Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 691: 149334, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38042034

RESUMO

The combination of carbon ion radiotherapy and anti-PD-1 antibody represents a new approach to treating thoracic tumors. However, the lung damage caused by this combination therapy may limit its use, and the potential mechanisms for this are worthy of investigation. The objective of this research was to examine the potential involvement of repulsive guidance molecule b (RGMb) in lung damage promoted by the utilization of carbon ion irradiation combined with an anti-PD-1 antibody. The C57BL/6 mice have been randomly separated into four distinct groups: control, anti-PD-1, whole thorax carbon ion irradiation, and irradiation in combination with anti-PD-1 treatment groups (combination group). Detection of pathological changes in lung tissue using HE staining. Detection of pulmonary fibrosis by Masson staining and the hydroxyproline assay. ELISA to detect TNF-α, TGF-ß, IL-6, and IL-1ß expression levels within lung homogenates. The expression of RGMb, p38 MAPK, and Erk1/2 pathways was detected using a fully automated digital Western blotting system WES (ProteinSimple, USA). Flow cytometry was employed to analyze tissue-resident memory T cells (TRM) within the lung. Subsequently, the siRNA gene was employed to induce the downregulation of RGMb in mice in order to validate the involvement of RGMb in radiation-immune lung injury. The present study observed a significant increase in both inflammatory and fibrotic indicators within the mice group's lung tissue that received the combination treatment. The combination group exhibited elevated levels of TGF-ß, TNF-α, IL-6, and IL-1ß in lung homogenates. Anti-PD-1 antibody and carbon ion irradiation, upregulated RGMb, phospho-p38 MAPK and phospho-Erk1/2. The results obtained from the flow cytometry analysis indicated that the combination group was significantly higher in the number of clonal expansion TRMs, which were predominantly characterized by the expression of CD8+CD103+CD69-TRMs. The downregulate of RGMb via siRNA in mice resulted in a decrease in phospho-p38 MAPK and phospho-Erk1/2. The combination group exhibited a reduction in TNF-α, TGF-ß, IL-6, and IL-1ß in their lung tissues, and the number of CD8+CD103+CD69-TRM was significantly reduced. The combination group exhibited a significant improvement in inflammatory and fibrotic indicators within the lung tissues. Anti-PD-1 antibody and carbon ion irradiation synergistically regulate RGMb, leading to strong clonal expansion of lung TRM through the p38 MAPK and Erk1/2 pathways. The present study offers valuable insights into the treatment of lung injury due to the combined administration of carbon ion radiotherapy and anti-PD-1 antibody therapy.


Assuntos
Lesão Pulmonar , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Camundongos , Fator de Necrose Tumoral alfa , Interleucina-6 , Camundongos Endogâmicos C57BL , Fator de Crescimento Transformador beta , RNA Interferente Pequeno , Carbono
2.
J Cell Physiol ; 238(8): 1836-1849, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37334439

RESUMO

Quiescent cancer cells are major impediments to effective radiotherapy (RT) and exhibit limited sensitivity to traditional photon therapy. Herein, the functional role and underlying mechanism of carbon ions in overcoming the radioresistance of quiescent cervical cancer HeLa cells were determined. Briefly, serum withdrawal was used to induce synchronized quiescence in HeLa cells. Quiescent HeLa cells displayed strong radioresistance and DNA repair potential. After irradiation with carbon ions, the DNA damage repair pathway may markedly rely on error-prone nonhomologous end-joining in proliferating cells, whereas the high-precision homologous recombination pathway is more relevant in quiescent cells. This phenomenon could be explained by the ionizing radiation (IR)-induced cell cycle re-entry of quiescent cancer cells. There are three strategies for eradicating quiescent cancer cells using high-linear energy transfer (LET) carbon ions: direct cell death through complex DNA damage; apoptosis via an enhanced mitochondria-mediated intrinsic pathway; forced re-entry of quiescent cancer cells into the cell cycle, thereby improving their susceptibility to IR. Silencing ß-catenin signaling is essential for maintaining the dormant state in quiescent cells. Herein, carbon ions activated the ß-catenin pathway in quiescent cells, and inhibition of this pathway improved the resistance of quiescent HeLa cells to carbon ions by alleviating DNA damage, improving DNA damage repair, maintaining quiescent depth, and inhibiting apoptosis. Collectively, carbon ions conquer the radioresistance of quiescent HeLa cells by activating ß-catenin signaling, which provides a theoretical basis for improved therapeutic effects in patients with middle-advanced-stage cervical cancer with radioresistance.


Assuntos
Neoplasias do Colo do Útero , beta Catenina , Feminino , Humanos , Células HeLa , beta Catenina/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/radioterapia , Reparo do DNA , Carbono , Íons/farmacologia , Dano ao DNA , Tolerância a Radiação/genética
3.
Strahlenther Onkol ; 199(12): 1225-1241, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37872399

RESUMO

The number of patients treated with charged-particle radiotherapy as well as the number of treatment centers is increasing worldwide, particularly regarding protons. However, high-linear energy transfer (LET) particles, mainly carbon ions, are of special interest for application in radiotherapy, as their special physical features result in high precision and hence lower toxicity, and at the same time in increased efficiency in cell inactivation in the target region, i.e., the tumor. The radiobiology of high-LET particles differs with respect to DNA damage repair, cytogenetic damage, and cell death type, and their increased LET can tackle cells' resistance to hypoxia. Recent developments and perspectives, e.g., the return of high-LET particle therapy to the US with a center planned at Mayo clinics, the application of carbon ion radiotherapy using cost-reducing cyclotrons and the application of helium is foreseen to increase the interest in this type of radiotherapy. However, further preclinical research is needed to better understand the differential radiobiological mechanisms as opposed to photon radiotherapy, which will help to guide future clinical studies for optimal exploitation of high-LET particle therapy, in particular related to new concepts and innovative approaches. Herein, we summarize the basics and recent progress in high-LET particle radiobiology with a focus on carbon ions and discuss the implications of current knowledge for charged-particle radiotherapy. We emphasize the potential of high-LET particles with respect to immunogenicity and especially their combination with immunotherapy.


Assuntos
Radioterapia com Íons Pesados , Transferência Linear de Energia , Humanos , Íons , Radioterapia com Íons Pesados/métodos , Radiobiologia , Carbono/uso terapêutico , Eficiência Biológica Relativa
4.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36902352

RESUMO

Radiotherapy (ionising radiation; IR) is utilised in the treatment of ~50% of all human cancers, and where the therapeutic effect is largely achieved through DNA damage induction. In particular, complex DNA damage (CDD) containing two or more lesions within one to two helical turns of the DNA is a signature of IR and contributes significantly to the cell killing effects due to the difficult nature of its repair by the cellular DNA repair machinery. The levels and complexity of CDD increase with increasing ionisation density (linear energy transfer, LET) of the IR, such that photon (X-ray) radiotherapy is deemed low-LET whereas some particle ions (such as carbon ions) are high-LET radiotherapy. Despite this knowledge, there are challenges in the detection and quantitative measurement of IR-induced CDD in cells and tissues. Furthermore, there are biological uncertainties with the specific DNA repair proteins and pathways, including components of DNA single and double strand break mechanisms, that are engaged in CDD repair, which very much depends on the radiation type and associated LET. However, there are promising signs that advancements are being made in these areas and which will enhance our understanding of the cellular response to CDD induced by IR. There is also evidence that targeting CDD repair, particularly through inhibitors against selected DNA repair enzymes, can exacerbate the impact of higher LET, which could be explored further in a translational context.


Assuntos
Dano ao DNA , Reparo do DNA , Humanos , Radiação Ionizante , Enzimas Reparadoras do DNA/genética , DNA
5.
Molecules ; 28(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38138632

RESUMO

(1) Background: Radioprotective agents have garnered considerable interest due to their prospective applications in radiotherapy, public health medicine, and situations of large-scale accidental radiation exposure or impending radiological emergencies. Cystamine, an organic diamino-disulfide compound, is recognized for its radiation-protective and antioxidant properties. This study aims to utilize the aqueous ferrous sulfate (Fricke) dosimeter to measure the free-radical scavenging capabilities of cystamine during irradiation by fast carbon ions. This analysis spans an energy range from 6 to 500 MeV per nucleon, which correlates with "linear energy transfer" (LET) values ranging from approximately 248 keV/µm down to 9.3 keV/µm. (2) Methods: Monte Carlo track chemistry calculations were used to simulate the radiation-induced chemistry of aerated Fricke-cystamine solutions across a broad spectrum of cystamine concentrations, ranging from 10-6 to 1 M. (3) Results: In irradiated Fricke solutions containing cystamine, cystamine is observed to hinder the oxidation of Fe2+ ions, an effect triggered by oxidizing agents from the radiolysis of acidic water, resulting in reduced Fe3+ ion production. Our simulations, conducted both with and without accounting for the multiple ionization of water, confirm cystamine's ability to capture free radicals, highlighting its strong antioxidant properties. Aligning with prior research, our simulations also indicate that the protective and antioxidant efficiency of cystamine diminishes with increasing LET of the radiation. This result can be attributed to the changes in the geometry of the track structures when transitioning from lower to higher LETs. (4) Conclusions: If we can apply these fundamental research findings to biological systems at a physiological pH, the use of cystamine alongside carbon-ion hadrontherapy could present a promising approach to further improve the therapeutic ratio in cancer treatments.


Assuntos
Cistamina , Transferência Linear de Energia , Cistamina/farmacologia , Antioxidantes , Dosímetros de Radiação , Íons , Núcleons , Água/química , Carbono
6.
Bull Exp Biol Med ; 176(1): 82-86, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38091144

RESUMO

We studied the effects of single and combined action of protons and carbon ions 12C6+ on the pool of MCF-7 human breast cancer stem cells. Single irradiation with a beam of protons or carbon ions had no significant effects on the relative number of cancer stem cells (CSC). The effects of combined irradiation in a total equieffective dose of 4 Gy depended on the sequence of exposure to ionizing radiations: the relative number of CSC did not change after irradiation with carbon ions and then with protons, but increased in the case of the reverse sequence. The most favorable result, i.e. a decrease in the CSC pool, was observed in the case of sequential irradiation with carbon ions and protons and their equal contribution to total equieffective dose. In this case, the absolute number of CSC decreased by on average 2.1 times in comparison with the control (p<0.05). The revealed regularities are of interest for the further development of new methods of radiation therapy.


Assuntos
Neoplasias da Mama , Prótons , Humanos , Feminino , Células MCF-7 , Neoplasias da Mama/radioterapia , Íons , Carbono , Células-Tronco Neoplásicas/efeitos da radiação
7.
Expert Rev Mol Med ; 24: e8, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35101155

RESUMO

Immunotherapy and targeted therapy are now commonly used in clinical trials in combination with radiotherapy for several cancers. While results are promising and encouraging, the molecular mechanisms of the interaction between the drugs and radiation remain largely unknown. This is especially important when switching from conventional photon therapy to particle therapy using protons or heavier ions. Different dose deposition patterns and molecular radiobiology can in fact modify the interaction with drugs and their effectiveness. We will show here that whilst the main molecular players are the same after low and high linear energy transfer radiation exposure, significant differences are observed in post-exposure signalling pathways that may lead to different effects of the drugs. We will also emphasise that the problem of the timing between drug administration and radiation and the fractionation regime are critical issues that need to be addressed urgently to achieve optimal results in combined treatments with particle therapy.


Assuntos
Íons Pesados , Radioterapia (Especialidade) , Fracionamento da Dose de Radiação , Humanos , Prótons , Radiobiologia
8.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36232764

RESUMO

Chondrosarcomas are particularly difficult to treat due to their resistance to chemotherapy and radiotherapy. However, particle therapy can enhance local control and patient survival rates. To improve our understanding of the basic cellular radiation response, as a function of dose and linear energy transfer (LET), we developed a novel water phantom-based setup for cell culture experiments and characterized it dosimetrically. In a direct comparison, human chondrosarcoma cell lines were analyzed with regard to their viability, cell proliferation, cell cycle, and DNA repair behavior after irradiation with X-ray, proton, and carbon ions. Our results clearly showed that cell viability and proliferation were inhibited according to the increasing ionization density, i.e., LET, of the irradiation modes. Furthermore, a prominent G2/M arrest was shown. Gene expression profiling proved the upregulation of the senescence genes CDKN1A (p21), CDKN2A (p16NK4a), BMI1, and FOXO4 after particle irradiation. Both proton or C-ion irradiation caused a positive regulation of the repair genes ATM, NBN, ATXR, and XPC, and a highly significant increase in XRCC1/2/3, ERCC1, XPC, and PCNA expression, with C-ions appearing to activate DNA repair mechanisms more effectively. The link between the physical data and the cellular responses is an important contribution to the improvement of the treatment system.


Assuntos
Condrossarcoma , Prótons , Carbono , Condrossarcoma/genética , Condrossarcoma/radioterapia , Humanos , Física , Antígeno Nuclear de Célula em Proliferação , Água , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
9.
Int J Mol Sci ; 23(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35743215

RESUMO

We study the impact of radiation LET on manifestation of HRS/IRR response in Chinese hamster cells ovary cells exposed to radiations used in radiotherapy. Earlier we have investigated this response to carbon ions (455 MeV/amu) in the pristine Bragg curve plateau and behind the Bragg peak, 60Co γ-rays, and 14.5 MeV neutrons. Now we present results of cytogenetic metaphase analysis in plateau-phase CHO-K1 cells irradiated with scanning beam protons (83 MeV) at doses < 1 Gy and additional data for 14.5 MeV neutrons. Dose curves for frequency of total chromosome aberrations (CA, protons), paired fragments (protons, neutrons), aberrant cells (neutrons) had typical HRS/IRR structure: HRS region (up to 0.1 and 0.15 Gy), IRR region (0.1−0.6 Gy and 0.15−0.35 Gy) for protons and neutrons, respectively, and regular dose dependence. Taken together with previous results, the data show that LET increase shifts the HRS upper border (from 0.08−0.1 Gy for γ-rays, protons and plateau carbons to 0.12−0.15 Gy for "tail" carbons and neutrons). The IRR regions shortens (0.52−0.4 γ-rays and protons, 0.25 plateau carbons, 0.2 Gy "tail" carbons and neutrons). CA level of IRR increases by 1.5−2.5 times for carbons as compared to γ-rays and protons. Outside HRS/IRR the yield of CA also enhanced with LET increase. The results obtained for different LET radiations suggest that CHO-K1 cells with G1-like CA manifested the general feature of the HRS/IRR phenomena.


Assuntos
Nêutrons , Prótons , Animais , Aberrações Cromossômicas , Cricetinae , Cricetulus , Relação Dose-Resposta à Radiação , Raios gama/efeitos adversos
10.
Dokl Biochem Biophys ; 507(1): 283-288, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36786987

RESUMO

The data of the study of the radioprotective properties of nanocerium (nCeO2) after total irradiation of mice with carbon ions in medium and lethal doses according to the micronucleus test and the criterion of 30-day survival are presented. A significant protective effect of nCeO2 upon irradiation at medium doses was observed at per os administration for 5 days before irradiation (that is, at long-term prophylactic use). Mouse survival data showed no protective effect of per os administration of nCeO2 in contrast to the micronucleus test results. After injections of both nCeO2 and saline solution 24 h before or immediately after irradiation, the radioprotective effect was detected using both methods. The data obtained revealed the dependence of the observed effects on the mode and time of nCeO2 administration, the influence of the solvent, the level of doses and the quality of radiation, as well as demonstrated the possibility of using nanocerium preparations to protect organisms from radiation with high LET values and the importance of further studies of the radioprotective properties of new nanomaterials.


Assuntos
Nanoestruturas , Protetores contra Radiação , Camundongos , Animais , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Carbono , Protetores contra Radiação/farmacologia
11.
BMC Cancer ; 21(1): 812, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34266402

RESUMO

BACKGROUND: Adenoid cystic carcinoma is a rare form of head and neck cancer with a slow, but aggressive growth pattern which remains a challenge for local tumor control. Based on phase II data, radiation treatment using partially high LET radiation results in a prolonged PFS and OS. There is a paucity of randomized clinical data examining the role of the use of high LET radiation only. Therefore, the purpose of this prospective clinical trial is to analyze local control rates in patients with node negative ACC treated with carbon ion radiotherapy alone compared to a combined modality approach. METHODS: This trial is conducted as a prospective, open-label, phase II, two-armed, investigator-initiated study comparing the local control rates in node negative ACCs of the head and neck treated either with sole carbon ion radiotherapy or a combination of carbon ions and photons. Secondary outcomes investigated are progression-free survival, overall survival, acute and late toxicity, and quality of life. A total of 314 patients will be randomly assigned to C12 treatment alone or bimodal treatment: Patients in the experimental group will receive a dose of 51 Gy (RBE) in 17 fractions and a boost of 15 Gy (RBE) in 5 fractions. Patients in the control group will receive 25 fractions photon IMRT 50Gy and a boost using 8 × 3 Gy (RBE) carbon ions. Local control will be assessed in regular follow up examinations until 5 years after the completion of treatment. DISCUSSION: The present trial aims to evaluate local control rates to compare sole carbon ion radiotherapy to bimodal radiotherapy with carbon ions and photons in patients with node negative ACCs of the head and neck region. Local control is selected as the primary endpoint due to its major clinical relevance because of slow but aggressive growth patterns. TRIAL REGISTRATION: The study was prospectively registered on 2nd January 2020: ClinicalTrials.gov, NCT04214366 . "Adenoid Cystic Carcinoma and Carbon Ion Only Irradiation (ACCO)". STUDY STATUS: Under recruitment, participant recruitment is not completed. Start of recruitment was January 2020. There are no results been published or submitted to any journal.


Assuntos
Carcinoma Adenoide Cístico/radioterapia , Neoplasias de Cabeça e Pescoço/radioterapia , Radioterapia com Íons Pesados/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Adenoide Cístico/patologia , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto Jovem
12.
Int J Hyperthermia ; 38(1): 105-110, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33530766

RESUMO

INTRODUCTION: The combination of hyperthermia with low LET (linear energy transfer) radiation may have similar anti-tumor effects as high LET radiation alone. This pre-clinical study determined the optimal heating temperature and time interval between radiation and heat to achieve this equivalent effect. METHODS: C3H mammary carcinomas (200 mm3 in size) growing in the right rear foot of CDF1 mice was used in all experiments. Tumors were locally irradiated with graded doses of either 240 kV ortho- or 6 MV mega-voltage X-rays to produce full dose-response curves. Heating (41.0-43.5 °C; 60 min) was achieved by immersing the tumor bearing foot in a water-bath applied at the same time, or up to 4-hours after, irradiating. The endpoint was the percentage of mice showing local tumor control at 90 days, with enhancements calculated from the ratios of the radiation doses causing 50% tumor control (± 95% confidence intervals). RESULTS: Previous published results in this tumor model reported that carbon ions were 1.3-1.7 times more effective than low LET radiation at inducing tumor control. Similar enhancements occurred with a temperature of only 41.0 °C with a simultaneous heat and radiation treatment. However, higher temperatures were needed with the introduction of any interval; at 42.5 °C, the enhancement was 2.5 with a simultaneous treatment, decreasing to a value within the carbon ion range with a 4-hour interval. CONCLUSIONS: Combining hyperthermia with low LET radiation can be as effective as high LET at inducing tumor control, but the temperature needed depended on the time interval between the two modalities.


Assuntos
Hipertermia Induzida , Neoplasias , Animais , Hipertermia , Transferência Linear de Energia , Camundongos , Camundongos Endogâmicos C3H
13.
J Appl Clin Med Phys ; 22(9): 242-251, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34339590

RESUMO

PURPOSE: Carbon ion radiotherapy for prostate cancer was performed using two fine needle Gold Anchor (GA) markers for patient position verification in Osaka Heavy Ion Medical Accelerator in Kansai (Osaka HIMAK). The present study examined treatment plans for prostate cases using beam-specific planning target volume (bsPTV) based on the effect of the markers on dose distribution and analysis of target movements. MATERIALS AND METHODS: Gafchromic EBT3 film was used to measure dose perturbations caused by markers. First, the relationships between the irradiated film density and absolute dose with different linear energy transfer distributions within a spread-out Bragg peak (SOBP) were confirmed. Then, to derive the effect of markers, two types of markers, including GA, were placed at the proximal, center, and distal depths within the same SOBP, and dose distributions behind the markers were measured using the films. The amount of internal motion of prostate was derived from irradiation results and analyzed to determine the margins of the bsPTV. RESULTS: The linearity of the film densities against absolute doses was constant within the SOBP and the amount of dose perturbations caused by the markers was quantitatively estimated from the film densities. The dose perturbation close behind the markers was smallest (<10% among depths within the SOBP regardless of types of markers) and increased with depth. The effect of two types of GAs on dose distributions was small and could be ignored in the treatment planning. Based on the analysis results of internal motions of prostate, required margins of the bsPTV were found to be 8, 7, and 7 mm in left-right (LR), anterior-posterior (AP), and superior-inferior (SI) directions, respectively. CONCLUSION: We evaluated the dose reductions caused by markers and determined the margins of the bsPTV, which was applied to the treatment using fiducial markers, using the analysis results of prostate movements.


Assuntos
Radioterapia com Íons Pesados , Íons Pesados , Neoplasias da Próstata , Marcadores Fiduciais , Humanos , Masculino , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
14.
Int J Mol Sci ; 22(14)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34299263

RESUMO

BACKGROUND: Charged-particle radiotherapy is an emerging treatment modality for radioresistant tumors. The enhanced effectiveness of high-energy particles (such as heavy ions) has been related to the spatial clustering of DNA lesions due to highly localized energy deposition. Here, DNA damage patterns induced by single and multiple carbon ions were analyzed in the nuclear chromatin environment by different high-resolution microscopy approaches. MATERIAL AND METHODS: Using the heavy-ion microbeam SNAKE, fibroblast monolayers were irradiated with defined numbers of carbon ions (1/10/100 ions per pulse, ipp) focused to micrometer-sized stripes or spots. Radiation-induced lesions were visualized as DNA damage foci (γH2AX, 53BP1) by conventional fluorescence and stimulated emission depletion (STED) microscopy. At micro- and nanoscale level, DNA double-strand breaks (DSBs) were visualized within their chromatin context by labeling the Ku heterodimer. Single and clustered pKu70-labeled DSBs were quantified in euchromatic and heterochromatic regions at 0.1 h, 5 h and 24 h post-IR by transmission electron microscopy (TEM). RESULTS: Increasing numbers of carbon ions per beam spot enhanced spatial clustering of DNA lesions and increased damage complexity with two or more DSBs in close proximity. This effect was detectable in euchromatin, but was much more pronounced in heterochromatin. Analyzing the dynamics of damage processing, our findings indicate that euchromatic DSBs were processed efficiently and repaired in a timely manner. In heterochromatin, by contrast, the number of clustered DSBs continuously increased further over the first hours following IR exposure, indicating the challenging task for the cell to process highly clustered DSBs appropriately. CONCLUSION: Increasing numbers of carbon ions applied to sub-nuclear chromatin regions enhanced the spatial clustering of DSBs and increased damage complexity, this being more pronounced in heterochromatic regions. Inefficient processing of clustered DSBs may explain the enhanced therapeutic efficacy of particle-based radiotherapy in cancer treatment.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos da radiação , DNA/efeitos da radiação , Radioterapia com Íons Pesados/efeitos adversos , Técnicas de Cultura de Células , Análise por Conglomerados , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , Eucromatina/genética , Eucromatina/efeitos da radiação , Fibroblastos , Radioterapia com Íons Pesados/métodos , Íons Pesados/efeitos adversos , Heterocromatina/genética , Heterocromatina/efeitos da radiação , Humanos , Autoantígeno Ku/genética , Autoantígeno Ku/efeitos da radiação , Transferência Linear de Energia/efeitos da radiação , Microscopia Eletrônica/métodos , Radiação Ionizante
15.
Int J Mol Sci ; 22(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34681703

RESUMO

Until recently, radiation effects have been considered to be mainly due to nuclear DNA damage and their management by repair mechanisms. However, molecular biology studies reveal that the outcomes of exposures to ionizing radiation (IR) highly depend on activation and regulation through other molecular components of organelles that determine cell survival and proliferation capacities. As typical epigenetic-regulated organelles and central power stations of cells, mitochondria play an important pivotal role in those responses. They direct cellular metabolism, energy supply and homeostasis as well as radiation-induced signaling, cell death, and immunological responses. This review is focused on how energy, dose and quality of IR affect mitochondria-dependent epigenetic and functional control at the cellular and tissue level. Low-dose radiation effects on mitochondria appear to be associated with epigenetic and non-targeted effects involved in genomic instability and adaptive responses, whereas high-dose radiation effects (>1 Gy) concern therapeutic effects of radiation and long-term outcomes involving mitochondria-mediated innate and adaptive immune responses. Both effects depend on radiation quality. For example, the increased efficacy of high linear energy transfer particle radiotherapy, e.g., C-ion radiotherapy, relies on the reduction of anastasis, enhanced mitochondria-mediated apoptosis and immunogenic (antitumor) responses.


Assuntos
Epigênese Genética/efeitos da radiação , Mitocôndrias/metabolismo , Radiação Ionizante , Transdução de Sinais/efeitos da radiação , Transição Epitelial-Mesenquimal/efeitos da radiação , Instabilidade Genômica/efeitos da radiação , Humanos , Mitocôndrias/genética , Mitocôndrias/efeitos da radiação , Dinâmica Mitocondrial/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo
16.
Radiat Environ Biophys ; 59(4): 723-732, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32857208

RESUMO

Although radiotherapy, especially carbon-ion radiotherapy, is an effective treatment modality against non-small-cell lung cancer (NSCLC), studies using radiation combined with sensitizer for improving the efficacy of radiotherapy are still needed. In this work, we aimed to investigate in NSCLC A549 and H1299 cell lines the effects of different linear energy transfer (LET) radiations combined with diverse sensitizing compounds. Cells pretreated with the CHK1/CHK2 inhibitor AZD7762, Honokiol or Tunicamycin were irradiated with low-LET X-rays and high-LET carbon ions. Cell survival was assessed using the clonogenic cell survival assay. Cell cycle distribution and apoptosis were measured with flow cytometry, and DNA double strand break (DSB) and repair were detected using γ-H2AX immunofluorescence staining. Our results revealed that AZD7762, Honokiol and Tunicamycin demonstrated low cytotoxicity to NSCLC cells and a pronounced radiosensitizing effect on NSCLC cells exposed to carbon ions than X-rays. Unrepaired DNA DSB damages, the abrogation of G2/M arrest induced by irradiation, and finally apoptotic cell death were the main causes of the radiosensitizing effect. Thus, our data suggest that high-LET carbon ion combined with these compounds may be a potentially effective therapeutic strategy for locally advanced NSCLC.


Assuntos
Antineoplásicos/farmacologia , Compostos de Bifenilo/farmacologia , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Quinase do Ponto de Checagem 2/antagonistas & inibidores , Lignanas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Radiossensibilizantes/farmacologia , Tiofenos/farmacologia , Tunicamicina/farmacologia , Ureia/análogos & derivados , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Carbono , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Quebras de DNA de Cadeia Dupla , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos da radiação , Humanos , Íons , Transferência Linear de Energia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Tolerância a Radiação/efeitos dos fármacos , Ureia/farmacologia , Raios X
17.
Int J Mol Sci ; 21(13)2020 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-32635552

RESUMO

Pancreatic cancer is a very aggressive cancer type associated with one of the poorest prognostics. Despite several clinical trials to combine different types of therapies, none of them resulted in significant improvements for patient survival. Pancreatic cancers demonstrate a very broad panel of resistance mechanisms due to their biological properties but also their ability to remodel the tumour microenvironment. Radiotherapy is one of the most widely used treatments against cancer but, up to now, its impact remains limited in the context of pancreatic cancer. The modern era of radiotherapy proposes new approaches with increasing conformation but also more efficient effects on tumours in the case of charged particles. In this review, we highlight the interest in using charged particles in the context of pancreatic cancer therapy and the impact of this alternative to counteract resistance mechanisms.


Assuntos
Carbono/uso terapêutico , Íons/uso terapêutico , Neoplasias Pancreáticas/radioterapia , Animais , Resistencia a Medicamentos Antineoplásicos/efeitos da radiação , Humanos , Prótons , Microambiente Tumoral/efeitos da radiação
18.
Int J Mol Sci ; 21(14)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708312

RESUMO

Glioblastoma multiforme (GBM) is a malignant primary brain tumor with very poor prognosis, high recurrence rate, and failure of chemo-radiotherapy, mainly due to a small fraction of cells with stem-like properties (GSCs). To study the mechanisms of GSCs resistance to radiation, two GSC lines, named line #1 and line #83, with different metabolic patterns and clinical outcome, were irradiated with photon beams and carbon ions and assessed by 1H Magnetic Resonance Spectroscopy (MRS). Both irradiation modalities induced early cytotoxic effects in line #1 with small effects on cell cycle, whereas a proliferative G2/M cytostatic block was observed in line #83. MR spectroscopy signals from mobile lipids (ML) increased in spectra of line #1 after photon and C-ion irradiation with effects on lipid unsaturation level, whereas no effects were detected in line #83 spectra. Gamma-Aminobutyric Acid (GABA), glutamic acid (glu) and Phosphocreatine (pCr) signals showed a significant variation only for line #1 after carbon ion irradiation. Glucose (glc) level and lactate (Lac) extrusion behaved differently in the two lines. Our findings suggest that the differences in irradiation response of GSCs #1 and #83 lines are likely attributable to their different metabolic fingerprint rather than to the different radiation types.


Assuntos
Neoplasias Encefálicas/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos da radiação , Glioblastoma/metabolismo , Espectroscopia de Ressonância Magnética , Células-Tronco Neoplásicas/metabolismo , Fótons/uso terapêutico , Neoplasias Encefálicas/radioterapia , Linhagem Celular Tumoral , Glioblastoma/radioterapia , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Íons/metabolismo , Ácido Láctico/metabolismo , Células-Tronco Neoplásicas/efeitos da radiação , Fosfocreatina/metabolismo , Radiação Ionizante , Ácido gama-Aminobutírico/metabolismo
19.
Int J Mol Sci ; 21(11)2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32492909

RESUMO

(1) Background: Cancer ion therapy is constantly growing thanks to its increased precision and, for heavy ions, its increased biological effectiveness (RBE) with respect to conventional photon therapy. The complex dependence of RBE on many factors demands biophysical modeling. Up to now, only the Local Effect Model (LEM), the Microdosimetric Kinetic Model (MKM), and the "mixed-beam" model are used in clinics. (2) Methods: In this work, the BIANCA biophysical model, after extensive benchmarking in vitro, was applied to develop a database predicting cell survival for different ions, energies, and doses. Following interface with the FLUKA Monte Carlo transport code, for the first time, BIANCA was benchmarked against in vivo data obtained by C-ion or proton irradiation of the rat spinal cord. The latter is a well-established model for CNS (central nervous system) late effects, which, in turn, are the main dose-limiting factors for head-and-neck tumors. Furthermore, these data have been considered to validate the LEM version applied in clinics. (3) Results: Although further benchmarking is desirable, the agreement between simulations and data suggests that BIANCA can predict RBE for C-ion or proton treatment of head-and-neck tumors. In particular, the agreement with proton data may be relevant if the current assumption of a constant proton RBE of 1.1 is revised. (4) Conclusions: This work provides the basis for future benchmarking against patient data, as well as the development of other databases for specific tumor types and/or normal tissues.


Assuntos
Cordoma/radioterapia , Neoplasias de Cabeça e Pescoço/radioterapia , Radioterapia com Íons Pesados , Terapia com Prótons/métodos , Medula Espinal/metabolismo , Animais , Células CHO , Carbono/química , Sobrevivência Celular/efeitos da radiação , Sistema Nervoso Central/efeitos da radiação , Cricetinae , Cricetulus , Bases de Dados Factuais , Humanos , Cinética , Método de Monte Carlo , Radiometria , Ratos , Eficiência Biológica Relativa
20.
Int J Mol Sci ; 21(6)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168789

RESUMO

Chromatin architecture plays major roles in gene regulation as well as in the repair of DNA damaged by endogenous or exogenous factors, such as after radiation. Opening up the chromatin might provide the necessary accessibility for the recruitment and binding of repair factors, thus facilitating timely and correct repair. The observed formation of ionizing radiation-induced foci (IRIF) of factors, such as 53BP1, upon induction of DNA double-strand breaks have been recently linked to local chromatin decompaction. Using correlative light and electron microscopy (CLEM) in combination with DNA-specific contrasting for transmission electron microscopy or tomography, we are able to show that at the ultrastructural level, these DNA damage domains reveal a chromatin compaction and organization not distinguishable from regular euchromatin upon irradiation with carbon or iron ions. Low Density Areas (LDAs) at sites of particle-induced DNA damage, as observed after unspecific uranyl acetate (UA)-staining, are thus unlikely to represent pure chromatin decompaction. RNA-specific terbium-citrate (Tb) staining suggests rather a reduced RNA density contributing to the LDA phenotype. Our observations are discussed in the view of liquid-like phase separation as one of the mechanisms of regulating DNA repair.


Assuntos
Cromatina/ultraestrutura , Dano ao DNA/efeitos da radiação , Íons Pesados/efeitos adversos , Animais , Linhagem Celular Tumoral , Cromatina/genética , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Tomografia com Microscopia Eletrônica , Humanos , Camundongos , Microscopia Eletrônica , Microscopia Eletrônica de Transmissão , Células NIH 3T3 , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA