively studied for its role in learning. All inputs to Kenyon cells (KCs), the intrinsic neurons of the MB, were mapped, revealing a previously unknown cell type, postsynaptic partners of KC dendrites, and unexpected clustering of olfactory projection neurons. These reconstructions show that this freely available EM volume supports mapping of brain-spanning circuits, which will significantly accelerate Drosophila neuroscience. VIDEO ABSTRACT.


Assuntos
Mapeamento Encefálico/métodos , Conectoma/métodos , Rede Nervosa/anatomia & histologia , Animais , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Dendritos , Drosophila melanogaster/anatomia & histologia , Feminino , Microscopia Eletrônica/métodos , Corpos Pedunculados , Neurônios , Olfato/fisiologia , Software
15.
Cell ; 174(1): 218-230.e13, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29804836

RESUMO

Ribonucleoprotein enzymes require dynamic conformations of their RNA constituents for regulated catalysis. Human telomerase employs a non-coding RNA (hTR) with a bipartite arrangement of domains-a template-containing core and a distal three-way junction (CR4/5) that stimulates catalysis through unknown means. Here, we show that telomerase activity unexpectedly depends upon the holoenzyme protein TCAB1, which in turn controls conformation of CR4/5. Cells lacking TCAB1 exhibit a marked reduction in telomerase catalysis without affecting enzyme assembly. Instead, TCAB1 inactivation causes unfolding of CR4/5 helices that are required for catalysis and for association with the telomerase reverse-transcriptase (TERT). CR4/5 mutations derived from patients with telomere biology disorders provoke defects in catalysis and TERT binding similar to TCAB1 inactivation. These findings reveal a conformational "activity switch" in human telomerase RNA controlling catalysis and TERT engagement. The identification of two discrete catalytic states for telomerase suggests an intramolecular means for controlling telomerase in cancers and progenitor cells.


Assuntos
RNA não Traduzido/química , Telomerase/metabolismo , Biocatálise , Linhagem Celular , Células HeLa , Humanos , Chaperonas Moleculares , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Conformação de Ácido Nucleico , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , RNA não Traduzido/metabolismo , Telomerase/antagonistas & inibidores , Telomerase/química , Telomerase/genética , Telômero/metabolismo
16.
Annu Rev Neurosci ; 47(1): 1-20, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38360566

RESUMO

Auditory processing in mammals begins in the peripheral inner ear and extends to the auditory cortex. Sound is transduced from mechanical stimuli into electrochemical signals of hair cells, which relay auditory information via the primary auditory neurons to cochlear nuclei. Information is subsequently processed in the superior olivary complex, lateral lemniscus, and inferior colliculus and projects to the auditory cortex via the medial geniculate body in the thalamus. Recent advances have provided valuable insights into the development and functioning of auditory structures, complementing our understanding of the physiological mechanisms underlying auditory processing. This comprehensive review explores the genetic mechanisms required for auditory system development from the peripheral cochlea to the auditory cortex. We highlight transcription factors and other genes with key recurring and interacting roles in guiding auditory system development and organization. Understanding these gene regulatory networks holds promise for developing novel therapeutic strategies for hearing disorders, benefiting millions globally.


Assuntos
Vias Auditivas , Audição , Animais , Audição/fisiologia , Vias Auditivas/fisiologia , Humanos , Encéfalo/metabolismo , Encéfalo/crescimento & desenvolvimento , Córtex Auditivo/metabolismo , Córtex Auditivo/fisiologia
17.
Cell ; 170(3): 429-442.e11, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28753423

RESUMO

Hunger, driven by negative energy balance, elicits the search for and consumption of food. While this response is in part mediated by neurons in the hypothalamus, the role of specific cell types in other brain regions is less well defined. Here, we show that neurons in the dorsal raphe nucleus, expressing vesicular transporters for GABA or glutamate (hereafter, DRNVgat and DRNVGLUT3 neurons), are reciprocally activated by changes in energy balance and that modulating their activity has opposite effects on feeding-DRNVgat neurons increase, whereas DRNVGLUT3 neurons suppress, food intake. Furthermore, modulation of these neurons in obese (ob/ob) mice suppresses food intake and body weight and normalizes locomotor activity. Finally, using molecular profiling, we identify druggable targets in these neurons and show that local infusion of agonists for specific receptors on these neurons has potent effects on feeding. These data establish the DRN as an important node controlling energy balance. PAPERCLIP.


Assuntos
Regulação do Apetite , Núcleo Dorsal da Rafe/metabolismo , Neurônios/metabolismo , Animais , Peso Corporal , Encéfalo/fisiologia , Núcleo Dorsal da Rafe/citologia , Eletrofisiologia , Jejum , Fome , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Optogenética
18.
Cell ; 169(1): 13-23, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28340338

RESUMO

Phase-separated multi-molecular assemblies provide a general regulatory mechanism to compartmentalize biochemical reactions within cells. We propose that a phase separation model explains established and recently described features of transcriptional control. These features include the formation of super-enhancers, the sensitivity of super-enhancers to perturbation, the transcriptional bursting patterns of enhancers, and the ability of an enhancer to produce simultaneous activation at multiple genes. This model provides a conceptual framework to further explore principles of gene control in mammals.


Assuntos
Regulação da Expressão Gênica , Modelos Biológicos , Transcrição Gênica , Animais , Elementos Facilitadores Genéticos , Células Eucarióticas/metabolismo , Humanos , Fatores de Transcrição/metabolismo , Ativação Transcricional
19.
Cell ; 169(5): 956-969.e17, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28502772

RESUMO

Animals exhibit a behavioral response to novel sensory stimuli about which they have no prior knowledge. We have examined the neural and behavioral correlates of novelty and familiarity in the olfactory system of Drosophila. Novel odors elicit strong activity in output neurons (MBONs) of the α'3 compartment of the mushroom body that is rapidly suppressed upon repeated exposure to the same odor. This transition in neural activity upon familiarization requires odor-evoked activity in the dopaminergic neuron innervating this compartment. Moreover, exposure of a fly to novel odors evokes an alerting response that can also be elicited by optogenetic activation of α'3 MBONs. Silencing these MBONs eliminates the alerting behavior. These data suggest that the α'3 compartment plays a causal role in the behavioral response to novel and familiar stimuli as a consequence of dopamine-mediated plasticity at the Kenyon cell-MBONα'3 synapse.


Assuntos
Drosophila melanogaster/fisiologia , Corpos Pedunculados/fisiologia , Animais , Neurônios Dopaminérgicos/fisiologia , Aprendizagem , Memória , Corpos Pedunculados/citologia , Odorantes , Olfato
20.
Cell ; 171(1): 179-187.e10, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28890085

RESUMO

Expression of many disease-related aggregation-prone proteins results in cytotoxicity and the formation of large intracellular inclusion bodies. To gain insight into the role of inclusions in pathology and the in situ structure of protein aggregates inside cells, we employ advanced cryo-electron tomography methods to analyze the structure of inclusions formed by polyglutamine (polyQ)-expanded huntingtin exon 1 within their intact cellular context. In primary mouse neurons and immortalized human cells, polyQ inclusions consist of amyloid-like fibrils that interact with cellular endomembranes, particularly of the endoplasmic reticulum (ER). Interactions with these fibrils lead to membrane deformation, the local impairment of ER organization, and profound alterations in ER membrane dynamics at the inclusion periphery. These results suggest that aberrant interactions between fibrils and endomembranes contribute to the deleterious cellular effects of protein aggregation. VIDEO ABSTRACT.


Assuntos
Doença de Huntington/patologia , Corpos de Inclusão/patologia , Neurônios/patologia , Neurônios/ultraestrutura , Peptídeos/metabolismo , Amiloide/química , Animais , Microscopia Crioeletrônica , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Feminino , Células HeLa , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Corpos de Inclusão/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Mutação , Agregação Patológica de Proteínas , Tomografia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA